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Extensions of Two Chow Stability Criteria
to Positive Characteristics

Shinnosuke Okawa

1. Introduction

We work over an algebraically closed field k of arbitrary characteristic. LetX ⊂ P n
k

be an effective cycle of dimension r and degree d in a projective space of dimen-
sion n. Analysis of the Chow (semi)stability of X is one of the basic problems
in geometric invariant theory (GIT). Contrary to the case of asymptotic Chow
(semi)stability, the precise classification of Chow (semi)stable cycles is quite a
subtle problem and is known for only a few cases, even for projective hyper-
surfaces. For example, Shah [Sh] studied the case of plane sextics and Laza [La]
studied the case of cubic 4-folds—both in relation to period maps.

On the other hand, there are two sufficient conditions for Chow (semi)stabil-
ity in terms of the singularity of X or that of the Chow divisor Z(X) ⊂ G =
Grassk(n−r, n+1), which deal with general situations. Both have been proved in
characteristic 0, and the purpose of this paper is to extend them to arbitrary char-
acteristics. Namely, we prove the following two theorems.

Theorem1.1 (= Theorem 3.1). If d ≥ 3, then any nonsingular projective hyper-
surface of degree d is Chow stable.

Theorem 1.2 (= Theorem 4.1). Let X be an effective cycle of dimension r and
degree d in P n

k . Let (G,Z(X)) be the log pair defined by the Chow divisor Z(X)
of X. If lct(G,Z(X)) is greater than (respectively, is greater than or equal to)
n+1
d

, then X is Chow stable (respectively, Chow semistable).

In the statement of Theorem 1.2, lct(G,Z(X)) denotes the log canonical thresh-
old of (G,Z(X)), which measures how good the singularity of Z(X) is (see Sec-
tion 2.2 for details). The characteristic-0 case of Theorem 1.1 is due to Mumford
[GIT, Chap. 4, Sec. 2], and that of Theorem 1.2 is due to Lee [Le].

The original proof of Theorem 1.1 works only when the characteristic of the
base field does not divide d (see Section 3). To prove the general case, we depend
on the corresponding result in characteristic 0.

We sketch the proof of Theorem 1.1 in positive characteristic. First we take a
suitable lift of the equation of a given hypersurface over the ring of Witt vectors.
This defines a family of projective hypersurfaces over the ring. We are assum-
ing that the closed fiber is nonsingular; hence the geometric generic fiber is also
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nonsingular. Since we know that Theorem 1.1 holds in characteristic 0, we obtain
some inequalities for the Hilbert–Mumford numerical functions of the lift. By the
choice of the lift, those numerical functions coincide with those of the original
hypersurface. Thus we obtain the inequalities for the numerical functions of the
original one, concluding the proof.

The point is that the singularity of the hypersurface over the generic point is bet-
ter than that of the special fiber, so we can use the corresponding stability criterion
in characteristic 0. This method seems to be applicable to other stability problems
(see the remark at the beginning of Section 4).

In Section 3.2 we show that the complement of the locus of a nonsingular hyper-
surface is an irreducible divisor, even when p divides d. In general, some multiple
of the defining equation of this divisor lifts to the usual discriminant in character-
istic 0.

Theorem 1.2 will be proved along the same lines as the proof given in [Le], but
we must modify several points. This is because some properties of log canonicity
that hold in characteristic 0 fail in positive characteristic owing to the existence of
wild ramifications and inseparable morphisms.

We can prove that our required property of log canonicity still holds for finite
separable morphisms. It turns out that this is enough for our purpose, since we can
use a perturbation technique and thereby avoid dealing with the inseparable mor-
phisms (see Section 4). In Section 4 we also discuss some other properties of log
canonicity and provide a few (counter)examples.

In the Appendix we prove the following result.

Proposition 1.3 (= Proposition A.1). Let Y and Z be Chow semistable cycles
of the same dimension in a projective space P n

k . Then Y +Z is Chow semistable.
Furthermore, if Y is Chow stable then so is Y + Z.

This proposition may be well known to experts, but the author could not find it in
the literature. The proof is a simple application of the fact that the stability can
be checked via 1-parameter subgroups, an approach that is essentially the same
as employing the numerical criterion. Yet the conclusion itself seems to be rather
surprising: if we have two Chow stable cycles, the sum of them is always Chow
stable regardless of the way they touch each other.

Proposition 1.3 will be used to give a family of stable projective hypersurfaces
whose stability cannot be detected by Theorem 1.2 (see Example A.5).
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2. Preliminaries

2.1. Notation from Scheme Theory

We need some notation from [Ha]. LetR be an N-graded ring. For a homogeneous
ideal I of R we denote by V(I ) the corresponding closed subscheme Proj(R/I )
of ProjR.

For a homogeneous element f ∈ R, we use D+(f ) to denote ProjR \V(f ).
This open subscheme is known to be affine, with coordinate ring

R(f ) =
{
r

f n

∣∣∣ r ∈R, deg(r) = n · deg(f )

}
.

2.2. Notions of Singularities

Here we summarize the notions of singularities of pairs that will be needed later.

Definition 2.1 (discrepancy, log canonical). Let X be a normal variety over k,
and let � be an effective R-Weil divisor on X such that KX +� is R-Cartier.

Let π : Y → X be a birational morphism from another normal variety Y over
k and let E ⊂ Y be a prime divisor. Then, in a neighborhood of the generic point
of E, the following canonical bundle formula holds:

KY = π∗(KX +�)+ aE.

The real number a in this equation is called the discrepancy of E with respect to
(X,�) and is denoted by a(E;X,�). It is independent of the choice of Y and π
and depends only on the valuation of k(X) that corresponds to E.

We say that the log pair (X,�) is log canonical (“lc” for short) if a(E;X,�) ≥
−1 holds for all the divisors E as above.

A finer version of Definition 2.1 is as follows.

Definition 2.2. Let x ∈ X be a point. We say that the log pair (X,�) is log
canonical at x if the restriction of (X,�) to an open neighborhood of x is log
canonical.

Definition 2.3 (log canonical threshold). Let (X,�) be a log canonical pair
and let D be an effective R-Cartier divisor on X. The log canonical threshold of
D with respect to (X,�) is defined as

lct(X,�;D) = sup{t ∈ R | (X,�+ tD) is log canonical}.
For a point x ∈X, we set

lctx(X,�;D) = sup{t ∈ R | (X,�+ tD) is log canonical at x}.
If the pair (X,�+D) has a log resolution, then it is easy to see that “sup” in this
definition is actually “max”.

When considering the case� = 0, we write lct(X,�;D) = lct(X,D) for short
(and lctx(X,�;D) = lctx(X,D)).
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2.3. Chow Stability and the Numerical Criterion

Let X ⊂ P n
k be an effective r-dimensional cycle of degree d. We associate to X

its Chow divisor Z(X), which is a hypersurface of degree d of the Grassmannian
G = Grassk(n− r, n+ 1), as follows (see [GKZ; Ko1] for details). If X itself is a
variety, setZ(X) = {L∈ G | L∩X �= ∅}. For a general cycleX, defineZ(X) ad-
ditively. The defining equation ofZ(X) is called the Chow form ofX (Chow form
is determined by X only up to scalar multiplication). The homogeneous coordi-
nate ring of G with respect to the Plücker embedding is denoted by B = ⊕

d≥0 Bd .

This is the subring of the polynomial ring of (n+ 1)(n− r) indeterminants U(j)

i ,
where (i, j) runs through the range i = 0, . . . , n and j = 1, . . . , n − r, which are
generated by all the (n− r)× (n− r)minors of the matrix (U(j)

i ). The Chow form
of a cycle X is an element of Bd (up to scalar multiplication), so the Chow divi-
sor Z(X) of X can be regarded as an element of the projective space P∗Bd . The
canonical action of SL(n + 1, k) on P n

k naturally induces a linear action on Bd;
hence we can discuss the GIT (semi)stability of an element of P∗Bd . (Here we
are using “stable” in the sense of “properly stable” in [GIT], which requires finite-
ness of the stabilizer subgroup; we use this terminology because we rely heavily
on the numerical criterion (the author would like to thank Dr. S. Ma for this re-
mark). Chow (semi)stability of X is defined to be the (semi)stability of Z(X) in
the sense just described.

Next we recall the Hilbert–Mumford numerical criterion (“numerical criterion”
for short) for stability and obtain an explicit description of the numerical func-
tion µ following [GIT, Prop. 2.3]. We start with some preparations.

For a nonnegative integer n, set

[n] = {0,1, . . . , n}. (1)

For a subset I ⊂ [n] with #I = n− r, let �I be the (n− r)× (n− r) minor of the
matrix (U(j)

i ) obtained by picking out the n − r rows according to I. Recall that
Bd is a k-vector space generated by the set {�I1 · · ·�Id | I� ⊂ [n], #I� = n − r

for all � = 1, . . . , d}.
Now fixX. Take any g ∈ SL(n+1, k) and let F be the Chow form of g∗X (i.e.,

the defining equation of g∗Z(X)). Set

R =
{

r = (r0, . . . , rn)∈ Zn+1 \ {0}
∣∣∣

n∑
i=0

ri = 0, r0 ≤ r1 ≤ · · · ≤ rn

}
. (2)

An element r of R corresponds to a nontrivial 1-parameter subgroup (1-PS)
λ : Gm → SL(n+1, k) of SL(n+1, k) that is defined by λ(t) = diag(t r0 , . . . , t rn ).
If we regard Bd as a representation of Gm via λ, then the 1-dimensional subspace
of Bd spanned by �I1 · · ·�Id is an eigenspace of weight

wt(I1, . . . , Id) =
d∑
�=1

∑
i∈I�

ri =
n∑
i=0

ri · #{� | i ∈ I�}.

Using this notation, the numerical function ofXwith respect to g ∈ SL(n+1, k)
and r ∈ R is defined as follows.
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Definition 2.4 (numerical function). Let I(F ) be the set of d-tuples (I1, . . . , Id)
such that the coefficient of �I1 · · ·�Id in F is not zero. Then set

µ(Z(X), g, r) = µ(V(F ), id, r) = min
(I1,...,Id )∈I(F )

wt(I1, . . . , Id).

Remark 2.5. µ(Z(X), g, r) depends only on g, r, and the set I(F ).

Now the numerical criterion is as follows.

Proposition 2.6. The cycle X is Chow stable (resp., semistable) if and only if
µ(Z(X), g, r) < 0 (resp., ≤ 0) holds for any g ∈ SL(n+ 1, k) and r ∈ R.

We will recast Proposition 2.6 in such a way as to prove Theorem 4.1. This reinter-
pretation is simply a generalization of [Le, Lemma 2.1]. However, first we need
to make some preparations. Take an arbitrary g ∈ SL(n + 1, k) and let F be the
Chow form of g∗X.

Let f be the local equation of F on D+(�[n−r−1]) � Spec B(�[n−r−1]). Recall

that B(�[n−r−1]) is the polynomial ring over k with indeterminants xI = �I
�[n−r−1]

,

where I runs through those subsets of [n] (see (1)) that satisfy the following two
conditions:

#I = n− r;
#(I ∩ [n− r − 1]) = n− r − 1.

(3)

Therefore, f is a polynomial in the xI . Now assign nontrivial integral weights r =
(r0, . . . , rn)∈ R to X0, . . . ,Xn so that the induced weight w(xI) on xI satisfies

w(xI) =
∑
i∈I

ri −
n−r−1∑
i=0

ri, (4)

which is nonnegative by the assumption r0 ≤ r1 ≤ · · · ≤ rn.

Now Proposition 2.6 is equivalent to the following statement.

Lemma 2.7. A cycle X is Chow stable (resp. semistable) if and only if

w(f )∑
I w(xI)

<
d

n+ 1
(5)

(
resp. ≤ d

n+1

)
holds for all g ∈ SL(n+ 1, k) and r ∈ R (see (2) for the definition

of R).

Here f is the local equation on D+(�[n−r−1]) of the Chow form of g∗X as before.
In the left-hand side of (5), w(f ) denotes the weighted multiplicity of f (i.e.,
the lowest weight of the monomials occurring in f ) with respect to the weight
(w(xI))I .

Proof of Lemma 2.7. We discuss only the stable case. The semistable case can be
proven similarly.
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The inequality (5) is equivalent to

d
∑
I

w(xI)− (n+ 1)w(f ) > 0. (6)

Combining the calculation of w(xI) (see (4)) with the definition of w(f ), we see
that the left-hand side of (6) is equal to

d

(∑
I

∑
i∈I

ri − (n− r)(r + 1)
n−r−1∑
i=0

ri

)
− (n+ 1)

(
µ(X, g, r)− d

n−r−1∑
i=0

ri

)
.

Recalling the conditions (3) imposed on I, we see that

∑
I

∑
i∈I

ri = (n− r − 1)(r + 1)
n−r−1∑
i=0

ri + (n− r)

n+1∑
i=n−r

ri .

A little calculation shows that the left-hand side of (6) boils down to

d(n− r)

n∑
i=0

ri − (n+ 1)µ(X, g, r) = −(n+ 1)µ(X, g, r),

since we assumed that
∑n

i=0 ri = 0.
Therefore, (5) is equivalent to the condition µ(X, g, r) < 0.

2.4. Chow Stability in Characteristic p from Characteristic 0

Let k be a field of characteristic p > 0 and let X be a cycle in P n
k . In this section

we propose a method to deduce the Chow (semi)stability of X from the corre-
sponding results in characteristic 0.

From now on, we denote byW = W(k) the ring of Witt vectors. This is a dis-
crete valuation ring (DVR) of characteristic 0 whose residue field is isomorphic
to k (see [S, Chap. 2, Sec. 5, Thm. 5]). These are, in fact, the only properties of
W that we need in this paper. We denote by K the field of fractions of W and by
mW the unique maximal ideal of W.

Take g ∈ SL(n + 1, k) and let F be the Chow form of g∗X as in Section 2.3.
Let FW be a lift of F over W such that a monomial not appearing in F never
appears in FW , which is equivalent to the assumption I(F ) = I(FW) (see Defi-
nition 2.4 for the definition of I ). Note that FW defines a hypersurface V(FW) ⊂
GrassK̄(n− r, n+ 1) of degree d, where K̄ is the algebraic closure of K.

Theorem 2.8. Assume that, for any g ∈ SL(n+1, k), we can take FW such that
I(F ) = I(FW) holds and V(FW) is stable (resp. semistable) with respect to the
induced action of SL(n+1, K̄). ThenX is Chow stable (resp. Chow semistable).

Proof. Since FW is (semi)stable, µ(V(FW), id, r) < 0 (resp. ≤ 0) holds for any
r ∈ R (see (2) for the definition of R). Yet µ(V(FW), id, r) = µ(Z(X), g, r) be-
cause I(F ) = I(FW) (see Remark 2.5). Therefore, µ(Z(X), g, r) < 0 (resp.
≤ 0) holds for all g ∈ SL(n+ 1, k) and r ∈ R; hence the Chow (semi)stability of
X follows from Proposition 2.6.



Extensions of Two Chow Stability Criteria to Positive Characteristics 693

Remark 2.9. By a result of Seshadri ([Se, Prop. 6]; see also [GIT, Apx. to
Chap. 1, Sec. G]), the converse of Theorem 2.8 also holds: If X is Chow stable
(resp. Chow semistable), then any lift FW of F is also stable (resp. semistable)
with respect to the induced action of SL(n+ 1, K̄).

3. Chow Stability of Nonsingular Hypersurfaces

In this section, X denotes a hypersurface of degree d in P n
k .

In Section 3.1 we prove the stability of nonsingular hypersurfaces of degree ≥
3; this is an easy application of Theorem 2.8. In Section 3.2 we study the com-
plement of the locus of nonsingular hypersurfaces via geometric arguments. It
turns out that the complement is an irreducible divisor and that some multiple of
its defining equation lifts to the usual discriminant in characteristic 0.

3.1. A Proof via Lifting to Characteristic 0

First we recall that the characteristic-0 case of Theorem 1.3 was settled in [GIT,
Chap. 4, Sec. 2]. Thanks to a theorem by Matsumura and Monsky, the proof given
there also works for characteristic-p cases if p does not divide d. We briefly recall
the proof and see why it does not work for the cases when p does divide d.

Let F(X0,X1, . . . ,Xn) be a homogeneous polynomial of degree d. We have the
following Euler lemma:

dF =
n∑
i=0

Xi

∂F

∂Xi

.

Therefore, we see that

V

(
F,

∂F

∂X0
,
∂F

∂X1
, . . . ,

∂F

∂Xn

)
= V

(
∂F

∂X0
,
∂F

∂X1
, . . . ,

∂F

∂Xn

)
(7)

provided that p does not divide d. The emptiness of the latter is equivalent to the
vanishing of the discriminant of F when d ≥ 2. This shows the semistability of
nonsingular hypersurfaces of degree ≥ 2. Furthermore, for d ≥ 3 it is known (see
[MaM, Thm. 1]) that only finitely many projective linear transformations preserve
the given nonsingular hypersurface. This means that any nonsingular hypersurface
is stable provided that d ≥ 3 and p does not divide d.

The preceding argument does not work in general because the equality (7) may
break down when p divides d. Actually, when p divides d and d ≥ 3, the right-
hand side of the equality (7) cannot be empty. This claim will be proved in Sec-
tion 3.2 (see Proposition 3.4).

Even when p divides d, a closer look at the numerical criterion shows that non-
singular hypersurfaces are always (semi)stable if d > n + 1 (resp. d ≥ n + 1);
see [N, Lemma 4.2]. This fact may also be deduced from Theorem 4.1, since the
pair (P n

k ,X) is log canonical when X is a nonsingular hypersurface.
Now we prove that stability always holds.

Theorem 3.1. If d ≥ 3, then any nonsingular projective hypersurface of de-
gree d is Chow stable.
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Proof. The theorem is already established for char k = 0, so we assume that
char k > 0. We use Theorem 2.8. Let X ⊂ P n

k be a nonsingular projective hyper-
surface of degree ≥ 3. Take any g ∈ SL(n + 1, k) and let Fk be the equation of
g∗X. Note that, in this case, Fk itself is the Chow form of g∗X. Take a lift FW of
Fk over the ring of Witt vectorsW satisfying I(Fk) = I(FW). Then it is easy to
see the following claim.

Claim. V(FW) is an integral scheme.

Proof. Since W is a DVR, W [X0, . . . ,Xn] is a unique factorization domain. It
is therefore enough to show that FW is an irreducible element of W [X0, . . . ,Xn].
Suppose to the contrary that FW = G ·H holds for some G,H ∈W [X0, . . . ,Xn]
such that neither G nor H is a unit. Note that both G and H are homogeneous
and nonzero because FW is. HenceG andH are homogeneous polynomials of de-
gree ≥ 1, since neither is a unit. This means that either Ḡ = 0 or deg Ḡ = degG
(here Ḡ denotes the reduction modulo mW of G) must hold and similarly for H.
On the other hand, Ḡ · H̄ = F̄W = Fk �= 0 holds. Thus deg Ḡ = degG ≥ 1 (resp.
deg H̄ ≥ 1), contradicting the irreducibility of Fk.

Since V(FW) dominates the generic point of SpecW, our claim means thatV(FW)
is flat over SpecW (see [Ha, Chap. III, Prop. 9.7]). It also is projective over
SpecW.

The closed fiber of V(FW) → SpecW is g∗X, which is nonsingular; hence the
geometric generic fiber is also nonsingular (see [EGA, (12.2.4)(iii)]). Since the
characteristic of the generic fiber is 0 and since deg(FW) ≥ 3, we already know
that it is stable. By Theorem 2.8, we see that X is stable, too.

Remark. Since the stabilizer subgroup of a stable hypersurface is finite, we can
use Theorem 3.1 to bypass Case II of the proof of [MaM, Thm. 1]. Similarly, our
Theorem 4.1 is stronger than [MaM, Thm. 1] when d > n+ 1.

3.2. The Defining Equation

Let Hypd(n) be the projective space of degree-d hypersurfaces in P n
k , and let Uns ⊂

Hypd(n) be the locus of nonsingular hypersurfaces. In this section we study the
defining equation for the complement of the locus of nonsingular hypersurfaces,
Hypd(n) \ Uns, via geometric arguments that are versions of those given in [Mu,
Chap. 5, Sec. 2].

The defining equation is well known when p does not divide d, the discrimi-
nant. We are therefore interested in the cases when p divides d. Recall that the
nonsingularity of X = V(F ) is equivalent to the emptiness of the left-hand side
of (7). Using this equivalence yields the following result.

Theorem 3.2. Assume that p divides d. Then

Hypd(n) \ Uns

is an irreducible divisor. Moreover, some multiple of its defining equation lifts to
the discriminant in characteristic 0.
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Example 3.3 (see [D, Chap. 10, Sec. 2] for details). Consider the case (n, d) =
(1, 4). Let

X = V(F ) for F = a0X
4
0 + a1X

3
0X1 + a2X

2
0X

2
1 + a3X0X

3
1 + a4X

4
1

be a hypersurface in P1
k . If char k �= 2 then the defining equation for Hyp4(1)\Uns

is given by D = 4S3 − T 2, where

S = 22 · 3a0a4 − 3a1a3 + a2
2 and

T = 23 · 32a0a2a4 − 33a0a
2
3 + 32a1a2a3 − 33a2

1a4 − 2a3
2 .

If char k = 2, thenD mod 2 = (T mod 2)2 and the defining equation for Hyp4(1)\
Uns is given by T mod 2 = a0a

2
3 + a1a2a3 + a2

1a4.

Proof of Theorem 3.2. LetW = W(k) be the ring of Witt vectors. Set

I =
{
(x,X)

∣∣∣ x ∈V
(
F,

∂F

∂X0
,
∂F

∂X1
, . . . ,

∂F

∂Xn

)}
⊂ P n

W ×SpecW Hypd(n),

where Hypd(n) = |OP n
W
(d )| is the projective space of families of degree-d pro-

jective hypersurfaces over SpecW. Let p : I → P n
W and q : I → Hypd(n) be the

natural projections.
First we prove the following claim.

Claim. p is a smooth morphism with connected fibers.

Proof. Let x : Spec- → P n
W be a geometric point, where - is an algebrai-

cally closed field. By the preceding definition of I, it is easy to see that Ix ⊂
Hypd(n)- := Hypd(n)×SpecW Spec- is a linear subspace.

Next we calculate the fiber I(1:0: ··· :0), where (1 : 0 : · · · : 0) ∈ P n
-. Note that

writing

F(X) =
∑
|α|=d

CαX
α

with multi-indices (Cα | |α| = d) gives a system of coordinates for the projective
space Hypd(n)-. Then we can show the following equality, which is independent
of the characteristic of -:

I(1:0: ··· :0) = V(C(d0···0),C((d−1)10···0),C((d−1)010···0), . . . ,C((d−1)0···01))

⊂ Hypd(n)-.

In order to show that the dimension of the linear subspace Ix is independent of
x, we show that it is isomorphic to I(1:0: ··· :0). Consider the action of SL-(n+ 1)
on P n

W ×SpecW Hypd(n)-; this action is defined by g · (x,X) = (gx, g∗X) for g ∈
SL(n+1,-). It can be easily checked that this action preserves I ×SpecW Spec-
and that, via this action, we obtain an isomorphism between I(1:0: ··· :0) and Ix.

By the claim we see that both I and Ik , the restriction of I over the closed point
Spec k ⊂ SpecW, are integral schemes.
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Now consider the integral closed subscheme q(I ) ⊂ Hypd(n). Observe that
the defining equation for q(I ) is the usual discriminant and that q(I )k , the restric-
tion of q(I ) over Spec k ⊂ SpecW, coincides with q(Ik) as sets.

Similar arguments yield the following result.

Proposition 3.4. Assume that d is divisible by p. Let X = V(F ) ⊂ P n
k be an

arbitrary hypersurface of degree d. Then

V

(
∂F

∂X0
,
∂F

∂X1
, . . . ,

∂F

∂Xn

)
�= ∅

holds except when d = p = 2 and n is odd.

Proof. Set

Z =
{
(x,X)

∣∣∣ x ∈V
(
∂F

∂X0
,
∂F

∂X1
, . . . ,

∂F

∂Xn

)}
⊂ P n

k × Hypd(n)

and let p : Z → P n
k and q : Z → Hypd(n) be the natural projections. As in the

proof of Theorem 3.2, we can show the following.

Claim. p is a smooth morphism with connected fibers.

Next we calculate the dimension of Z(1:0: ··· :0). With notation as in the proof of
Theorem 3.2, we can write

Z(1:0: ··· :0) = V(C((d−1)10···0),C((d−1)010···0), . . . ,C((d−1)0···01)) ⊂ Hypd(n).

Therefore,
dimZ = dim P n

k + dimZ(1:0: ··· :0)
= n+ (dim Hypd(n)− n)

= dim Hypd(n).

Now we need only show that q : Z → q(Z) is generically finite, because then
dim q(Z) = dimZ = dim Hypd(n) and so q(Z) = Hypd(n). In order to show it,
we check the finiteness of the fiber of q at

F(X) = Xd−1
0 X1 +Xd−1

1 X2 + · · · +Xd−1
n−1Xn +Xd−1

n X0.

First of all, note that
∂F

∂Xi

= 0 ⇐⇒ Xd−1
i−1 = Xd−2

i Xi+1 (8)

for all i = 0,1, . . . , n, where X−1 = Xn and Xn+1 = X0. Suppose a = (a0 : · · · :
an)∈V

(
∂F
∂X0

, ∂F
∂X1

, . . . , ∂F
∂Xn

)
.

From (8), one see that a0, . . . , an �= 0. Hence we assume a0 = 1. Using (8)
recursively, we obtain the following equation:

a
1−(1−d )n+1

1 = 1. (9)

Here the exponent of a1 is nonzero under our assumptions on (d,p, n). Hence (9)
imposes a nontrivial condition on a1. Given (8), a2, a3, . . . , an are uniquely deter-
mined from a1. Thus the finiteness is proved.
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Remark 3.5. When d = p = 2 and n is odd, we have the following counter-
example:

F = X0X1 +X2X3 + · · · +Xn−1Xn.

It is easy to see that V
(
∂F
∂X0

, ∂F
∂X1

, . . . , ∂F
∂Xn

) = ∅.

4. Lee’s Criterion in Characteristic p

In this section we prove the following result.

Theorem 4.1. LetX be an effective cycle of dimension r and degree d in P n
k . Let

(G,Z(X)) be the log pair defined by the Chow divisorZ(X) ofX. If lct(G,Z(X))
is greater than (respectively, is greater than or equal to) n+1

d
, then X is Chow sta-

ble (respectively, Chow semistable).

See Section 2.3 for notation. Our proof follows the same line as the original one
by Lee [Le], but we need to modify several points.

Before proving Theorem 4.1 in Section 4.2, we point out that it could be proved
via Theorem 2.8 as in Section 3.2—provided the following conjecture were true
(hereW is the ring of Witt vectors, andK and k are, respectively, the field of frac-
tions and the residue field of W).

Conjecture 4.2. Let XW → SpecW be a smooth proper morphism, where XW
is an integral scheme. Let DW be an effective R-divisor on XW such that no irre-
ducible component is contained in a fiber of the projection to SpecW. By XK and
DK we denote the restrictions of XW and DW over the generic point of SpecW ;
similarly, Xk and Dk denote the restrictions of XW and DW over the closed point
of SpecW. Now, if (Xk ,Dk) is log canonical then so is (XK ,DK). In particular,
lct(Xk ,Dk) ≤ lct(XK ,DK).

We remark that this conjecture can be proved, following [Mus], when (Xk ,Dk)

has a good log resolution (“good” means that it is isomorphic outside of the sup-
port of Dk). In [Mus], the lower semicontinuity of log canonical thresholds in a
family of projective log pairs with nonsingular ambient varieties is demonstrated
when the base scheme of the family is defined in characteristic 0. We need the
last assumption because the existence of good log resolution is not yet established
in positive characteristics in full generality. Basic results on motivic integrations
have been established over arbitrary perfect fields (see [Y]), so the arguments in
[Mus] can be applied to our case without change under the existence of good log
resolutions.

4.1. Log Canonicity in Positive Characteristics

In this section we discuss how the log canonicity of log pairs is preserved under
finite morphisms. Some properties of log canonicity that hold in characteristic 0
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fail to hold in characteristic p > 0; however, we can circumvent those difficulties
and obtain Proposition 4.9, which is the key for the proof of Theorem 4.1.

It is well known that, when the characteristic of the base field is 0, log canon-
icity is preserved under finite dominant morphisms (see [KoMo, Prop. 5.20(4)]).
We state this formally as our next theorem.

Theorem 4.3. Let g : X ′ → X be a finite dominant morphism of normal vari-
eties over a field of characteristic 0. Let � (resp. �′) be a Q-divisor on X (resp.
X ′) such that KX +� is Q-Cartier and g∗(KX +�) = KX ′ +�′. Then (X,�) is
log canonical if and only if (X ′,�′) is.

We should note that the canonical divisors KX and KX ′ in Theorem 4.3 are chosen
such that KX ′ = g∗KX + R, where R is the ramification divisor of g.

When the characteristic of the base field is positive, we need to modify Theo-
rem 4.3. First we consider when g is separable. In this case we may have wild
ramifications, so we have a weaker version of the ramification formula as follows.

Lemma 4.4. Let g : X → Y be a finite separable morphism between normal va-
rieties over k. Let E ⊂ X be a prime divisor on X and let r be the ramification
index of g along E. Then there exists a nonnegative integer b ≥ r − 1 such that
KX = g∗KY + bE around the generic point of E.

Proof. Set V = Y \ SingY and U = g−1(V )− SingX. Note that the closed sub-
sets we have discarded all have codimension > 1. Over U, we have the following
exact sequence:

0 −→ g∗-V

f−→ -U −→ -U/V −→ 0. (10)

Since g is separable, -U/V generically vanishes (see [Ma, Thm. 59]). Hence f is
generically isomorphic.

Let F : g∗OV (KV ) → OU(KU) be the highest exterior product of the mor-
phism f in (10). This product is also generically isomorphic. Therefore, kerF is
a torsion subsheaf of the torsion-free sheaf g∗OV (KV ) and so is trivial. Hence we
see that F is injective.

Take a generic closed point e of E ∩U that is contained in no other irreducible
component of Supp-U/V except for E. Set e ′ = g(e) and E ′ = g(E). Choose
systems of local coordinates x1, . . . , xn at e and y1, . . . , yn at e ′ that satisfy the fol-
lowing conditions:

(a) E = div(x1) near e (resp. E ′ = div(y1));
(b) g∗yi = xi holds for all i = 2, . . . , n; and
(c) there exists an invertible function u at e such that g∗y1 = u · xr1 .
In (c), r denotes the ramification index of g along E. Now

F(g∗(dy1 ∧ · · · ∧ dyn)) = d(u · xr1 ) ∧ dx2 ∧ dx3 ∧ · · · ∧ dxn

=
(
∂u

∂x1
x1 + ru

)
xr−1

1 dx1 ∧ dx2 ∧ · · · ∧ dxn; (11)

hence there exists some nonnegative integer b such that
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KX = g∗KY + bE

in a neighborhood of e.
If r �≡ 0 (modp) then b = r−1. Now assume thatE is wildly ramifying. Then

(11) = ∂u

∂x1
xr1dx1 ∧ dx2 ∧ · · · ∧ dxn

�= 0,

since otherwise F is not generically isomorphic. In this case we see that

b = valE

(
∂u

∂x1

)
+ r ≥ r,

where valE denotes the valuation corresponding to E.

Remark 4.5. Ramification formulas for inseparable morphisms are discussed in
[RŠa]. In this case, the ramification divisor is defined only up to linear equiva-
lence. If we adopt this version of the ramification formula, then the “only if” part
of Theorem 4.3 does not hold in general. For our purpose we need not deal with
inseparable cases.

Given the weaker version of the ramification formula (Lemma 4.4), we can prove
that the “only if” part of the Theorem 4.3 holds for separable morphisms.

Proposition 4.6. Let k be an algebraically closed field of characteristic p > 0,
and let g : X ′ → X be a finite separable morphism of normal varieties over k. Let
� (resp. �′) be a Q-divisor on X (resp. X ′) such that KX +� is Q-Cartier and
g∗(KX +�) = KX ′ +�′. If (X,�) is log canonical, then so is (X ′,�′).

Proof. The proof proceeds as in the proof of [KoMo, Prop. 5.20(4)] once we re-
place the ramification formula by the weaker version given as Lemma 4.4.

Remark 4.7. In general, the “if” part of Theorem 4.3 holds only when there
exists no wildly ramifying divisor. In this case, the proof goes as in characteris-
tic 0. If some of the ramification divisors are wildly ramifying then the “if” part
may not hold, as the following example shows.

Example 4.8. Let X = X ′ = A1
k. Set g : X ′ → X, g(x) = xp(x + 1), � =

p+1
p

div(x), and �′ = div(x). Since g∗dx = xpdx, we obtain

g∗(KX +�) = KX ′ +�′.

Note that (X,�) is not lc whereas (X ′,�′) is lc.

Using Proposition 4.6, we can extend [Ko2, Prop. 8.13] over arbitrary fields as
follows.

Proposition 4.9. Take any f ∈ k[x1, . . . , xn]. Assign a weight

w = (w(xi))i=1,...,n ∈ (Z≥0)
n \ {0}



700 Shinnosuke Okawa

to the variables x1, . . . , xn and let w(f ) be the weighted multiplicity of f (i.e., the
lowest weight of the monomials occurring in f ). Then

1

lct 0(An, div(f ))
≥ w(f )∑n

i=1w(xi)
.

Proof. The proof proceeds in two steps.

Step 1. First we establish the inequality for those w such that w(xi) > 0 holds
for all i = 1, . . . , n and p divides none of thew(xi). In this case, the inequality can
be established along the same lines as in the original proof, since now we already
have Proposition 4.6. For the sake of completeness, we reestablish the argument.

Consider g : An
k → An

k given by g(xi) = x
w(xi )
i . By our assumptions on the

w(xi), g is dominant and separable. Take a real number c ∈ R≥0 and assume that
(An

k , c · div(f )) is lc at 0. Now calculate the pull-back of KAn
k
+ c · div(f ) by g:

g∗(KAn
k
+ c · div(f ))

= KAn
k
+

n∑
i=1

(1 − w(xi)) div(xi)+ c · div(f(xw(x1)
1 , . . . , xw(xn)n ))

=: KAn
k
+�′.

By Proposition 4.6, we have that (An
k ,�

′) is lc at 0. LetE be the exceptional di-
visor of the blow-up of An

k at the origin. We know that a(E; An
k ,�

′) ≥ −1 holds.
We can calculate that a(E; An

k ,�
′) is equal to −1+∑

i w(xi)−cw(f ) and thereby
obtain the inequality.

Step 2. Now consider the continuous function ϕ : (Q≥0)
n \{0} → Q defined by

ϕ(w) = w(f )∑
i w(xi)

,

as in the case where thew(xi) are integers. If we replacew by some positive mul-
tiple of w, then the value of ϕ never changes. Therefore, ϕ factors through the
quotient space

S := (Q≥0)
n \ {0}/Q>0

and so induces the continuous function ϕ̄ : S → Q.

The set of points represented by those w satisfying the assumptions in Step 1 is
dense in S. Hence, by the continuity of ϕ̄, we see that

ϕ̄(s) ≤ 1

lct 0(An, div(f ))

for arbitrary s ∈ S. This concludes the proof of Proposition 4.9.

Remark 4.10. Step 2 in the preceding proof is necessary because (An
k ,�

′) need
not be lc if g is inseparable. For example, consider the case n = 2, w(x1) =
w(x2) = p, and f(x1, x2) = x1 − x2. In this case lct 0(A

2
k , div(f )) = 1. On the

other hand,
�′ = (1 − p) div(x1x2)+ p · div(x1 − x2)

and so (A2
k ,�

′) is not lc at the origin. Note in addition that, even in this case,
a(E; A2

k ,�
′) ≥ −1 by Proposition 4.9.
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4.2. Proof of Theorem 4.1 and Corollary

Proof of Theorem 4.1. We discuss only the stable case; the semistable case can
be proven in exactly the same way. We have only to confirm the inequality (5)
of Lemma 2.7. Yet by the assumptions and Proposition 4.9, the inequality clearly
holds.

Remark 4.11. Theorem 4.1 has the following direct corollary, which is slightly
weaker.

Corollary 4.12. If Fpt(G,Z(X)) is greater than (resp., is greater than or
equal to) n+1

d
, then X is Chow stable (resp., Chow semistable).

Here Fpt denotes the F -pure threshold of the pair (G,Z(X)).
Corollary 4.12 is deduced from Theorem 4.1 via [HW, Thm. 3.3], which states

that
F -pure �⇒ log canonical.

We can also show Corollary 4.12 by directly proving the Fpt version of Proposi-
tion 4.9 via the Fedder-type criterion for F -purity due to [HW].

Appendix: Chow Stability of the Sum

In this appendix we show that the sum of two Chow semistable cycles of the same
dimension is itself Chow semistable. Moreover, if one of the cycles is stable then
it follows that the sum also becomes stable.

Proposition A.1. Let Y and Z be Chow semistable cycles of the same dimen-
sion in a projective space P n

k . Then Y + Z is Chow semistable. Furthermore, if
Y is Chow stable then so is Y + Z.

In the proof we freely use such notation as lim t→0 λ(t) · F (as in [GIT]), since
doing so clarifies the ideas involved. Of course, to be logically complete we must
modify the argument suitably. It is a routine work, so we omit the details.

Proof of Proposition A.1. Let d and e be the degrees of Y and Z, respectively. Let
F ∈ Bd and G ∈ Be be the Chow forms of Y and Z, respectively. Then the Chow
form of Y + Z is given by F ·G∈ Bd+e.

Choose a nontrivial 1-parameter subgroup λ : Gm → SL(n + 1, k). Via λ we
pull back the canonical actions of SL(n+1, k) onto Bd , Be, and Bd+e to Gm. Now
consider the natural multiplication map µ : Bd × Be → Bd+e given by (F,G) �→
F · G. If we impose the diagonal action of Gm on the source, then µ becomes
equivariant.

Assume that Y and Z are both Chow semistable. Then lim t→0 λ(t) ·F �= 0 and
also lim t→0 λ(t) ·G �= 0. Now, since we know that µ is continuous,

lim
t→0

λ(t) · (F ·G) =
(

lim
t→0

λ(t) · F
)

·
(

lim
t→0

λ(t) ·G
)

�= 0
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because B = ⊕
d≥0 Bd is an integral domain. Therefore, Y + Z is again Chow

semistable.
Second, assume further that Y is Chow stable. Then lim t→0 λ(t)·F = ∞ and so

lim
t→0

λ(t) · (F ·G) =
(

lim
t→0

λ(t) · F
)

·
(

lim
t→0

λ(t) ·G
)

= ∞ ·
(

lim
t→0

λ(t) ·G
)

= ∞,

since (lim t→0 λ(t) ·G) is not 0. Therefore, Y + Z is Chow stable.

Remark A.2. We have no reason to expect that the converse of Proposition A.1
will hold. The reason is that there exists a semistable cycle such that all of its sub-
cycles are unstable, as in the following example.

Example A.3. Take the union of three lines on a plane that are in general posi-
tion. The union itself is Chow semistable (see [GIT, Chap. 4, Sec. 2]), but lines
and reducible conics on a plane are Chow unstable.

However, the following statement holds.

Proposition A.4. Let Z be a cycle of P n
k . Then the following are equivalent :

(i) Z is Chow (semi)stable;
(ii) mZ is Chow (semi)stable for any positive integer m∈ Z>0;

(iii) mZ is Chow (semi)stable for some positive integer m∈ Z>0.

Proof. We have only to prove that (3) ⇒ (1). Let G be the Chow form of Z,
in which case Gm gives the Chow form of mZ. Now assume that mZ is Chow
semistable, and take any 1-PS λ as in the proof of the Proposition A.1. Then 0 �=
lim t→0 λ(t) ·Gm = (lim t→0 λ(t) ·G)m and so lim t→0 λ(t) ·G �= 0. Therefore, Z
is semistable. The stable case can be shown via a similar argument.

Example A.5. Let Y ⊂ P n
k be a nonsingular hypersurface of degree 3 that is

Chow stable by Theorem 3.1. By Proposition A.1, mY is also Chow stable for all
the positive integers m. On the other hand, lct(P n

k ,mY ) = 1
m

and hence 1
m
< n+1

3m
if n ≥ 3. Thus we obtain a sequence of examples of Chow stable hypersurfaces
whose stability cannot be detected by Theorem 4.1.
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