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Inequivalent Embeddings of the
Koras—Russell Cubic 3-Fold

A. DuBouLoz, L. MOSER-JAUSLIN,
& P.-M. PoLoONI

1. Introduction

The Koras—Russell cubic 3-fold is the hypersurface X of the complex affine space
A* = Spec(C|[x, y, z,t]) defined by the equation

P=x+x’y+z22+1t3=0.

It is well-known that X is an affine contractible smooth 3-fold that is not alge-
braically isomorphic to an affine 3-space. The main result of this paper is to show
that there exists another hypersurface ¥ of A* that is isomorphic to X but such that
there exists no automorphism of the ambient 4-space that restricts to an isomor-
phism between X and Y. In other words, the two hypersurfaces are inequivalent.
In order to prove this result, we give a description of the automorphism group of
X. It is shown that all algebraic automorphisms of X extend to automorphisms of
A* which implies that every automorphism of X fixes the point (0,0,0,0) € X.

More specifically, we will study certain properties of the Koras—Russell cubic
3-fold. The point of view comes from the elementary remark that this 3-fold can be
interpreted as a 1-parameter family of Danielewski hypersurfaces. A Danielewski
hypersurface is a subvariety of A> = Spec(C[x, y,z]) defined by an equation of
the form x"y = ¢(x, z), where n is a nonzero natural number and ¢ (x, z) € C[x, z]
is a polynomial such that ¢ (0, z) is of degree at least 2. Such hypersurfaces have
been studied by the authors in [4], [13], and [14]. This interpretation allows us to
deduce results similar to the ones for Danielewski hypersurfaces for this 3-fold.

An important question in affine algebraic geometry asks whether every embed-
ding of complex affine k-space A in A", where k < n, is rectifiable—in other
words, is equivalent to an embedding as a linear subspace. The Abyhankar—Moh-—
Suzuki theorem shows that the answer is “yes” if n = 2 [1; 17] and, by a general
result proved independantly by Kaliman [8] and Srinivas [16], if n > 2k + 2 then
the answer is also affirmative. However, all other cases remain open.

Here we are interested in the case of embeddings of hypersurfaces. It is easy
to find affine varieties of dimension n admitting nonequivalent embeddings into
A"*!. For example, the punctured line A' \ {0} has many nonequivalent embed-
dings in A% For each n € N, let P, = x"y — 1. The subvariety defined by the zero
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set of P, is isomorphic to Al \ {0}; however, the induced embeddings for each
n are inequivalent. This can be seen by the fact that the subschemes defined by
P, —1 = 0 are all nonisomorphic. It is more difficult to find examples where all
nonzero fibers of the defining polynomial are irreducible.

In Example 6.3 of [10], Kaliman and Zaidenberg gave examples of acyclic sur-
faces that admit nonequivalent embeddings in 3-space. In these cases, the ob-
struction for equivalence is essentially topological, since the nonzero fibers of the
polynomials that define the two hypersurfaces are nonhomeomorphic. Even if
they are contractible, these surfaces are algebraically remote from the affine plane
because they have nonnegative logarithmic Kodaira dimension. In contrast, an
example is given [6] for Danielewski hypersurfaces where the nonzero fibers are
algebraically nonisomorphic but analytically isomorphic, and examples are given
in [13] and [14] of Danielewski hypersurfaces where all fibers are algebraically
isomorphic but the embeddings are nonequivalent. Danielewski hypersurfaces are
rational, hence close to the affine plane from an algebraic point of view, but they
have nontrivial singular homology groups. However, the techniques used in the
works just cited are purely algebraic and do not depend on the topological prop-
erties of these surfaces. As we shall see here, similar ideas can be used to treat
the case of a variety diffeomorphic to R®. For other inequivalent embeddings of
hypersurfaces, see, for example, [15].

In this paper we use similar techniques as for the Danielewski hypersurfaces
to study the Koras—Russell 3-fold X described previously. For a polynomial f €
C[x,y,z,t], we denote by V(f) the subscheme of A* defined by the zero set of
fin A%; that is, V(f) = Spec(Clx, y,z,t1/(f)). The hypersurface X = V(P) is
smooth and contractible, and it is therefore diffeomorphic to A3 [2]. However, it
was shown by Makar-Limanov that X is not isomorphic to affine 3-space [11]. We
show that there is another hypersurface Y = V(Q) that is isomorphic to X but for
which there is no algebraic automorphism of a 4-space that restricts to an isomor-
phism between X and Y. Thus we have at least two inequivalent embeddings of
X. For this example, the two hypersurfaces are analytically equivalent by a holo-
morphic automorphism that preserves the fibers of P and Q; hence, as for certain
examples of Danielewski hypersurfaces, there is no topological obstruction to the
existence of such an automorphism. In other words, the obstruction to extending
automorphisms in this case is purely algebraic. Also, for all ¢ € C \ {1}, the fibers
V(P +c) and V(Q +c) are isomorphic. Itis an open question whether V(P +1) =
V(Q+ D).

The methods for studying the question of equivalent embeddings are similar to
those used in the articles already cited for Danielewski hypersurfaces. However,
these methods must be adapted in order to consider a higher-dimensional variety.
They are based on certain properties of the automorphism group of the varieties.
The set of locally nilpotent derivations on a Danielewski hypersurface is explic-
itly known (see [4]; see also [12]), and the Makar-Limanov invariant is nontrivial
when n > 2. This restricts the possibilities for automorphisms of these surfaces.
The Makar-Limanov invariant of the Koras—Russell 3-fold is also nontrivial [11].
In Section 3 we determine the complete automorphism group of X. For this case,
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new methods are needed because the restrictions given by the Makar-Limanov in-
variant do not suffice to determine the automorphism group. As a corollary, we
find the surprising result that any algebraic automorphism of X fixes the point
(0,0,0,0) € X (see Corollary 4.5). Also, all automorphisms of X extend to auto-
morphisms of A%,

ACKNOWLEDGMENTS. We would like to thank Gene Freudenburg and Stéphane
Vénéreau for helpful discussions concerning the automorphism group of X.

2. Inequivalent Embeddings in A*

We denote by P and Q the following polynomials of C*! = C[x, y, z,¢]:
P=x>y+224x+1 O=x>y+U+x)(>+x+1).

The Koras—Russell cubic 3-fold is the hypersurface X C A* = Spec(C[x, y,z,¢])
defined by the equation P = 0, whereas Y denotes the hypersurface defined by
the equation Q = 0.

We start by giving some definitions to clarify the difference between inequiva-
lent embeddings and inequivalent hypersurfaces.

DEFINITION 2.1. A regular map ¢: X — Z between two algebraic varieties is a
closed embedding of X in Z if:

(1) ¢(X) is a closed subvariety of Z; and
2) ¢: X - ¢(X) is an isomorphism.

DEFINITION 2.2.  Two embeddings ¢, ¢, : X — Z are equivalent if there exists
an automorphism W of Z such that ¢, = W o ¢;.

DEFINITION 2.3.  Two subvarieties X; and X, of Z are equivalent if there exists
an automorphism W of Z such that V(X)) = X,. If X; and X, are hypersurfaces,
then we say they are equivalent hypersurfaces.

In this paper, we will show that V(P) and V(Q) are isomorphic as abstract 3-folds
but that they are inequivalent as hypersurfaces of A* in the sense of Definition 2.3.
In other words, no isomorphism between V(P) and V(Q) extends to an automor-
phism of A* We will do this in two steps. First, we will find an isomorphism
¢ between V(P) and V(Q) that does not extend to an automorphism of A*. This
implies that the two embeddings i;: V(P) — A* and iy o ¢: V(P) — A* are in-
equivalent in the sense of Definition 2.2. (Here, V(P) is the scheme defined as
Spec(Cl[x, y,z,t1/(P)) and i; is the embedding of V(P) in A* corresponding to
the canonical homomorphism i}: C[x,y,z,t] — C[x,y,z,t]/(P); the embed-
ding i, is defined similarly by replacing P by Q.)

The second step, discussed in Section 3, will be to study the automorphism group
of V(P). We will show in Section 4 that all automorphisms of this hypersurface
extend to automorphisms of A*. Finally, putting these two results together, we will
show the stronger result that V(P) and V(Q) are inequivalent hypersurfaces.
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In this paper we use the following key result concerning the Makar-Limanov
invariant of an irreducible affine variety. Given an irreducible affine variety Z, de-
note by C[Z] the ring of regular functions on Z. A locally nilpotent derivation
of C[Z] is a C-derivation d: C[Z] — C[Z] such that, for any f € C[Z], there
exists an n € N such that 3" (f) = 0. If 9 is a locally nilpotent derivation of C[Z]
then exp(Ad) defines an algebraic action of (C,+) on Z, and all (C, +)-actions
arise in this way. The kernel of a locally nilpotent derivation is the subalgebra
of invariants in C[Z] of the corresponding action. The Makar-Limanov invari-
ant ML(C[Z]) is defined as the intersection of the kernels of all locally nilpotent
derivations on C[Z]. If Z is affine space, then the Makar-Limanov invariant is
simply C. However, it was shown in [11] that ML(C[X]) = C[x] # C. This im-
plies that the Koras—Russell 3-fold X is not isomorphic to the affine 3-space. In
Theorem 9.1 and Example 9.1 of [9], the result of Makar-Limanov is generalized;
in particular, it is shown that for every ¢ € C and every A € C*,

ML(C[x, y,z,1]/(Q — ¢)) = ML(C[x, y, z,1]/(AP — ¢)) = C[x].
We will use this equality throughout the paper.

THEOREM 2.4. The following statements hold.

(a) The endomorphism ofA4 defined by (x,y,z,t) — (x,(1 + x)y,z,t) induces
an isomorphism ¢: X =Y.
(b) ¢ cannot be extended to an algebraic automorphism of A*.

Proof. Let ® and W be the endomorphisms of A* defined by
d: (x,y,z,8) = (x,(1 +x)y,z,¢) and
U (x,y,2,0 > (x,(1 —x)y —x — 2% —t7,2,1).

Denote by ©* the endomorphism of C[x, y, z,¢] corresponding to @ (D* fixes x,
z,and t, and ®*(y) = (1 4+ x)y), and denote by W* the corresponding endomor-
phism to W. One checks that ®*(Q) = (1 +x)P and V*(P) = (1 —x)Q. Thus, ®
induces a well-defined morphism of algebraic varieties ¢ : X — Y, and W induces
a well-defined regular map ¢ : ¥ — X.

Since ¢ and i are morphisms of schemes over A = Spec(Cl[x, z,1]), the iden-
tities (®* o W*)(y) = y — P and (W* o ®*)(y) = y — Q guarantee that they are
inverse isomorphisms.

Part (b) follows from the remark that ¢ ((0, 0, 0, 0)) = (0, 0, 0, 0) and from Prop-
osition 2.5(1). O

PROPOSITION 2.5.  The following results hold.

(i) Suppose there exists an algebraic automorphism B of A* that restricts to an
isomorphism between X and Y. Then B does not fix the point (0,0, 0, 0); that
is, €(0,0,0,0) # (0,0,0,0).

(ii) If B is an algebraic automorphism of A* that restricts to an automorphism
of X, then E fixes the point (0,0,0,0).

(iii) If B is an algebraic automorphism of A* that restricts to an automorphism
of Y, then & fixes the point (0,—1,0,0).
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Proof. For part (i), suppose that E is an automorphism of A* that extends an iso-
morphism between X and Y.

Note that, since Q = x2y + (1 +x)(z% + x + £3) is irreducible, it follows that
E*(Q) = AP for some A € C* Thus, E maps V(P — A~'c) isomorphically onto
V(Q — ¢) for every c € C.

Let us show first that E*(x) = Ax. As mentioned previously, for any ¢ € C, the
Makar-Limanov invariant of (C[x, y, z,7]/(Q —c¢)) and of (C[x, y,z,t]/(AP —c¢))
is C[x]. This implies that, for every ¢ € C, E* restricts to an isomorphism

Clx] = ML(Clx, y,z,t1/(Q — ¢)) = ML(Clx, y,z,t]/(AP — ¢)) = C[x].

Combining this with the fact that, forany c € C,V(x—a, Q—c)and V(x —a, P —c)
are isomorphic to A? if and only if @ # 0, we find that E* preserves the ideal (x).

Let E*(x) = px with u € C* Then E*(Q — x) = AP — ux. One checks easily
that the variety Z = Spec(C[x, y,z,t]/(Q — x)) is singular along the line L, =
{x = z =t = 0} in A*. On the other hand, it follows from the Jacobian criterion
that the variety E7'(Z) = V(AP — ux) is singular if and only if A = . This
implies that A = .

In other words, we have shown that *(Q — x) = A(P — x). Thus, E restricts
to an isomorphism between Wp = V(P — x) and Wy = V(Q — x).

For parts (ii) and (iii), a similar argument shows that any automorphism of
A* that extends an automorphism of X will preserve the subvariety Wp, and any
automorphism of A* that extends an automorphism of ¥ will preserve the sub-
variety Wy.

Now we look more carefully at the two subvarieties Wp and Wy,. They are both
singular along the line {x = z = r = 0}. We look now at the tangent cone of each
singular point of Wp and Wy. Let pg = (0, y9, 0,0, 0).

We deduce from the identity

P—x=yox*+z2+x*(y—yo) +1°

that the tangent cone TC,,(Wp) of Wp at pg is isomorphic to Spec(Clx, y,z,t]/
(z2 + yox?)). In particular, TC poWp consists of two distinct hyperplanes for
yo # 0 and of the double hyperplane {z = 0} if yo = 0. On the other hand, we
deduce from the identity

0—x= o+ Dx?+z22+x%(y — yo) + 1> +xz% + xt*

that the tangent cone of Wy at a point py = (0,y0,0,0) is isomorphic to
Spec(C[x,y,z,t1/(z*+ (yo + 1)x?)). Thus the tangent cone TC,,(Wp) consists
of two distinct hyperplanes for yo # —1 and of the double hyperplane {z = 0} if
yo=—L
For part (i), since E(Wp) = Wy, we have that £(0,0,0,0) = (0,—1,0,0). For
part (ii), any automorphism of Wp fixes the point (0, 0, 0, 0). Finally, for part (iii),
any automorphism of W), fixes the point (0, —1,0, 0). This completes the proof.
O
REMARK. In Proposition 2.5, we show that any automorphism of V(P — x) must
fix the origin because the tangent cone of the origin is distinct from all the other
tangent cones of this variety. However, the argument cannot be used to study all
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automorphisms of V(P). In fact, V(P) is smooth, so the tangent cones of all points
are isomorphic. Later on it will be shown that all automorphisms of X = V(P)
extend to automorphisms of A* Thus, using part (ii) of Proposition 2.5, one finds
that any automorphism of X fixes the origin (see Corollary 4.5).

COROLLARY 2.6. The Koras—Russell cubic 3-fold admits at least two nonequiva-
lent embeddings in A*.

Proof. Consider the inclusions ij: X — A*andiy: Y — A% By Theorem 2.4,
embeddings i; and i, o ¢ are inequivalent. O

3. The Automorphism Group of X

We will now determine the structure of the automorphism group Aut(X ). We start
with some notation. If S is a ring and R is a subring, then Autg(S) denotes the
group of ring automorphisms of S that fix R. Denote by C[X] = C*/(P) the
ring of regular functions on X. The group Aut(X) is isomorphic to the group
Aut(C[X]) = Autc(C[X]).

NotaTioN 3.1.  Denote by I = (x2,z2 413>+ x) C C[x, z, ] the ideal generated
by x2 and z2 4¢3 + x. Let A be the subgroup of Aut(C[x, z, ¢]) of automorphisms
that preserve the ideals (x) and /. Let A, be the subgroup of .A of automorphisms
¢ € A such that ¢ fixes x, and let ¢ = id modulo (x). Finally, let A, be the sub-
group of Autc(y(C[x][z,¢]) that is equivalent to the identity modulo x>

A ={peAut(Clx,z,1]) | ¢((x)) = (x), o(I) = I};
Ar = {g € Autcq(Clx][z,1]) | (1) = I, ¢ = id mod (x)};
Az = {¢ € Autc)(C[x][z.1]) | ¢ = id mod (x)}.

It is clear that A, is a normal subgroup of .4; and that A, is a normal subgroup
of A.

The ring C[X] can be viewed as the subalgebra of Clx,x7\ z,¢] that is gen-
erated by x, z, f, and (2 +13+ x)/xz. In particular, it contains C[x,z,¢] as a
subring.

The following proposition can be deduced from the results of Makar-Limanov
concerning the set of locally nilpotent derivations on X. See [11] and [5].

ProOPOSITION 3.2.  The automorphism group Aut(X) = Aut(C[X]) is isomor-
phic to the group A. The isomorphism of Aut(C[X]) to A is induced by restriction
of any automorphism of C[X] to the subalgebra C[x, z,t].

Proof. In [11] it was shown that the Makar-Limanov invariant of C[X] is C[x].
In fact, more was proven. It was shown that, for any locally nilpotent derivation 9
of C[X], we have ker 8> C C[x, z,1]. Now note that there exist locally nilpotent
derivations 91 and 9, on C[X] such that 9,(z) = 9;(x) = 0 and 9,(t) = 91(x) =
0. In particular, this implies that the union of kernels of all locally nilpotent deriva-
tions of C[X] generates the ring C[x, z,¢]. (This ring is also known as the Derk-
sen invariant.) Thus, any automorphism of C[X] restricts to an automorphism of
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Clx,z,t]. Also, any automorphism ¢ € C[X] stabilizes the ideal (x). Indeed,
since the Makar-Limanov invariant C[x] C C[X] is stable, there exist a A € C*
and a b € C such that ¢(x) = Ax + b. Also, the zero set of Ax + b in X is singu-
lar if and only if » = 0. Thus, since the zero set of x in X is singular, we have that
b = 0 and thus the ideal (x) is preserved.

To complete the argument, we use a general result from [10]. The variety X is
the affine modification of C[x, z, t] along —x 2 with center I = (x%, x+z>+13). In
other words, C[X] = C[x, z,t, (x4+2z%413/x?)]. Since the sequence x 2, x +z2 413
is regular, one can easily verify that the intersection of the principal ideal (x?) in
C[X]and C[x, z, t] is exactly . Therefore, any automorphism of C[X] preserves
I. Proposition 2.1 of [10] implies that any automorphism of C[x, z,#] that is in A
extends to a unique automorphism of C[X]. UJ

REMARK 3.3. Proposition 3.2 has the following geometric interpretation. The
inclusion C[x,z,t] C C[X] induces a dominant morphism o: X — A3 Any
automorphism of X is the lifting by o of a unique automorphism of A*. More pre-
cisely, if ¢ is an automorphism of X then there is a unique automorphism ¢ of
A% such that ¢ o 0 = o o @. Also, an automorphism ¢ of A® has a lifting as an
automorphism of X if and only if ¢ preserves the ideals (x) and I.

We will now discuss the structure of the group .A. Note that it contains a subgroup
isomorphic to C* (corresponding to a C*-action on X) given by the C*-action
where x has weight 6, z has weight 3, and ¢ has weight 2.

ProrosiTION 3.4. A= A; x C*

Proof. Ttis clear that A; x C*is a subgroup of .A. We will now show that .4, and
C* generate A. First note that if ¢ € A then, since ¢ preserves the ideal (x), it in-
duces an automorphism ¢ of C[x, z,t]/(x) = CJ[z,t]. Also, since [ is preserved,
the ideal (z? 4 ¢3) is preserved by ¢. By composing with an automorphism in C*,
we can assume that ¢(z2 + t3) = z2 + ¢3. In particular, for all ¢ € C, ¢ induces
an automorphism of V(z2 4¢3 + ¢). If ¢ # 0, then this variety is a smooth ellip-
tic curve E with one point p removed. The group of automorphisms of this affine
curve is the group of automorphisms of E that fix the point p. This group is of
order 6, and it is generated by the automorphism that fixes ¢ and sends z to —z and
by the automorphism that fixes z and sends ¢ to e’ 27/3¢ (see e. g.[7]). Hence there
are only six automorphisms of C|[z, ¢] that fix the polynomial z> + 3, and they are
all in the image of C*. We can therefore suppose that ¢(z) = z and ¢(¢) = ¢. This
means exactly that ¢ € A;. O

Now we are left with the problem of understanding the group .A,. For this part, we
will consider a more general situation. First note that the group A is exactly the
group of automorphisms ¢ of C[x, z,¢] that fix x and such that ¢ = id mod (x)
and p(z% +13) e (x%, 22 +13).

NotaTION 3.5. Letr € C[z,t] be a polynomial. Denote by .A;(r) the group
Ai(r) = {p € Autcp(Clx][z,1]) | ¢ = id mod (x), ¢(r) € (x%1)}.
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Thus we have that A; = A;(z> + ¢3) and that, for any r, A, is a normal subgroup
of .A] (r) .

We use the following standard notation for partial derivatives. If & € C[z, 1],
h, = 0h/0z, h, = 0h/dt, and h, f € C[z,t], then the Poisson bracket of & and f

is given by {h, f} = h_ fi — h; .

PROPOSITION 3.6. Let r € C[z,t] be a polynomial with no multiple irreducible
factor and such that the zero set V(r) € A’ is connected. Then for every auto-
morphism there exist a ¢ € A;(r) and a polynomial o € C[z,t] such that ¢(z) =
7+ x(ra); mod (x2) and ¢(t) =t — x(ra), mod (x2).

Moreover, 6: Ai(r) — Clz,t], ¢ — «, is a surjective group homomorphism
whose kernel is A,. In particular, the quotient group A\(r)/ A, is isomorphic to
the additive group (C[z,t],+).

Proof. For any ¢ € A;(r), we have that ¢(z) = z + xf mod (x?) and ¢(1) =
t + xg mod (x2), where f,g € C[z,t]. By hypothesis, ¢ is an automorphism;
therefore, its Jacobian equals 1. This implies in particular that f, + g, = 0. In
other words, there exists an 4 € C[z, ] such that b, = f and h, = —g.

Now consider ¢(r) = r 4+ x({r, h}) mod (x2). Since ¢(r) € (r, x?), the Poisson
bracket {r, h} is in the ideal (7). This implies that there exists a constant ¢ € C such
that 7 — ¢ € (r). To see this, note that di A dr is identically zero along the zero
set V(r) of r. Thus & is locally constant as a function on V(r) in a neighborhood
of every smooth point of V(r). Since r has no multiple irreducible factor, the set
of smooth points is dense. Since V(r) is connected, / is constant along V (r).

We may assume that the constant ¢ = 0. Thus 4 = ra with @ € C[z,¢], and we
have ¢(z) = z + x(ra); mod (x?) and @(¢) = t — x(ra), mod (x2).

Itis easy to check that 0: A;(r) — C[z,t], ¢ — «, is a group homomorphism
whose kernel is .4,. We now prove that it is surjective. For any o € C[z, ] de-
fine an automorphism ¢ € Autg R[z,t], where R = C[x]1/(x?), that is given by
¢(z) =z+ x(ra), and ¢(t) =t — x(ra),. Note that the inverse of ¢ is given by
¢ (2) = z— x(ra); and ¢7'(¢) = t + x(ra),. Also, ¢ is indeed an automor-
phism, and its Jacobian is equal to 1. By a result of van den Essen, Maubach and
Vénéreau [18], there exists an automorphism ¢ of C[x][z, ¢] that projects to ¢. By
construction, ¢ € A(r) and 6(¢) = a. O

4. Extensions of Automorphisms

In this section, we will continue with the more general setting in order to prove
Lemma 4.2. We then will apply the lemma to the hypersurface X.

NortaTiON 4.1.  Letr € C[z,¢] be a polynomial with no multiple irreducible fac-
tor and whose zero set is connected, and let ' be any polynomial in C[x, z,¢]. We
define P, r = xzy +r+xF eClx,y,z,t],and welet X, p = V(P, ). Thus, for
example, X = X 25 and Y = X 2443 14,2434y

As in the proof of Proposition 3.2, for any ¢ € A;(r) we can construct an endomor-
phism ® of C[x, y,z,t] = C [4] that induces a unique automorphism ¢ of C[X, r],
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as follows. First, ® is an extension of ¢ where we determine ®(y). Now sup-
pose that 6(¢p) = «. Let B = {r,«}. Then it is easily checked that p(r + xF) =
(1 + xB)(r + xF)mod (x?). Hence there exists a unique G € C[x, z,¢] such that
D(P,r) = (1 +xB) P if we put ®(y) = (1 + xB)y + G. We will denote by
¢ the induced automorphism on C[X, r]. In this way, .A,(r) can be considered as
a subgroup of Aut(C[X,, r]). We will now show that any such automorphism of
X, r lifts to an automorphism of A% This is clear for the case that 8 = 0, since
in this case ® is an automorphism of C. In particular, any automorphism of A,
induces an automorphism of X,  that extends. However, even if 8 # 0, we will
show that by adding an appropriate multiple of P, r we can lift ¢ to an automor-
phism of C[x, y, z,].

LEMMA4.2. Let ¢ € Ai(r). Then ¢, the corresponding automorphism of C[ X, rl,
lifts to an automorphism of C!*1.

Proof. Let ¢ € A (r), and suppose that 6(¢) = «. Similarly to the method used
in [13], we create a family of endomorphisms of A* each of which restricts to an
automorphism of a fiber of P, r. Consider c as a variable, and denote by R, the
ring R, = Clx, c]/(xz). Consider now the automorphism q’_> € Autg (R.[z,1])
given by d_)(z) = ¢(z2) + xca; and (;_5(t) = ¢(t) — xco;. One checks easily that
the Jacobian of (]3 is 1 and therefore, by [18], there exists an automorphism ¢ €
Autcpe 1 (Clx, cllz,t]) that restricts to ¢.

For each ¢ € C, denote by ¢, € Autc,)(C[x][z,¢]) the automorphism defined
by ¢.(z) = ¢(2) and ¢ (1) = ¢ (), where ¢ (z) and ¢ (t) are viewed as polyno-
mials with coefficients in C[c]. Note that ¢. € A;(r + ¢) and that the expression
for ¢. depends polynomially on c.

For each ¢ € C, we now construct, much as before, an automorphism ¢, on
C[X,+¢, r]. Note that the expression for ¢, depends polynomially on c¢. By mak-
ing a formal substitution of ¢ by — P, r, we construct an automorphism ¥ =
- p, ) of C[x, y, z, ] that preserves the ideal (P, r) (see [13, Lemma 3.4]). Note
that W is a lift of the automorphism ¢, € Aut(C[X, r]). Also, ¢o and ¢ are equiv-
alent modulo (x?). More precisely, ‘/’o_] o ¢ is an element of A,. By the comment

preceding the lemma, ¢, !5 ¢ induces an automorphism (pal o ¢ that lifts to an
automorphism of C*l. By the unicity of the extension of an element of A;(r) to
an automorphism of C[ X, ], we have that ¢! 0 ¢ = @51 o @. Since ¢ also lifts
to an automorphism of C™*, the same is true for @. O

THEOREM 4.3.  Every automorphism of X = V(P) extends to an automorphism
of A*.

Proof. The automorphism group of X is isomorphic to 4 = A; x C*. The auto-
morphisms in C* extend and, by Lemma 4.2, the automorphisms in .4; extend.
Therefore, all automorphisms extend to an automorphism of A%, O

ExampPLE 4.4. Consider the automorphism ¢ of C[x, z,¢] given by p(x) = x,
©(z) = z 4 3xt% and @(t) =t + 2x(z + 3x17)3. It is indeed an automorphism,
because it is the composition of two triangular automorphisms.
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Also we can check that ¢ is an element of A;. It is obvious that ¢(x) = x
and ¢ = idmod (x); we will now show that ¢(z> + 3 + x) is in the ideal
(x%, 722 + 3 + x). Indeed, we find that there exists an element G € Cl[x, z, 7]
such that p(z2 + 13 +x) = (22 + 13 +x) + x (6217 + 6¢22%) + x2G. This yields
02+ 134+ x) =2+ 3+ +6x2t2) + x%2(G — 6217).

Thus, ¢ is an element of .A;. To find the corresponding automorphism of C[X],
we extend ¢ to the automorphism ¢ of C[X] where ¢(y) = (1 + 6xzt%)y —
(G — 6z¢%). In order to lift this automorphism to an automorphism of CH, we
apply the same procedure as before.

We have that « = (3 — zz)/Z. We define, for each ¢ € C, an automor-
phism ¢. € A;(z% + 3 + ¢) as follows. We have ¢.(z) = z + 3xt2(t> + ¢/2)
and @ (1) = t + 2x¢.(2) (¢ (2)> + ¢/2). More precisely, we have that ¢(z) =
24+ x((22+ 13+ c)a), mod (x?) and (1) =t — x((z*> + 13 + c)a). mod (x?).

Now we can define, for each ¢ € C, an automorphism ¢. of C[X 24,3, ,]if
we put @.(y) = (1 + 6xzt%)y + G. for a suitable polynomial G. € C[x, z,t,c].
Finally, to find the automorphism of C[x, y, z, t] that is a lift of ¢, we make a for-
mal substitution of ¢ by —P.

COROLLARY 4.5. The origin o = (0,0,0,0) € X is fixed by all automorphisms
of X.

Proof. By Proposition 2.5(ii), any automorphism of X that extends to A* fixes the
origin. By Theorem 4.3, all automorphisms of X extend to A*. O

REMARK. This corollary was first proven in collaboration with G. Freudenburg
but using a different method.

5. Inequivalent Hypersurfaces

Consider now the two hypersurfaces X = V(P) and Y = V(Q). (As before, P =
x?y+z224+x+1t3and Q = x%y + (1 + x)(z% + x + t%)). We know from The-
orem 2.4 that, as abstract varieties, X and Y are isomorphic. We now show the
following result.

THEOREM 5.1. X and Y are inequivalent as hypersurfaces of C*.

Proof. Suppose there were an automorphism W of A* such that ¥(X) = Y. Then
W(0) # o by Proposition 2.5(i). Consider now the isomorphism ¢ defined in The-
orem 2.4 between X and Y. Then (¥ ~!)|y o ¢ is an automorphism of X that does
not preserve o. This contradicts Corollary 4.5. UJ

It should be noted that, as another consequence of the description of the auto-
morphism group of X, we can show that all automorphisms of C[Y] that fix the
variable x also extend to automorphisms of A*.

This is the case because Aut(Y) = Aut(X) = A = A; x C* The subgroup
of automorphisms that fix x (for X or for Y) corresponds via this isomorphism to
the subgroup A; x C¢ C A; x C*, where Cg is the subgroup of the sixth roots
of unity in C*. The automorphisms corresponding to elements of .4, extend to ¥
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by Lemma 4.2, and the automorphisms corresponding to elements in C¢ extend to
linear automorphisms on A*.

However, the action of C* on ¥ does not extend to an action on A*, More pre-
cisely, for any A € C such that A° # 1, the action of A € C* on X, when conjugated
by ¢ to give an automorphism of Y, does not extend to an automorphism of A*. To
see this, note that the action of A does not fix the line x = z = ¢t = 0. The only
fixed point on this line is the origin. However, by Proposition 2.5(iii), the point
(0, —1, 0, 0) must be fixed.

6. Remarks and Some Open Questions

6.1. Locally Nilpotent Derivations on C[X]

We can give a complete description of the locally nilpotent derivations of C[X].
We denote by LND(C[X]) the set of locally nilpotent derivations of C[X]. Denote
by LND, (C[x][z, t]) the C[x]-module of locally nilpotent derivations of C[x, z, ¢]
having x in the kernel. If 9 is a locally nilpotent derivation on C[X], it restricts to
a unique locally nilpotent derivation of LND, (C[x][z,?]).

PrOPOSITION 6.1. LND(C[X]) = x2(LND,(C[x][z, t])).

Proof. If 8 = x29; is an element of x2(LND,(C[x][z,]), then one can extend
it to a locally nilpotent derivation on C[X] by putting d(y) = —39(z% + 13). For
the converse, if 9 is a locally nilpotent derivation on C[X], then (2 +13) =
229(z) + 3133(1) € (x?). Consider the derivation 9 of C[z, ¢] defined by Af) =
d(f)mod (x). Then 9 induces an action of (C,+) on A? that stabilizes the cus-
pidal curve z? + t> = 0. This implies that the action is trivial and therefore that
d = 0. In other words, there exists an element 3; € LND,(C[x][z,]) satisfying
8 = xd;. Now, since 3(z> + t3) € (x?), we have that 9;(z> + ¢?) belongs to (x);
and the same argument proves that there exists a dy such that 9; = xdy. O

6.2. Nonzero Fibers of P and Q

ProprosITION 6.2.  The following statements hold.

(a) ForeveryceC,V(Q — c) is isomorphic to the hypersurface V(F.) = Z. of
A* defined by the equation

E.=x2y+z2+(1 +ox+P—c=0.
(b) For every c € C \ {—1,0} and every ¢’ € C\ {0}, Z. and V(P — ¢’) are iso-
morphic as abstract affine varieties.
Proof. Recall that, by definition,
V(Q — ¢) = Spec(Clx, y,z,11/(Q — ¢))
= Spec(CLx, y,z.1]/(x?y + (1 + x)(2* + 17 + x) — ).
We claim that the endomorphisms
D (x,y,z,1) = (x,(1 —x)y — 22 —x— t3,z,t) and
Ve (x,y,z,8) = (x,l +x)y +c,2z,t)
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of A restrict respectively to isomorphisms ¢.: V(Q —¢) = Z. and ¥r.: Z, =
V(Q — ¢), which are inverse to each other. Indeed, one checks that ®(F,) =
(1 — x)(Q — ¢) whereas V}(Q — ¢) = (1 4+ x)F,, so that . and ¥, induce
morphisms ¢.: V(Q —¢) - Z,and ¢.: Z, — V(Q — ¢), respectively. Since
¢. and . are morphisms of schemes over A = Spec(C[x, z,t]), the identities
(PFoW)(y) =y —(Q —c)and (W} o ®})(y) = y — F, guarantee that they are
inverse isomorphisms. This proves part (a).

Now note that V(P — ¢) >~ V(P — 1) for every ¢ € C \ {0}. Indeed, if c € C*,
consider the automorphism of A* defined by (x,y,z,t) = (a®x,a=%y, a7, a*t) for
a suitable constant a € C such that a=% = ¢. This automorphism maps V(P — c)
isomorphically onto V(P — 1).

Finally, part (b) follows because, for every ¢ € C \ {—1}, the automorphism of
A* defined by (x,y,z,t) — (1 +c)x,(1 + c)‘zy,z,t) maps V(P — ¢) isomor-
phically onto Z.. UJ

Together with the previous discussion, this result motivates the following question.

QUESTION 1. Are the subvarieties of A* = Spec(C[x,y,z,t]) defined by the
equations
X2y + 224 x+241=0 and x*y+>+t3+1=0
isomorphic?
REMARK 6.3. This question has an affirmative answer in holomorphic category.
Indeed, one can easily check that the analytic automorphism of A* defined by
X __ 1 _
(x,y,2,1) — <x’y +1-— %(ZZ + t3),€X/2Z,€X/3t>
X
induces an isomorphism between the hypersurfaces V(Q + 1) and V(P + 1).

6.3. Holomorphic and Stable Equivalence

Recall that two closed algebraic smooth subvarieties X and Y of A* that are iso-
morphic as abstract algebraic varieties are called holomorphically equivalent if
there exists a biholomorphism of A* restricting to a biholomorphism between X
and Y considered as complex manifolds. Similarly, we say that X and Y are stably
equivalent if there exist an n € N and an algebraic automorphism of A**" restrict-
ing to an isomorphism between X x A" and Y x A". Here we show the following.

PROPOSITION 6.4. The subvarieties X and Y ofA4 = Spec(Clx, y, z, t]) defined
by the equations

P :x2y+zz+x+t3 =0 and Q :x2y+(1+x)(zz+x+t3) =0
are holomorphically equivalent and stably equivalent.

Proof. By virtue of Theorem 2.4, X and Y are isomorphic as abstract algebraic
varieties. Holomorphic equivalence follows from the observation that the map
¢: A* — A* defined by
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c(x,y,z,1) = (x,e"y + x 2" — 1 —x)(2* +x +17),2,1)

is a biholomorphism of A* that maps X isomorphically onto Y. Moreover, we
remark that ¢ can be viewed as a holomorphic extension of the isomorphism
¢: X — Y defined in Theorem 2.4. Indeed, we have

c(x,y,z,t) = (x, (1 +x)y +x7 2" —1=x)P,z,1).

For stable algebraic equivalence, we consider the C[x]-endomorphism W* of
Clx,y,z,t, w] defined by:

yi Y+ 1+ a2 (14 Lx)z + x2w)® — (1 +x)22)
~|—x’2(((1 + %x)t + xzw)3 -Q ~|—x)t3),

2 (14 3x)z + x?w,

t— (1+ix)r +xw,

we =324 2+ (1= 2x)w.

By definition, W* restricts to a linear C[x]-endomorphism U* of Clx,z,t,w],
which is an automorphism because the Jacobian is invertible:

(1+1x) 0 x?
0 (1+1x)  x? € GL3(C[x]).
=3 0=

Since W*(y) depends triangularly on the variables x, z, ¢, and w, this implies in
turn that W* is a C[x]-automorphism of C[x, y, z,#, w]. Now one checks easily
that W*P = Q, which completes the proof. UJ

REMARK 6.5. In the foregoing proof we have shown that the isomorphism ¢:
X — Y—which cannot be extended to an algebraic automorphism of A* (Theorem
2.4)—can be extended to a holomorphic automorphism of A* In particular, there
is no topological obstruction to extending the isomorphism ¢ to an automorphism.

7. Locally Nilpotent Derivations on the Cylinder
over the Koras—Russell 3-Fold

Recently, the first author proved that the Makar-Limanov invariant of the cylinder
over the Koras—Russell 3-fold is trivial [3]. The idea of the proof is as follows.
Let X = X \V(¢). Now consider the polynomial P; = xy + z% + ¢ + x, and
let X; = V(P;) and XIO = X;\V(¢). It is shown that the cylinders X° x C and
X x C are isomorphic. Then one uses the triviality of the Makar-Limanov in-
variant of X 10 to show that the Makar-Limanov invariant of X° x C is trivial, and
this implies the result.

We denote by A = C[X] the coordinate ring of X, by B = C[X|] the coordi-
nate ring of X;, by A, the coordinate ring of X°, and by B; the coordinate ring
of X}. In this section we will construct an explicit isomorphism and then obtain
a locally nilpotent derivation d on the coordinate ring A[w] of X x Al such that

3(x) # 0.
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PROPOSITION 7.1.  The algebraic endomorphism ® of C[x, v, z,t*!, w] defined by

d(x) = x,

®(y) =xy —xw? —2zw,
®(z) =z +xw,

Q1) =1,

d(w) = 2w + yz + 3xyw — 3zw? — xw3

induces an isomorphism

¢: Bilw] = Clx, y, 2,0 wl/(xy + 2% +x +17)

= Adw] = Clx,y, 2,05, wl/(x*y + 22 +x +17)

whose inverse isomorphism ¢*1: A/[w] — B;[w] is induced by the endomor-
phism of C[x,y,z,t*, w] defined by
Y(x) =x,
V() = =5+ +wa) = 5 (vz = xw)?,
V(z) =2 — ;ﬂx(yz —xw),
V() =t,

(W) = 35 (yz — xw).

Proof. Recall that P denotes the polynomial P = x2y + z% + x + ¢>. Let S be
the polynomial defined by § = xy + z> + x + £°.

The endomorphisms ® and ¥ induce well-defined algebraic morphisms ¢:
B:[w] — A;[w] and ¥: A,[w] — B:;[w]. Indeed, one checks that ®(S) = P
and V(P) = (1 — xyt‘3)S.

Since ¢ and ¥ are C[x, t*']-morphisms, the following equalities prove that ¢
and ¢ are inverse isomorphisms:

Wod(z) =2, \1/od><y)=y—t%s,

xyw — y*z — 2w

Vod(w)=w+ ; S;
t
w xXw
(DO\IJ(U))Z'LU—[—:;P, @OW(Z):Z+7P,
y—w2 w2 2
PoW(y)=y— =3P - P O

PROPOSITION 7.2.  Let A be the locally nilpotent derivation on C[x, v, z,t*!, w]
defined by

9 d
A=1-2z—+(y+D—).
ox 0z

Then, the derivation d of C[x, y, z, t* w] defined by
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a ad
d=(PoAoW)(x)—+ (PoAoW)(y)—
0x ay

+(@oAo lL’)(z)i +(®oAo ‘If)(w)i
0z ow

induces a locally nilpotent derivation on
Alw] =Clx, y,z,t,w]/(x%y + 22+ x + 1)

that does not contain the variable x in its kernel.

Proof. Note first that d(x), d(y), 9(z), and d(w) are all elements of C[x, y, z, f, w]
and so 0 restricts to a well-defined derivation on C[x, y, z,t, w]. (For example,
one checks that 3(x) = —21°(z + xw).)

Second, since A(xy +z24+x+13) = 0, it follows that A induces a locally nilpo-
tent derivation on B,[w] = C[x,y,z,t, w]/(xy + z2 + x + t3). Therefore, in
light of Proposition 7.1, one can conclude that d induces a locally nilpotent deriva-
tion d on A,[w] = C[x, v,z tT w]/(x%y + 22+ x +13).

The inclusion C[x, y,z,t,w] C C[x, y, z, t*L w] induces an inclusion of A[w]
in A;[w]. More precisely, let 7 : C[x,y,z,t*, w] — A,[w] be the canonical pro-
jection. Since P is prime in C[x, y, z, ¢, w], one can identify A[w] with the image
7 (C[x,y,z,t,w]) of the subalgebra C[x, y, z, t, w]. We have that 0d =d om,and
therefore d restricts toa locally nilpotent deriviationon A[w] = n (C[x, y, z,t, w]).

O

COROLLARY 7.3. The Makar-Limanov invariant of A[w] is trivial.
Proof. Let 9; and 9, be the locally nilpotent derivations on A[w] defined by

d 0 d 0

9 =2z— —x*’— and 9, =31"— —x’—.

ay 0z ay ot
We have Ker(d;) N Ker(d,) = C[x]. Thus, ML(A[w]) C C[x]. Now Proposi-
tion 7.2 allows us to conclude that ML(A[w]) = C. O
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