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1. Introduction

Let G be a connected reductive group over C with Lie algebra g. We put F = C((ε))

and O = C[[ε]]. Let X = XG denote the affine Grassmannian G(F )/G(O). For
u ∈ g(F ) we write Xu for the affine Springer fiber

Xu = {g ∈ G(F )/G(O) : Ad(g−1)(u) ∈ g(O)}
studied by Kazhdan and Lusztig in [KL].

For x = gG(O) ∈ Xu the G(O)-orbit (for the adjoint action) of Ad(g−1)(u)

in g(O) depends only on x, and its image under g(O) � g(C) is a well-defined
G(C)-orbit in g(C). We say that x ∈ Xu is regular if the associated orbit is reg-
ular in g(C). (Recall that an element of g(C) is regular if the nilpotent part of
its Jordan decomposition is a principal nilpotent element in the centralizer of the
semisimple part of its Jordan decomposition.) We write Xu

reg for the (Zariski open)
subset of regular elements in Xu.

From now on we assume that u is regular semisimple with centralizer T, a max-
imal torus in G over F. Assume further that u is integral, by which we mean that
Xu is nonempty. Kazhdan and Lusztig [KL] show that Xu is then a locally fi-
nite union of projective algebraic varieties, and in [KL, Sec. 4, Cor. 1] they show
that the open subset Xu

reg of Xu is nonempty (and hence dense in at least one irre-
ducible component of Xu). The action of T(F ) on X clearly preserves the subsets
Xu and Xu

reg. Bezrukavnikov [B] proved that Xu
reg forms a single orbit under T(F ).

(Actually Kazhdan–Lusztig and Bezrukavnikov consider only topologically nilpo-
tent elements u, but the general case can be reduced to their special case by using
the topological Jordan decomposition of u.)

The goal of this paper is to characterize regular elements in Xu (for integral
regular semisimple u as just described). When T is elliptic (in other words, F -
anisotropic modulo the center of G), the characterization gives no new informa-
tion. At the other extreme, in the split case, the characterization gives a clear
picture of what it means for a point in Xu to be regular.

We will now state our characterization in the split case, leaving the more techni-
cal general statement to the next section (see Theorem 1). Fix a split maximal torus
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A ⊂ G over C and denote by a its Lie algebra. We identify the affine Grassman-
nian A(F )/A(O) for A with the cocharacter lattice X∗(A), the cocharacter µ cor-
responding to the class of µ(ε) in A(F )/A(O). For any Borel subgroup B = AN

containing A (where N denotes the unipotent radical of B) there is a well-known
retraction rB : X → X∗(A) defined using the Iwasawa decomposition G(F ) =
N(F )A(F )G(O): the fiber of rB over µ ∈X∗(A) is N(F )µ(ε)G(O)/G(O). The
family of cocharacters rB(x) (B ranging through all Borel subgroups contain-
ing A) has been studied by Arthur [A, Lemma 3.6]; it is the volume of the convex
hull of these points that arises as the weight factor for (fully) weighted orbital in-
tegrals for elements in A(F ). In particular Arthur shows that, for x ∈ X and any
pair B, B ′ of adjacent Borel subgroups containing A, there is a unique nonnega-
tive integer n(x, B, B ′) such that

rB(x) − rB ′(x) = n(x, B, B ′) · α∨
B,B ′ , (1.1)

where αB,B ′ is the unique root of A that is positive for B and negative for B ′.
The main result of this paper (in the split case) is that, for x ∈Xu,

n(x, B, B ′) ≤ val αB,B ′(u) (1.2)

for every pair B, B ′ of adjacent Borel subgroups containing A, and that x ∈ Xu

is regular if and only if all the inequalities (1.2) are actually equalities. More in-
tuitively: the regular points in Xu are precisely those “farthest” from the subset
X∗(A) = A(F )/A(O) of X.

2. Statements

2.1. Notation. We write g for the Lie algebra of G and follow the same con-
vention for groups denoted by other letters.

Choose an algebraic closure F̄ of F and let � = Gal(F̄/F ). We write GF for
the F -group obtained from G by extension of scalars from C to F.

As before we use µ �→ µ(ε) to identify the cocharacter group X∗(A) with
A(F )/A(O). By means of this identification, the canonical surjection A(F ) →
A(F )/A(O) can be viewed as a surjection

A(F ) → X∗(A). (2.1)

Let � = �G denote the quotient of the coweight lattice X∗(A) by the coroot lat-
tice (the subgroup of X∗(A) generated by the coroots of A in G). Up to canonical
isomorphism, � is independent of the choice of A; moreover, when defining �

we could replace A by any maximal torus T in GF . There is a canonical surjective
homomorphism

G(F ) → � (2.2)

characterized by the following two properties: it is trivial on the image of Gsc(F )

in G(F ) (where Gsc denotes the simply connected cover of the derived group
of G), and its restriction to A(F ) coincides with the composition of (2.1) and the
canonical surjection X∗(A) → �.
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Recall that X denotes the affine Grassmannian G(F )/G(O) for G. The homo-
morphism (2.2) is trivial on G(O) and hence induces a canonical surjection

νG : X → �, (2.3)

whose fibers are the connected components of X.

2.2. Parabolic Subgroups. We will be concerned with parabolic subgroups
P of G containing A. Such a parabolic subgroup has a unique Levi subgroup M

containing A, and we refer to M as the Levi component of P.

As usual, by a Levi subgroup of G we mean a Levi subgroup of some parabolic
subgroup of G. Let M be a Levi subgroup of G containing A. We write P(M) for
the set of parabolic subgroups of G that contain A and have Levi component M.

Thus any P ∈ P(M) can be written as P = MN, where N = NP denotes the
unipotent radical of P. As usual there is a notion of adjacency: two parabolic sub-
groups P = MN and P ′ = MN ′ in P(M) are said to be adjacent if there exists
a (unique) parabolic subgroup Q = LU containing both P and P ′ such that the
semisimple rank of L is one greater than the semisimple rank of M. Thus U =
N ∩ N ′ and, moreover, if L is chosen so that L ⊃ A then

l = m ⊕ (n ∩ n̄′) ⊕ (n′ ∩ n̄),

where N̄ denotes the unipotent radical of the parabolic subgroup P̄ = MN̄ oppo-
site to P (and where N̄ ′ is opposite to N ′).

Given adjacent P, P ′ in P(M), we define an element βP,P ′ ∈ �M (the coweight
lattice for A modulo the coroot lattice for M) as follows. Consider the collec-
tion of elements in �M obtained from coroots α∨, where α ranges through the set
of roots of A in n ∩ n̄′. We define βP,P ′ to be the unique element in this collec-
tion such that all other members in the collection are positive integral multiples
of βP,P ′ . Note that although �M may have torsion elements, the elements in our
collection lie in the kernel of the canonical map from �M to �G, and this kernel
is torsion-free. Thus, any member of our collection can be written uniquely as a
positive integer times βP,P ′ . Note also that βP ′,P = −βP,P ′ . If M = A, so that
P, P ′ are Borel subgroups, then βP,P ′ is the unique coroot of A that is positive for
P and negative for P ′.

2.3. Retractions from X to XM. The inclusion of M(F ) into G(F ) induces
an inclusion of the affine Grassmannian XM for M into the affine Grassmannian
X for G. Let P ∈ P(M) and let XP denote the set P(F )/P(O). The canonical in-
clusion of P in G induces a bijection i from XP to X, and the canonical surjection
P → M induces a canonical surjective map p (of sets) from XP to XM. We de-
fine the retraction rP = rG

P : X → XM as the composed map p � i−1. Given x ∈
X, we often denote by xP the image of x under the retraction rP .

These retractions satisfy the following transitivity property. Suppose that L ⊃
M are Levi subgroups containing A, and suppose further that P ∈ P(M) and Q ∈
P(L) satisfy Q ⊃ P. Let PL denote the parabolic subgroup P ∩ L in L. Then

rG
P = rL

PL
� rG

Q. (2.4)
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Moreover, for any x ∈X, the element νM(xP ) maps to νL(xQ) under the canonical
surjection �M → �L, and in particular νM(xP ) �→ νG(x) under �M → �G.

2.4. Definition of n(x, P, P ′). A point x ∈ X determines points νM(xP ) in
�M , one for each P ∈ P(M). This family of points arises in the definition of
the weighted orbital integrals occurring in Arthur’s work. A basic fact [A] about
this family of points is that, whenever P, P ′ are adjacent parabolic subgroups in
P(M), there exists a (unique) nonnegative integer n(x, P, P ′) such that

νM(xP ) − νM(xP ′) = n(x, P, P ′) · βP,P ′ . (2.5)

The integers n(x, P, P ′) measure how far x is from the subset XM of X.

2.5. Fixed Point Sets Xu. Let u ∈ g(F ). Define a subset Xu of X by

Xu = {g ∈ G(F )/G(O) : Ad(g−1)(u) ∈ g(O)}.
2.6. Conjugacy Classes Associated to Fixed Points. Let u ∈ g(F ). Sup-
pose that the coset x = gG(O) lies in Xu. The image of Ad(g−1)(u) under the
canonical surjection g(O) → g(C) gives a well-defined G(C)-conjugacy class
ūG(x) (for the adjoint action) in g(C).

As before, let M be a Levi subgroup of G and let P ∈ P(M). Now suppose that
u ∈ m(F ) and that x ∈ Xu. Choose p ∈ P(F ) such that x = pG(O); thus xP is
the coset mM(O), where m denotes the image of p under the canonical homomor-
phism from P onto M. Of course Ad(p−1)(u) lies in p(O), and its image in p(C)

gives a well-defined P(C)-conjugacy class ūP (x) in p(C). It follows that xP lies
in Xu

M (as was first noted in [KL]) and also that ūP (x) maps to ūG(x) (respec-
tively, ūM(xP )) under the map on conjugacy classes induced by p(C) ↪→ g(C)

(respectively, p(C) � m(C)).

2.7. Review of Regular Elements. An element u ∈ g(C) is regular if the
nilpotent part of its Jordan decomposition is a principal nilpotent element in the
centralizer of the semisimple part of its Jordan decomposition, or, equivalently, if
the set of Borel subalgebras containing u is finite. It is well known that the set of
regular elements in g(C) is open.

We again let M be a Levi subgroup of G and let P ∈ P(M). Suppose that u is
a regular element in g(C) that happens to lie in p(C). Then the image uM of u in
m(C) is regular in m(C).

2.8. Regular Points in Xu. We say that x ∈ Xu is regular if the associated
conjugacy class ūG(x) ∈ g(C) consists of regular elements. We denote by Xu

reg
the set of regular elements in Xu; the subset Xu

reg is open in Xu.

Again let M be a Levi subgroup of G and let P ∈ P(M). Suppose that u ∈
m(F ). We have already seen that rP maps Xu into Xu

M and that the conjugacy
class in g(C) associated to x ∈Xu is compatible with the conjugacy class in m(C)

associated to the retracted point xP ∈ Xu
M , compatible in the sense that there is a

conjugacy class in p(C) that maps to both of them. Therefore xP is regular in Xu
M

if x is regular in Xu.
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2.9. Setup for the Main Result. Let M denote a Levi subgroup of G con-
taining A. We now assume that u is an integral regular semisimple element of
g(F ) that happens to lie in m(F ). (It is equivalent to assume that the centralizer T

of u is contained in MF .) For each pair P, P ′ (P = MN, P ′ = MN ′) of adjacent
parabolic subgroups in P(M), we shall define a nonnegative integer n(u, P, P ′).
This collection of integers measures how far Xu sticks out from Xu

M.

As before, we need the parabolic subgroups P̄ = MN̄ and P̄ ′ = MN̄ ′ opposite
to P and P ′ respectively. Let α be a root of T in N ∩ N̄ ′. Because T, N, and N ′ are
defined over F, the group Gal(F̄/F ) preserves the set of roots of T in N ∩ N̄ ′. Let
Fα denote the field of definition of α, so that Gal(F̄/Fα) is the stabilizer of α in
Gal(F̄/F ). For any finite extension F ′ of F (e.g. Fα) we normalize the valuation
valF ′ on F ′ so that a uniformizing element in F ′ has valuation 1, or, equivalently,
so that ε has valuation [F ′ : F ]. There exists a unique positive integer mα such
that the image of the element α∨ in �M is equal to mα · βP,P ′ , where βP,P ′ is the
element of �M already defined. Note that mα depends only on the orbit of α under
the Galois group; here we use that the Galois group acts on the cocharacter group
of T through the Weyl group of M, so that any two elements in the Galois orbit of
α∨ have the same image in �M. Finally we define n(u, P, P ′) as the sum

n(u, P, P ′) =
∑

valFα
(α(u)) · mα , (2.6)

where the sum is taken over a set of representatives α of the orbits of Gal(F̄/F )

on the set of roots of T in N ∩ N̄ ′. In the special case when M = A (and hence
T = A) we have that n(u, P, P ′) is equal to valF (α(u)), where α is the unique
root of A that is positive for P and negative for P ′.

Theorem 1. Let M and u be as before, and let x ∈Xu. Recall that xP ∈Xu
M for

all P ∈ P(M).

(a) For every pair P, P ′ ∈ P(M) of adjacent parabolic subgroups,

n(x, P, P ′) ≤ n(u, P, P ′).

(b) The point x is regular in Xu if and only if the following two conditions hold:
(i) the point xP is regular in Xu

M for all P ∈ P(M); and
(ii) for every pair P, P ′ ∈ P(M) of adjacent parabolic subgroups,

n(x, P, P ′) = n(u, P, P ′).

3. Proofs

3.1. The Case of SL(2). The key step in proving our main theorem is to ver-
ify it for SL(2), where it reduces to a computation that can be found in [La]. To
keep things self-contained we reproduce the calculation here. Let A, B, B̄ denote
(respectively) the diagonal, upper triangular, and lower triangular subgroups of
SL(2), and let α be the unique root of A that is positive for B. Of course βB,B̄ =
α∨. Let x ∈ X and let u = [

c 0
0 −c

]
for nonzero c ∈ O. Note that n(u, B, B̄) =

valF (c). We will show that x ∈Xu if and only if n(x, B, B̄) ≤ n(u, B, B̄) and that
x ∈Xu

reg if and only if n(x, B, B̄) = n(u, B, B̄).
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The difference νA(xB) − νA(xB̄) and the sets Xu and Xu
reg are invariant under

the action of A(F ) on X, so it is enough to consider x of the form x = gG(O)

with g = [
1 0
t 1

]
. (Note that for this reason our calculations apply just as well to

any group whose semisimple rank is 1.) For such x we have νA(xB̄) = 0. If t ∈ O,
then νA(xB) = 0. If t /∈ O, then

[
0 −1
1 t−1

] ∈ G(O) and thus
[

1 0
t 1

]
=

[
t−1 1
0 t

][
0 −1
1 t−1

]
∈

[
t−1 1
0 t

]
· G(O),

which shows that νA(xB) = valF (t−1) · α∨. We conclude that n(x, B, B̄) equals 0
if t ∈ O and equals valF (t−1) if t /∈ O. In any case, n(x, B, B̄) is a nonnegative
integer.

For x, u as before we have

Ad(g−1)u =
[

c 0
−2ct −c

]
.

Therefore x ∈ Xu ⇐⇒ ct ∈ O ⇐⇒ n(x, B, B̄) ≤ n(u, B, B̄). Moreover, x ∈
Xu

reg ⇐⇒ ct ∈ O× or [c ∈ O× and t ∈ O] ⇐⇒ n(x, B, B̄) = n(u, B, B̄).

3.2. Review of n(x, P, P ′). We need to review Arthur’s proof of the existence
of the nonnegative integers n(x, P, P ′). We begin with the case M = A. Let x ∈X.

We must check that, for any two adjacent Borel subgroups P, P ′ ∈ P(A), there is
a (unique) nonnegative integer n(x, P, P ′) such that

νA(xP ) − νA(xP ′) = n(x, P, P ′) · α∨,

where α is the unique root of A that is positive for P and negative for P ′. For this
we consider the unique parabolic subgroup Q containing P and P ′ whose Levi
component L has semisimple rank 1. By transitivity of retractions we have

νA(xP ) − νA(xP ′) = νA(yB) − νA(yB̄), (3.1)

where y = xQ and where B = L ∩ P and B̄ = L ∩ P ′. This reduces us to the
case in which G has semisimple rank 1, which has already been done. For future
use we note that (3.1) can be reformulated as the equality

n(x, P, P ′) = n(y, B, B̄).

Again let x ∈X. Now we check that, for any Levi subgroup M ⊃ A and any ad-
jacent parabolic subgroups P = MN and P ′ = MN ′ in P(M), there is a (unique)
nonnegative integer n(x, P, P ′) such that

νM(xP ) − νM(xP ′) = n(x, P, P ′) · βP,P ′ .

Fix a Borel subgroup BM in M and let B (respectively, B ′) be the inverse image of
BM under P → M (respectively, P ′ → M); thus B and B ′ are Borel subgroups
containing A.

Now choose a minimal gallery of Borel subgroups B = B0, B1, B2 , . . . , Bl =
B ′ joining B to B ′, and for i = 1, . . . , l let αi be the unique root of A that is positive
for Bi−1 and negative for Bi. Then
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νA(xB) − νA(xB ′) =
l∑

i=1

n(x, Bi−1, Bi) · α∨
i .

Note that {α1, . . . , αl} is precisely the set of roots of A in n ∩ n̄′ and that, for each
i, there exists a (unique) positive integer mi such that the image of α∨

i in �M is
equal to mi · βP,P ′ . Applying the canonical surjection �A → �M to the previous
equation, we find (see Section 2.3) that

νM(xP ) − νM(xP ′) = n(x, P, P ′) · βP,P ′ ,

where n(x, P, P ′) is the nonnegative integer
l∑

i=1

mi · n(x, Bi−1, Bi).

3.3. Proof of Part of the Main Theorem in Case A = T. Let u ∈ a(O)

and assume that u is regular in g(F ). Let x ∈Xu.

Let M be a Levi subgroup of G containing A. We are now going to prove the
first main assertion in our theorem—namely, that for any pair of adjacent P, P ′ ∈
P(M) there is an inequality

n(x, P, P ′) ≤ n(u, P, P ′).

Let B, B ′, B0, . . . , Bl and αi, mi (i = 1, . . . , l ) be as in Section 3.2. Then, by
definition,

n(u, P, P ′) =
l∑

i=1

mi · valF (αi(u)).

Let Mi be the Levi subgroup containing A whose root system is {±αi}, and let
B ′

i−1 and B ′
i denote the Borel subgroups in Mi obtained by intersecting (respec-

tively) Bi−1 and Bi with Mi. Let Qi be the unique parabolic subgroup in P(Mi)

such that Qi contains Bi−1 and Bi. We showed in Section 3.2 that

n(x, P, P ′) =
l∑

i=1

mi · n(x, Bi−1, Bi)

and that
n(x, Bi−1, Bi) = n(yi, B

′
i−1, B

′
i ),

where yi = xQi
∈Xu

Mi
. Since Mi has semisimple rank 1, we know that

n(yi, B
′
i−1, B

′
i ) ≤ valF (αi(u)).

This completes the proof of the first main assertion.
Now suppose that x is regular in Xu. Then each point yi ∈ Xu

Mi
is regular in

Xu
Mi

, and hence from the rank 1 case (see Section 3.1) we know that

n(yi, B
′
i−1, B

′
i ) = valF (αi(u)).

We conclude that if x is regular in Xu then

n(x, P, P ′) = n(u, P, P ′),

which is another of the assertions in our theorem.
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3.4. Proof of the Rest of the Main Theorem in Case M = A = T. We
continue with u ∈ a(O) and x ∈ Xu as before, but for the moment we consider
only the case M = A. Assume that

n(x, P, P ′) = valF (αP,P ′(u)) (3.2)

for all adjacent Borel subgroups P, P ′ ∈ P(A), where αP,P ′ is the unique root of
A that is positive for P and negative for P ′. We want to prove that x is regular in
Xu. To do so we must first select a suitable Borel subgroup B ∈ P(A).

Let u0 ∈ a(C) denote the image of u under a(O) → a(C), and let M denote
the centralizer of u0 in G. Thus M is a Levi subgroup of G containing A, and we
choose P ∈ P(M). Then we obtain a suitable Borel subgroup by taking any B ∈
P(A) such that B ⊂ P. For any B-simple root α we denote by Bα the unique Borel
subgroup in P(A) that is adjacent to B and for which α is negative, and we write
Pα for the unique parabolic subgroup containing B and Bα such that the semisim-
ple rank of the Levi component Mα of Pα is 1. Consider the element (well-defined
up to B(C)-conjugacy) v := ūB(x) ∈ b(C) defined in Section 2.6. Equation (3.2)
together with the semisimple rank 1 theory implies that the points xPα

∈ Xu
Mα

are
regular, and this in turn implies (see Section 2.6) that, for every B-simple root α,
the image of the element v under b(C) ↪→ pα(C) � mα(C) is regular in mα(C).

Moreover, it is evident that the image of v under the canonical surjection b(C) �
a(C) is equal to u0. Using only these facts, we now check that v is regular in g(C)

(and hence that x is regular in Xu).

Let v = vs + vn be the Jordan decomposition of v, with vs semisimple and
vn nilpotent. Since it is harmless to replace v by any B(C)-conjugate, we may
assume without loss of generality that vs ∈ a(C). Then, since vs �→ u0 under
b(C) � a(C), it follows that vs = u0. Since vn commutes with vs = u0, it lies in
m(C) and we must check that vn is a principal nilpotent element in m(C). Because
vn lies in the Borel subalgebra (b ∩ m)(C) of m(C), it is enough to check that
the projection of vn into each simple root space of (b ∩ m)(C) is nonzero, and
this follows from the statement (proved above) that the image of v under b(C) ↪→
pα(C) � mα(C) is regular in mα(C) for every simple root α of A in M.

3.5. End of the Proof of the Main Theorem in Case A = T. We continue
with u ∈ a(O) and x ∈Xu as before. Let M be any Levi subgroup containing A.

It remains to prove that, if xP is regular in Xu
M for all P ∈ P(M) and if

n(x, P, P ′) = n(u, P, P ′) (3.3)

for every adjacent pair P, P ′ ∈ P(M), then x is regular in Xu. We have already
proved this in case M = A, and now we want to reduce the general case to this
special case.

The equality (3.3) is equivalent to the equality

νM(xP ) − νM(xP ′) = n(u, P, P ′) · βP,P ′ . (3.4)

Fix P ∈ P(M) and sum (3.4) over the set of neighboring pairs in a minimal gallery
joining P to its opposite P̄ ∈ P(M). Doing this yields the equality

νM(xP ) − νM(xP̄ ) =
∑

α∈RN

valF (α(u)) · πM(α∨), (3.5)



Regular Points in Affine Springer Fibers 105

where πM : X∗(A) → �M is the canonical surjection and RN is the set of roots of
A in n.

Fix a Borel subgroup BM in M containing A and let B (resp., B1) be the Borel
subgroups in P(A) obtained as the inverse image of BM under P → M (resp.,
P̄ → M). Then (3.5) implies (see Section 2.3) that

νA(xB) − νA(xB1) ≡
∑

α∈RN

valF (α(u)) · α∨

modulo the coroot lattice for M. Since RN is also the set of roots that are positive
on B and negative on B1, it follows that

νA(xB) − νA(xB1) =
∑

α∈RN

jα · α∨

for some integers jα such that 0 ≤ jα ≤ valF (α(u)). (To prove this, pick a mini-
mal gallery joining B to B1 and use the inequality stated in the main theorem for
each neighboring pair in the gallery.) Comparing this equality with the congru-
ence, we see that the linear combination∑

α∈RN

(valF (α(u)) − jα) · α∨ (3.6)

maps to 0 in �M.

We obtain a basis for �M ⊗R by taking the elements βP,P ′ as P ′ varies through
the set of parabolic subgroups in P(M) adjacent to P. Moreover, for any α ∈RN ,
the image πM(α∨) of α∨ in �M is a nonnegative linear combination of basis ele-
ments βP,P ′ (with at least one nonzero coefficient). Hence the fact that (3.6) maps
to 0 in �M means that

νA(xB) − νA(xB1) =
∑

α∈RN

valF (α(u)) · α∨. (3.7)

By hypothesis xP̄ is regular. Therefore (transitivity of retractions plus the part
of our theorem we have already proved), for all adjacent Borel subgroups B1, B2 ∈
P(A) such that B1, B2 ⊂ P̄ we have

νA(xB1) − νA(xB2) = valF (αB1,B2(u)) · α∨
B1,B2

,

where αB1,B2 denotes the unique root that is positive on B1 and negative on B2.

Summing these equalities over neighboring pairs in a minimal gallery joining B1

to B̄, we find that

νA(xB1) − νA(xB̄) =
∑

α∈R+
M

valF (α(u)) · α∨,

where R+
M denotes the set of roots of A in BM. Adding this last equality to (3.7),

we see that

νA(xB) − νA(xB̄) =
∑

α∈R+
valF (α(u)) · α∨. (3.8)
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Now consider any minimal gallery B = B0, B1, . . . , Bl = B̄ joining B to B̄.

Then

νA(xB) − νA(xB̄) =
l∑

i=1

n(x, Bi−1, Bi) · α∨
i , (3.9)

where αi is the unique root that is positive for Bi−1 and negative for Bi. We know
that n(x, Bi−1, Bi) ≤ valF (αi(u)) for all i. Subtracting (3.9) from (3.8), we find
that 0 is a nonnegative linear combination of positive roots; hence each coefficient
in this linear combination is 0, which means that

n(x, Bi−1, Bi) = valF (αi(u))

for i = 1, . . . , l.
Now consider any pair B ′, B ′′ of adjacent Borel subgroups in P(A). After re-

versing the order of B ′ and B ′′ if necessary, we can find a minimal gallery as before
and an index i such that (Bi−1, Bi) = (B ′, B ′′). Therefore

n(x, B ′, B ′′) = valF (α(u)), (3.10)

where α is the unique root that is positive on B ′ and negative on B ′′. Since both
sides of (3.10) remain unchanged when B ′ and B ′′ are switched, we see that (3.10)
holds for any adjacent pair B ′, B ′′. By what we have already done, it follows that
x is regular in Xu.

3.6. Proof of the Main Theorem in General. Now let M be any Levi sub-
group of G containing A, and let u be an integral regular semisimple element of
g(F ) that happens to lie in m(F ). Let T = CentGF

(u), a maximal torus in MF .

We choose a finite extension F ′/F that splits T.

We normalize the valuation valF ′ on F ′ so that uniformizing elements in F ′ have
valuation 1. Thus valF ′(ε) = [F ′ : F ]. We write X ′ for the set G(F ′)/G(OF ′).
The inclusion G(F ) ↪→ G(F ′) induces a canonical injection X ↪→ X ′.

For any P ∈ P(M), the diagram

X
rP ��

��

XM

��

X ′ r ′
P �� X ′

M

commutes, where the horizontal maps are retractions and the vertical maps are the
canonical injections. Moreover, the diagram

X
νG ��

��

�G

��

X ′ ν ′
G �� �G

commutes, where the left vertical map is the canonical injection and the right ver-
tical map is multiplication by e := [F ′ : F ].
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For any x ∈ Xu, the image of x in X ′ lies in (X ′)u; also, x is regular in Xu if
and only if x is regular in (X ′)u. Indeed, the conjugacy class ūG(x) attached to u

and x is the same for X and X ′.
The torus T is conjugate under M(F ′) to A, so our theorem is true for T over

F ′. Thus, for x ∈Xu and adjacent P, P ′ ∈ P(M) (P = MN, P ′ = MN ′),

e · n(x, P, P ′) ≤
∑

α∈RN ∩RN̄ ′
valF ′(α(u)) · mα , (3.11)

and x is regular in Xu if and only if all of these inequalities are equalities. (As be-
fore, RN denotes the set of roots of A in n; the positive integers mα were defined
in Section 2.9.) Dividing by e and noting that the term indexed by α depends only
on the �-orbit of α, we find that (3.11) is equivalent to the inequality

n(x, P, P ′) ≤ n(u, P, P ′).

This completes the proof of the theorem.
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