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On Computations of Genus 0 Two-Point
Descendant Gromov–Witten Invariants

Amin Gholampour & Hsian-Hua Tseng

1. Introduction

Let X be a smooth proper Deligne–Mumford C-stack with projective coarse mod-
uli space. Genus 0 two-point descendant Gromov–Witten invariants of X are
invariants of the following kind:

〈aψk, bψ l〉X0,2,β :=
∫

[M0,2(X,β)]vir
ev∗

1(a)ψ
k
1 ev∗

2(b)ψ
l
2, (1.1)

where a, b ∈H ∗(IX), k, l ∈ Z≥0, and ev1, ev2 : M0,2(X,β) → IX are the evalu-
ation maps. We refer to [1] for the basics of the construction of Gromov–Witten
invariants for Deligne–Mumford stacks.

Recently, exact computations of genus 0 two-point descendant Gromov–Witten
invariants have received much attention because of mirror symmetry for genus 1
and open Gromov–Witten invariants. In the case X = P n, a formula for the invari-
ants (1.1) is proved in [14]. Formulas for variants of (1.1) involving twists by Euler
class and direct sums of line bundles, in the sense of [4], are also proven in [14]
and [12] in the toric setting. More recently, a formula for the invariants (1.1) for
compact symplectic toric manifolds is proven in [11]. The proofs in [11; 12; 14]
follow a strategy that is similar to the one used by Givental in his computation of
genus 0 one-point descendant invariants [5; 6]. More precisely, a generating func-
tion of invariants (1.1) is proven by virtual localization to satisfy certain recursion
relations and certain regularity conditions. The localization computations needed
in [11; 12; 14] are somewhat involved.

The purpose of this paper is to discuss a simpler method for explicitly comput-
ing (1.1). This method is based on a known fact in topological field theory that
relates two-point descendant invariants (1.1) to one-point descendant invariants;
see equation (2.5). We explain this method in detail in Section 2. In Section 3 we
apply this method to compute two-point descendant invariants for several classes
of examples.

Convention. We work over the field of complex numbers. Cohomology groups
are taken with rational coefficients. In this paper we consider cohomology only in
even degrees.
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2. Method of Computation

In this section we present our method for computing two-point descendant invari-
ants (1.1). We work in the more general context of twisted orbifold Gromov–Witten
theory as constructed in [13]. We briefly recall this theory, following [13] (but using
somewhat different notation).

2.1. Setup

Let X be a smooth proper Deligne–Mumford C-stack with projective coarse mod-
uli space. Let V → X be a complex vector bundle and c(·) a multiplicative in-
vertible characteristic class of vector bundles. Given two integers g, n ≥ 0 and
β ∈ H2(X, Z), let Mg,n(X,β) be the moduli stack of n-pointed genus g de-
gree β orbifold stable maps to X. For each i = 1, . . . , n there is an evaluation
map evi : Mg,n(X,β) → IX taking values in the inertia stack IX of X. Let
π : C → Mg,n(X,β) be the universal curve and f : C → X the universal orbi-
fold stable map. A key ingredient in the construction of the twisted theory is the
following element in the K-theory:

Vg,n,β := Rπ∗f ∗V ∈K 0(Mg,n(X,β)). (2.1)

The (c,V )-twisted orbifold Gromov–Witten invariants of X are defined by

〈a1ψ
k1, . . . , anψ

kn〉X,(c,V )
g,n,β :=

∫
[Mg,n(X,β)]vir

c(Vg,n,β)
n∏
i=1

ev∗
i (ai)ψ

ki
i . (2.2)

Here k1, . . . , kn ≥ 0 are integers, a1, . . . , an ∈H ∗(IX),

[Mg,n(X,β)]vir ∈H∗(Mg,n(X,β), Q)

is the virtual fundamental class, and ψi ∈H 2(Mg,n(X,β), Q) are the descendant
classes.

2.2. Reduction to One-Point Descendant

Let τ ∈H ∗(IX). Consider the linear map

R(τ ; z1, z2) : H ∗(IX) → H ∗(IX)[[z−1
1 , z−1

2 ]]

defined by requiring that for a, b ∈H ∗(IX) we have

(a,R(τ ; z1, z2)(b))(c,V )

:= (a, b)(c,V ) +
∑
β

∑
n

Qβ

n!

〈
a

z1 − ψ
, τ, . . . , τ,

b

z2 − ψ

〉X,(c,V )

0,n+2,β

, (2.3)

where (·, ·)(c,V ) is the (c,V )-orbifold Poincaré pairing of X, as defined in [13,
Sec. 3.2], and Qβ is an element in the Novikov ring. We can consider R(τ ; z1, z2)

as a generating function of genus 0 two-point twisted descendant invariants.
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Consider the linear map

S(τ ; z) : H ∗(IX) → H ∗(IX)[[z−1]]

defined by requiring that for a, b ∈H ∗(IX) we have

(a, S(τ ; z)(b))(c,V )

:= (a, b)(c,V ) +
∑
β

∑
n

Qβ

n!

〈
a, τ, . . . , τ,

b

z − ψ

〉X,(c,V )

0,n+2,β

. (2.4)

Likewise we can consider S(τ ; z) as a generating function of genus 0 one-point
twisted descendant invariants.

Proposition 2.1.

R(τ ; z1, z2) = 1

z1 + z2
(S(τ ; z1)

∗S(τ ; z2) − Id). (2.5)

Here the superscript ∗ indicates the adjoint with respect to the pairing (·, ·)(c,V ).

This proposition gives a relationship between the linear maps R(τ ; z1, z2) and
S(τ ; z). This proposition is not new, but for the sake of completeness we present
a proof of it as follows.

Proof of Proposition 2.1. The proof of this proposition is a straightforward appli-
cation of the argument that proves WDVV equations.

By the string equation, we have

〈
a

z1 − ψ
, τ, . . . , τ,1,

b

z2 − ψ

〉X,(c,V )

0,n+3,β

= 1

z1

〈
a

z1 − ψ
, τ, . . . , τ,

b

z2 − ψ

〉X,(c,V )

0,n+2,β

+
〈

a

z1 − ψ
, τ, . . . , τ,

b

z2 − ψ

〉X,(c,V )

0,n+2,β

1

z2

=
(

1

z1
+ 1

z2

)〈
a

z1 − ψ
, τ, . . . , τ,

b

z2 − ψ

〉X,(c,V )

0,n+2,β

. (2.6)

In the exceptional case (n,β) = (0, 0) we have

〈
a

z1 − ψ
,1,

b

z2 − ψ

〉X,(c,V )

0,3,0

= 1

z1

1

z2
(a, b)(c,V ). (2.7)

Let {φα} ⊂ H ∗(IX) be an additive basis, and let {φα} ⊂ H ∗(IX) be the dual
basis with respect to the pairing (·, ·)(c,V ). The rational equivalence of boundary
divisors in M0,4 used in the proof of the WDVV equation gives the following:
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∑
n1+n2=n,β1+β2=β

(
n

n1

)

∑
α

〈
a

z1 − ψ
, τ, . . . , τ,1,φα

〉X,(c,V )

0,n1+3,β1

〈
φα,1, τ, . . . , τ,

b

z2 − ψ

〉X,(c,V )

0,n2+3,β2

=
∑

n1+n2=n,β1+β2=β

(
n

n1

)

∑
α

〈
a

z1 − ψ
, τ, . . . , τ,

b

z2 − ψ
,φα

〉X,(c,V )

0,n1+3,β1

〈φα,1, τ, . . . , τ,1〉X,(c,V )
0,n2+3,β2

=
〈

a

z1 − ψ
, τ, . . . , τ,

b

z2 − ψ
,
∑
α

(φα,1)(c,V )φα

〉X,(c,V )

0,n+3,β

(by string equation)

=
〈

a

z1 − ψ
, τ, . . . , τ,

b

z2 − ψ
,1

〉X,(c,V )

0,n+3,β

. (2.8)

Again by the string equation, we have〈
a

z1 − ψ
, τ, . . . , τ,1,φα

〉X,(c,V )

0,n1+3,β1

= 1

z1

〈
a

z1 − ψ
, τ, . . . , τ,φα

〉X,(c,V )

0,n1+2,β1

,

〈
φα,1, τ, . . . , τ,

b

z2 − ψ

〉X,(c,V )

0,n2+3,β2

= 1

z2

〈
φα, τ, . . . , τ,

b

z2 − ψ

〉X,(c,V )

0,n2+2,β2

,

(2.9)

with the exception that〈
a

z1 − ψ
,1,φα

〉X,(c,V )

0,3,0

= 1

z1
(a,φα)(c,V ),

〈
φα,1,

b

z2 − ψ

〉X,(c,V )

0,3,0

= 1

z2
(φα, b)(c,V ).

(2.10)

Combining (2.6)–(2.10) and summing over all possible values of n and β, we get(
1

z1
+ 1

z2

)
R(τ ; z1, z2) + 1

z1z2
Id = 1

z1

1

z2
S(τ ; z1)

∗S(τ ; z2), (2.11)

which is (2.5).

Remark 2.2. 1. To avoid notational complications, (2.5) is not stated for equi-
variant Gromov–Witten invariants. However it is clear from the proof that (2.5) is
also valid in equivariant Gromov–Witten theory.

2. It is easy to see that, when X is a compact symplectic toric manifold, the
equivariant version of (2.5) recovers [11, Thm. 4.5].

3. A formula for genus 0 multi-point Gromov–Witten invariants of P n is proved
in [15]. It is clear that the method used to prove (2.5) can be applied recursively to
prove formulas for genus 0 multi-point Gromov–Witten invariants of more general
target space X. We do not pursue this here.
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Equation (2.5) expresses R(τ ; z1, z2) in terms of S(τ ; z). This reduces the com-
putation of R(τ ; z1, z2) to the computation of S(τ ; z).

2.3. One-Point Invariants

As mentioned previously, S(τ ; z) can be considered as a generating function of
one-point twisted descendant invariants. When considering one-point twisted de-
scendant invariants, the so-called twisted J -function JX,(c,V )(τ ; z) plays an impor-
tant role:

JX,(c,V )(τ ; z) := z + τ +
∑
β

∑
n

Qβ

n!

〈
τ, . . . , τ,

φα

z − ψ

〉X,(c,V )

0,n+1,β

φα. (2.12)

It is easy to see that JX,(c,V )(τ ; z) = zS(τ ; z)∗(1). In other words, the J -function
is the “first column” of S(τ ; z)∗.

In various cases of X, (c,V ), the small J -function

JX,(c,V )(τ ; z)|τ∈H 0(X)⊕H 2(X)

is explicitly known. For example, when X = P n and (c,V ) is vacuous, the small
J -function is given by

JP n(τ = t01 + tP ; z) = ze(t01+P t)/z
∑
d≥0

Qdedt∏d
k=1(P + kz)n+1

, (2.13)

where 1∈H 0(P n) and P ∈H 2(P n) is the hyperplane class. It is evident that

JP n(τ = t01 + tP ; z)
is not the whole S(τ ; z). But in this case one can check that

(z∂/∂t)jJP n(t01 + tP ; z) = z∇P j JP n(τ ; z)|τ=t01+tP . (2.14)

One can also check that the derivative of the full J -function JP n along the direc-
tion of P j ∈ H 2j(P n), ∇P j JP n(τ ; z), gives other columns of S(τ ; z)∗. Thus by
(2.13) and (2.14) we can explicitly compute S(τ ; z)∗ for τ = t01 + tP.

The preceding example suggests that we computeR(τ ; z1, z2)|τ∈H 0(X)⊕H 2(X) as
follows. Suppose that the small J -function JX,(c,V )(τ ; z)|τ∈H 0(X)⊕H 2(X) is explic-
itly known, and suppose that we can obtain all columns of S(τ ; z)∗|τ∈H 0(X)⊕H 2(X)

by successive differentiations along H 2(X); then we can obtain an explicit for-
mula for S(τ ; z)∗|τ∈H 0(X)⊕H 2(X). Using (2.5) then yields an explicit formula for
R(τ ; z1, z2)|τ∈H 0(X)⊕H 2(X). Finally, the desired two-point twisted descendant in-
variants are extracted from R(τ ; z1, z2)|τ∈H 0(X)⊕H 2(X) after applying string and
divisor equations. We next set up this computation scheme in more detail.

2.4. Computation Scheme

Let X and (c,V ) be as in Section 2.1. Suppose we can find the elements

{vi}i=1,...,N

in H ∗(IX) with the following properties.
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(1) There exists a permutation 1̂, . . . , N̂ of 1, . . . ,N such that the pairing satisfies

(vî, vj )(c,V ) = miδij

for a nonzero mi.

(2) The restriction of ∇vj JX,(c,V )(τ ; z) to H 2(X) is known for each vj .

We know that ∇vj JX,(c,V )(τ ; z) is the j th column of S(τ ; z)∗. So for t ∈H 2(X),
the (i, j)-entry of S(t; z)∗ is(

vî

mî

, S(t; z)∗(vj )
)
(c,V )

= Sij(t).

Hence the (i, j)-entry of S(t; z) is(
vî

mî

, S(t; z)(vj )
)
(c,V )

= 1

mî

(vj , S(t; z)∗(vî))(c,V ) = mj

mi

Sĵ î (t).

From this it follows that the (i, j)-entry of R(t; z1, z2) is

1

z−1
1 + z−1

2

(∑
k

mk

mj

SikSĵ k̂ − δij

)
. (2.15)

After setting t = 0 in (2.15), the coefficient of Qβ gives the desired two-point
(c,V )-twisted Gromov–Witten invariant〈

vî

mi(z1 − ψ)
,

vj

z2 − ψ

〉X,(c,V )

0,2,β

.

In the next section we investigate some cases in which one can find a cohomology
basis with the foregoing properties by using mirror theorems. As in the previous
example of P n−1, in all of our applications we can find a collection {D1,D2, . . . } of
first-order linear differential operators with differentiations only along directions
in H 2(X) such that, for each 1 ≤ j ≤ N, there exist i1, . . . , in such that

z∇vj JX,(c,V )(τ ; z)|τ∈H 2(X) = zDi1 � · · · � zDinIX,(c,V ) (∗)
after the change of variables in the mirror theorem. Here IX,(c,V ) denotes the Given-
tal I -function. Since the J -function takes the form JX,(c,V )(τ ; z) = z+τ+O(z−1),
in order for (∗) to be true we need to verify the following condition in all our
applications.

Condition 2.3. For each j and i1, . . . , in as before, the only positive power of z
appearing in zDi1 � · · · � zDin−1IX,(c,V ) is Az for some A∈H ∗(IX).

3. Some Applications

In this section we implement the aforementioned computation scheme for weighted
projective spaces and some toric manifolds.

3.1. Weighted Projective Space X = P(w0,w1, . . . ,wn)

Here we mostly follow the notation in [3]. Let P ∈ H 2(X) be the hyperplane
class, and let N = w0 +· · ·+wn. Denote by 〈a〉 the fractional part of the rational
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number a. The small J -function of the weighted projective spaces was computed
in [3, Thm. 1.7] as

JX(t; z) = zeP t/z
∑

d≥0; 〈d〉∈F

edtQd∏n
i=0

∏
0<b≤dwi ; 〈b〉=〈dwi〉(wiP + bz)

1〈d〉,

where
F = {k/wi : 0 ≤ k < wi and 0 ≤ i ≤ n}

and c1, . . . , cN are defined to be the sequence obtained by arranging the terms

0

w0
,

1

w0
, . . . ,

w0 − 1

w0
,

0

w1
,

1

w1
, . . . ,

w1 − 1

w1
, . . . ,

0

wn

,
1

wn

, . . . ,
wn − 1

wn

in increasing order. The connected components of IX are indexed by the elements
of F. For any f ∈F, let 1f be the fundamental class of the corresponding compo-
nent of IX. By [3, Lemma 5.1] there exists a basis B = {v1, . . . , vN} for H ∗(IX)

given by vj = σjP
rj1cj , where

σj =
∏

m:cm<cj
(cj − cm)∏n

i=0

∏
b:〈b〉=〈cjwi〉, 0<b≤cjwi

b
,

and rj = #{i | i < j, ci = cj}. Define

dj = #{i | ci = cj},
mj =

∏
{i|cjwi∈Z}

wi;

then the dual basis of B is given by {v1, . . . , vN }, where

vj = mj

σj
P dj−rj1〈1−cj〉 = mj

σj σĵ
vĵ .

Note that we define ĵ by the second of these equalities.
We know that ∇vj JX(τ ; z) is the j th column of S(τ ; z)∗, and by [3, Lemma 5.1]

there exist explicitly given linear differential operators D1, . . . ,DN such that

∇vj J(τ ; z)|τ=tP = z−1DjJ(t; z).
So if we denote by Jk(τ ; z) the component of the J -function along vk , then the
(k, j)-entry of S(tP ; z)∗ is

〈vk, S(tP ; z)∗(vj )〉 = z−1DjJk(t; z).
Hence the (k, j)-entry of S(tP ; z) is

〈vk, S(tP ; z)(vj )〉 = 〈vj , S(tP ; z)∗(vk)〉 = mkσj σĵ

mĵ σkσk̂
〈vĵ, S(tP ; z)∗(vk̂)〉

= mkσj σĵ

mĵ σkσk̂
z−1Dk̂Jĵ (t).

From this it follows that the (k, j)-entry of the R(t; z1, z2) is
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1

z−1
1 + z−1

2

(∑
i

miσj σĵ

mĵ σiσî
DiJk(t; z1)DîJĵ (t; z2) − δ

j

k

)
. (3.1)

After we set t = 0 in (3.1), the coefficient of Qd gives the desired two-point de-
scendant Gromov–Witten invariant〈

vj

z1 − ψ1
,

vk

z2 − ψ2

〉X
0,d

.

We know from [3, Proof of Lemma 5.1] that

DjJ(0; z) = z
∑

d≥0; 〈d〉∈F

∏j−1
m=1(P + (d − cm)z)∏n

i=0

∏
0<b≤dwi ; 〈b〉=〈dwi〉(wiP + bz)

1〈d〉Qd−cj. (3.2)

So in order to compute the right-hand side of (3.1), we need to read off the coef-
ficients of DiJ and DîJ along the specific basis elements. For this we introduce
the new variables H1,H2 and x1, x2 while keeping track of powers of P and the
indices of 1〈d〉 in DiJ and DîJ, respectively. Now using (3.1) and (3.2), for d > 0
we can write
N∑

j,k=1

〈
vj

z1 − ψ1
,

vk

z2 − ψ2

〉
0,d

m2
j

σ 2
j σ

2
ĵ

H
rj
1 H

rk
2 x

cj
1 x

ck
2 = 1

z1 + z2

N∑
s=1

∑
d1,d2≥0

〈d1〉,〈d2〉∈F
d1+d2=d+cs+cŝ

3d1,d2 ,

where

3d1,d2 = ms

∏s−1
m=1(H1 + (d1 − cm)z1)

∏ ŝ−1
m̂=1(H2 + (d2 − cm̂)z2)

σsσŝ
∏n

i=0

∏
0<b1≤d1ws ; 〈b1〉=〈d1ws 〉
0<b2≤d2wŝ ; 〈b2〉=〈d2wŝ 〉

(wsH1 + b1z1)(wŝH2 + b2z2)
x

〈d1〉
1 x

〈1−〈d2〉〉
2 .

This specializes to [14, Thm. 1].

Remark 3.1. Using the mirror theorems stated in [3], our method can be applied
to compute the twisted two-point Gromov–Witten invariants of a complete inter-
section inside a weighted projective space if it satisfies Condition 2.3. However,
since the mirror theorem usually involves a nontrivial change of variables, the for-
mulas we get are less explicit.

3.2. Toric Manifolds

In this section we discuss applications of the aforementioned method to compute
genus 0 two-point descendant Gromov–Witten invariants of a smooth projective
toric variety.

Let X be a smooth projective toric variety. The (small) J -function JX of X is
determined by the toric mirror theorem [5; 6; 8]. How explicitly the J -function of
X is determined depends on X. If X is Fano (i.e., −KX is ample), then JX is equal
to the combinatorially defined I -function IX. If X is semi-Fano but not Fano (i.e.,
−KX is nef and big but not ample), then JX is equal to IX after a change of vari-
ables (the inverse mirror map) that is often given by a power series with recursively
determined coefficients. If X is not semi-Fano, the situation is quite complicated.
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In Section 3.2.1 we discuss how to use toric mirror theorems to compute the nec-
essary generating function S(τ ; z) for toric manifolds X. The outcome is not very
explicit, as it involves some recursively determined quantities. In Section 3.3.2
we discuss an approach to yield more explicit formulas in the toric Fano case.

It is worth mentioning that the discussions in this section in principle work for
toric Deligne–Mumford (DM) stacks as well, given the appropriate mirror theo-
rem for them. A mirror theorem for toric DM stacks will be proved in [2] (see [9,
Sec. 4.1] for some details of the result).

3.2.1. Using the Mirror Theorem in General
Let X be a smooth projective toric manifold. According to [7], the totality of
genus 0 Gromov–Witten invariants of X can be encoded in a Lagrangian submani-
fold LX in a suitable symplectic vector space. Following [6], one can write down a
cohomology-valued formal function IX(t; z) called the I -function of X. The toric
mirror theorem in this generality (see [8]) states that the family

t �→ IX(t; z), t ∈H 2(X),

lies on LX. By general properties of the Lagrangian submanifold LX (see [7]),
this implies that LX (and consequently the genus 0 Gromov–Witten theory of X)

is determined by IX(t; z). On the other hand, the family

τ �→ JX(τ ; z)
defined by the J -function also lies on LX.

Thus it is possible to determine JX from IX. However, in this generality the
process of determining JX from IX involves Birkhoff factorization, as explained in
[4, pp. 29–30]. Moreover, for the computations of two-point Gromov–Witten in-
variants, we need to determine not only the J -function JX but also other columns
of S(τ ; z)∗. To do this, we need to use the fact that differentiation along any di-
rection in the cohomology H ∗(X) can be expressed as a higher-order differential
operator involving only differentiations along directions in H 2(X) (this is true be-
cause H ∗(X) is multiplicatively generated by H 2(X)). To summarize, there exist
differential operators Pi, i = 1, . . . , dimH ∗(X), involving only differentiations in
H 2(X) directions and satisfying the following property. Let (PiIX(t; z)) be the
matrix whose columns are PiIX. Then there exists a matrix-valued formal series
B(τ ; z) in z such that

(PiIX(t; z)) = S(τ ; z)∗B(τ ; z). (3.3)

We refer to [10, Prop. 5.6] for more detailed discussions on this.
Together, (3.3) and (2.5) allow us to express R(τ ; z1, z2) as follows:

R(τ ; z1, z2)

= 1

z1 + z2

(
(PiIX(t; z1))B(τ ; z1)

−1(B(τ ; z2)
∗)−1(PiIX(t; z2))

∗ − Id
)
. (3.4)

Unfortunately, equation (3.4) is not very explicit because the differential opera-
tors, the Birkhoff factorizations, and the generalized mirror map τ = τ(t) can only



762 Amin Gholampour & Hsian-Hua Tseng

be determined recursively. It may be possible to produce recursive algorithms for
computing two-point Gromov–Witten invariants using (3.4), but we do not pursue
it here.

3.2.2. Fixed Points Set Method
LetX be an n-dimensional smooth toric variety whose toric fan is generated by the
rays r1, . . . , rN . In this section we mostly follow the notation in [6]. If {P1, . . . ,Pk}
is a basis forH 2(X) dual to the generators of the semi-group5 of the curve classes
in X then, in the equivariant cohomology ring of X, the class of the divisor corre-
sponding to the ray rj is given by

Rj =
k∑

i=1

mijPi − λj for j = 1, . . . ,N,

where λ1, . . . , λN are the equivariant parameters. Note that n = N − k, and we
can choose the basis {P1, . . . ,Pk} so that (mij )j=1,...,k is the identity matrix. For
any {i1, . . . , in} ⊂ {1, . . . ,N} such that ri1, . . . , rin generate a cone in the fan, let

v{i1,...,in} = Ri1 · · ·Rin

be the class of the corresponding fixed point in the equivariant cohomology ring
of X. Denote by F the set of {i1, . . . , in} ⊂ {1, . . . ,N} such that ri1, . . . , rin gener-
ate a cone in the fan. For any {i1, . . . , in} ∈F, let n{i1,...,in} be the equivariant Euler
class of the tangent bundle at the corresponding fixed point. This class is given by

n{i1,...,in} = Ri1 · · ·Rin |P1=x1,...,Pk=xk ,

where x1, . . . , xk uniquely solve the system of equations
k∑

i=1

mij xi = λj for j ∈ {1, . . . ,N} − {i1, . . . , in}.

Also, for the same {i1, . . . , in} ∈F and any j ∈ {i1, . . . , in}, define

j n{i1,...,in} = Ri1 · · ·Rin

Rj

∣∣∣
P1=x1,...,Pk=xk

for x1, . . . , xk defined as before.
For any S1, S2 ∈F we have

vS1 · vS2 =
{
nS1vS1 if S1 = S2,

0 otherwise;

and for any j ∈ {1, . . . ,N} we have

Rj =
∑
S∈F
S�j

vS

jnS

in the equivariant cohomology ring. For any j = 1, . . . ,N, define the operator

Dj =
k∑

i=1

mij

∂

∂ti
− λj

∂

∂t0
.
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The mirror theorem is expressed most simply for the smooth Fano toric variety.
In order to make our formulas as explicit as possible, for simplicity we assume
hereafter that X is Fano. For any β ∈5, let βi = ∫

β
Pi and Rj(β) = ∫

β
Rj . By the

equivariant mirror theorem [6], the equivariant small J -function of X is given by

JX(t0, t1, . . . , tk; z)

= ze(t0+t1P1+···+tkPk)/z
∑
β∈5

et1β1+···+tkβk

N∏
j=1

∏0
m=−∞(Rj + mz)∏Rj(β)
m=−∞(Rj + mz)

.

We can compute, for any nonnegative integer r ,

zDi1 � · · · � zDir JX(t; z)
= ze(t0+t1P1+···+Pk tk)/z

∑
β∈5

et1β1+···+tkβk(Ri1 + zRi1(β)) · · · (Rir + zRir (β))

×
N∏
j=1

∏0
m=−∞(Rj + mz)∏Rj(β)
m=−∞(Rj + mz)

.

Lemma 3.2. If dimX ≤ 3, then Condition 2.3 holds for the operators Di and
for the fixed points set basis defined previously.

Proof. We prove the case dimX = 3; the other cases are similar. It suffices to
show that the only positive power of z appearing in zDi1 � zDi2JX(t; z) is Az for
some cohomology class A. We claim that the power of 1/z in the product

N∏
j=1

∏0
m=−∞(Rj + mz)∏Rj(β)
m=−∞(Rj + mz)

is at least 2 − δ0,Ri1(β)
− δ0,Ri2 (β)

. For any 1 ≤ j ≤ N, the power of 1/z in

∏0
m=−∞(Rj + mz)∏Rj(β)
m=−∞(Rj + mz)

is at least Rj(β) if Rj(β) is nonnegative and is at least 1+Rj(β) if Rj(β) is nega-
tive. If for all 1 ≤ j ≤ N we have Rj(β) ≥ 0, then clearly the claim holds. If for
some 1 ≤ j0 ≤ N we have Rj0(β) < 0, then 1 + ∑N

j=1Rj(β) = 1 − KX · β ≥ 2
because X is Fano by assumption—so again the claim holds and hence the lemma
follows.

Remark 3.3. From the proof of Lemma 3.2 one can give the following geomet-
ric criterion for ensuring that Condition 2.3 holds for a general smooth Fano toric
variety. Let

jX = min
C⊂X a rational curve

(−KX · β + #{j | Rj(C) < 0}).
Then Condition 2.3 holds if jX ≥ dimX − 1.



764 Amin Gholampour & Hsian-Hua Tseng

From now on we assume that X is such that Condition 2.3 holds for the opera-
tors Di and the fixed points set basis already defined. Then, by the construction,
v{i1,...,in} is the coefficient of z in

zDi1 � · · · � zDinJ(t0, t1, . . . , tk; z)
for any {i1, . . . , in} ∈F and, moreover,

z∇v{i1, . . .,in}J(τ ; z)|H 0(X)⊕H 2(X) = zDi1 � · · · � zDinJ(t0, t1, . . . , tk; z).
For given S1, S2 ∈ F, our computation scheme shows that the (S1, S2)-entry of

R(t; z1, z2) is given by〈
vS1

nS1

,R(t; z1, z2)vS2

〉

= −δ
S1
S2

+ 1

z−1
1 + z−1

2

×
∑

{i1,...,in}∈F

nS2

n{i1,...,in}
[zDi1 � · · · � zDinJ(t; z)]vS1

[zDi1 � · · · � zDinJ(t; z)]vS2
,

where [·]vS is the coordinate along the basis element vS.
For any S ∈F we introduce the variables XS ,YS with the relations

XS1XS2 =
{
nS1XS1 if S1 = S2,

0 otherwise;
YS1YS2 =

{
nS1YS1 if S1 = S2,

0 otherwise.

Moreover, for any j ∈ {1, . . . ,N}, define the new variables Uj and Vj by

Uj =
∑
S∈F
S�j

XS

jnS
and Vj =

∑
S∈F
S�j

YS

jnS
.

Then for β ∈5 − {0} we get

∑
S1,S2∈F

〈
vS1

nS1(z1 − ψ1)
,

vS2

nS2(z2 − ψ2)

〉
0,β

XS1YS2

= 1

z1 + z2

∑
{i1,...,in}∈F

1

n{i1,...,in}

∑
β1+β2=β

n∏
j=1

(Uij + zRij (β1))(Vij + zRij (β2))

×
N∏
r=1

∏0
m=−∞(Ur + mz1)(Vr + mz2)∏Rr (β1)

m=−∞(Ur + mz1)
∏Rr (β2 )

m=−∞(Vr + mz2)
.

Example: X = P n. In this case, N = n + 1 and H 2(X) is generated by the
hyperplane class denoted by P. It can be easily seen that X satisfies the condition
in Remark 3.3. According to [5, Thm. 9.5], the equivariant J -function of X is

J(t0, t1; z) = ze(t0+P t1)/z

∞∑
d=0

edt1
1∏d

m=1(R1 + mz) · · · (Rn+1 + mz)
,

where Rj = P − λj . In this case, Dj = ∂
∂t1

− λj
∂
∂t0

and one can compute
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zDi1 � · · · � zDinJ(t0, t1; z)
= ze(t0+P t1)/z

∞∑
d=0

edt1
(Ri1 − dz) · · · (Rin − dz)∏d

m=1(R1 + mz) · · · (Rn+1 + mz)
.

Here F is the set of the subsets of {1, . . . , n + 1} with n elements. For any S ∈ F,
let s ∈ {1, . . . , n + 1} − S; then nS = ∏

i∈S(λs − λi). For d > 0 we have
∑

S1,S2∈F

〈
vS1

nS1(z1 − ψ1)
,

vS2

nS2(z2 − ψ2)

〉
0,d

XS1YS2

= 1

z1 + z2

∑
{i1,...,in}∈F

1

n{i1,...,in}

×
∑

d1+d2=d

(Ui1 − d1z1) · · · (Uin − d1z1)(Vi1 − d2z2) · · · (Vin − d2z2)∏d1
m=1(U1 + mz1) · · · (Un+1 + mz1)

× ∏d2
m=1(V1 + mz2) · · · (Vn+1 + mz2)

.

Remark 3.4. We know that, for any l = 0, . . . , n,

P l =
∑
S∈F

λls

nS
vS.

One can therefore get the ordinary two-point invariants〈
P l1

z1 − ψ1
,

P l2

z2 − ψ2

〉
0,d

from the foregoing equivariant two-point invariants by taking the nonequivariant
limits.

Remark 3.5. This example can be easily generalized to the case X = P n1 ×
· · · × P nk for n1, . . . , nk ∈ Z>0. For this, first note that X satisfies the condition in
Remark 3.3. Now if P1, . . . ,Pk ∈H 2(X) are the pullbacks of the hyperplane class
from each factor, then for any 1 ≤ r ≤ k one can take

Rjr = Pr − λjr for 1 ≤ jr ≤ nr + 1

and proceed as before to recover the formula in [11, Thm. 1.1].

Examples of Semi-Fano Toric Manifolds. We first consider the toric man-
ifold X1 = P(OP1 ⊕ OP1(1) ⊕ OP1(1)). To see if our method works here, we
check Condition 2.3 directly. Let P1 and P2 be, respectively, the fiber class and
the universal divisor on X. Then the class of the equivariant divisors consists of
R1 = P1 − λ1, R2 = P1 − λ2, R3 = P2 − λ3, R4 = P2 − P1 − λ4, and R5 =
P2 − P1 − λ5. By [6], the equivariant I -function is

ze t0+t1P1+t2P2/z

∞∑
d1,d2=0

e t1d1+t2d2

×
∏0

m=−∞(R4 + mz)(R5 + mz)∏d1
m=1(R1 + mz)(R2 + mz)

∏d2
m=1(R3 + mz)

∏d2−d1
m=−∞(R4 + mz)(R5 + mz)

and coincides with the equivariant small J -function.
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We have

D1 = ∂

∂t1
− λ1

∂

∂t0
, D3 = ∂

∂t2
− λ3

∂

∂t0
, D4 =

(
∂

∂t2
− ∂

∂t1

)
− λ4

∂

∂t0
, . . . .

We denote the fraction in the previous sum by I(d1, d2). If d2 ≥ d1 then, up to a
constant factor, I(d1, d2) is 1/z3d2(1 + o(1/z)); if d2 < d1 then, up to a constant
factor, I(d1, d2) is 1/z3d2+2(1 + o(1/z)).

By symmetry we need only check Condition 2.3 for zD3 �zD1I and zD4 �zD1I.

We can then conclude that

z∇R4R3R1J = zD4 � zD3 � zD1I, z∇R5R3R1J = zD5 � zD3 � zD1I,

and so forth; hence we can follow the rest of the computations in Section 3.2.2 for
X1 without change. We have

zD3 � zD1I = ze t0+p1t1+p2 t2/z

∞∑
d1,d2=0

e t1d1+t2d2(R1 + d1z)(R3 + d2z)I(d1, d2).

Comparing the power of z in (R1 + d1z)(R3 + d2z) with the power of 1/z in
I(d1, d2), we see that Condition 2.3 holds. A similar analysis shows that the same
condition holds for zD4 � zD1I.

The second example we consider is X2 = P(OP1 ⊕ OP1 ⊕ OP1(2)). As in the
previous example, we demonstrate how we can check Condition 2.3. Again let
P1 and P2 be, respectively, the fiber class and the universal divisor on X. Then
the class of the equivariant divisors consists of R1 = P1 − λ1, R2 = P1 − λ2,
R3 = P2 − λ3, R4 = P2 − λ4, and R5 = P2 − 2P1 − λ5. By [6], the equivariant
I -function is

ze t0+t1P1+t2P2/z

∞∑
d1,d2=0

e t1d1+t2d2

×
∏0

m=∞(R5 + mz)∏d1
m=1(R1 + mz)(R2 + mz)

∏d2
m=1(R3 + mz)(R4 + mz)

∏d2−2d1
m=−∞(R5 + mz)

.

This time, the mirror transformation involves a nontrivial change of variables. Fol-
lowing the notation in [6], let

f(Q) =
∞∑
d=1

(2d − 1)!

(d!2)
Qd.

We now modify our derivation operators in Section 3.2.2 according to the mirror
transformation:

D1 = ∂

∂T1
− λ1

∂

∂t0
, D2 = ∂

∂T1
− λ2

∂

∂t0
, D3 = ∂

∂T2
− λ3

∂

∂t0
,

D4 = ∂

∂T2
− λ4

∂

∂t0
, D5 = ∂

∂T2
− 2

∂

∂T1
− λ5

∂

∂t0
;

here
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∂

∂T1
= 1

1 + 2e t1f ′(e t1)
∂

∂t1
and

∂

∂T2
= 1

1 − e t2f ′(e t1)
∂

∂t2
.

We denote the fraction in the preceding sum by I(d1, d2). If d2 ≥ 2d1 then, up
to a constant factor, I(d1, d2) is 1/z3d2(1 + o(1/z)); if d2 < 2d1 then, up to a con-
stant factor, I(d1, d2) is 1/z3d2+1(1 + o(1/z)). By symmetry we need only check
Condition 2.3 for zD3 � zD1I and zD4 � zD1I. We then conclude that

z∇R4R3R1J = zD4 � zD3 � zD1I, z∇R5R3R1J = zD5 � zD3 � zD1I,

and so forth after the change of variables (see [6] for the details). So we can follow
the rest of computations of Section 3.2.2 for X2 as well. We have

zD3 � zD1I

= ze t0+P1t1+P2 t2/z

(1 + 2e t1f ′(e t1))(1 − e t2f ′(e t1))

∞∑
d1,d2=0

e t1d1+t2d2

× (P1 − (1 + 2e t1f ′(e t1))λ1 + d1z)(P2 − (1 − e t2f ′(e t1))λ3 + d2z)I(d1, d2).

Comparing the power of 1/z in I(d1, d2) with the power of z in the factor of
I(d1, d2), we can again verify Condition 2.3. Similar analysis shows that the same
is true for zD4 � zD1I.

Remark 3.6. Note that Condition 2.3 does not hold for zD5 � zD1I. In fact,

zD5 � zD1I

= ze t0+P1t1+P2 t2/z

1 + 2e t1f ′(e t1)

∞∑
d1,d2=0

e t1d1+t2d2(P1 − (1 + 2e t1f ′(e t1))λ1 + d1z)

×
(

P2

1− e t2f ′(e t1)
− 2P1

1 + 2e t1f ′(e t1)
− λ5

+
(

d2

1 − e t2f ′(e t1)
− 2d1

1 + 2e t1f ′(e t1)

)
z

)
I(d1, d2)

+ other terms.

One can therefore see that, in I(d1, 0) for d1 > 0, there are terms of z-degree
equal to −1 and the factor of I(d1, 0) has terms of z-degree 2. This means that
z∇R4R5R1J �= zD4 �zD5 �zD1I whereas, by the previous paragraph, z∇R5R4R1J =
zD5 � zD4 � zD1I.
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