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On the Semisimplicity of Cyclotomic
Temperley–Lieb Algebras

Hebing Rui , Changchang Xi , & Weihua Yu

1. Introduction

The Temperley–Lieb algebras were first introduced in [15] in order to study the
single-bond transfer matrices for the Ising model and for the Potts model. Jones [9]
defined a trace function on a Temperley–Lieb algebra so that he could construct
the Jones polynomial of a link when the trace is nondegenerate. It is known that
the trace is nondegenerate if the Temperley–Lieb algebra is semisimple. So it
is an interesting question to provide a criterion for a Temperley–Lieb algebra to
be semisimple. In [16, Sec. 5], there is a simple criterion for the semisimplic-
ity of the Temperley–Lieb algebra in terms of q if the parameter is written δ =
−(q + q−1). More explicitly, Westbury computed the determinants of Gram ma-
trices associated to all “cell modules” via Tchebychev polynomials. This implies
that a Temperley–Lieb algebra is semisimple if and only if such polynomials do
not take values zero for the parameters.

As a generalization of a Temperley–Lieb algebra, the cyclotomic Temperley–
Lieb algebra TLm,n(δ) of type G(m,1, n) was introduced in [13]. It is proved
in [13] that TLm,n(δ) is a cellular algebra in the sense of [3]. Thus TLm,n(δ) is
semisimple if and only if all of its “cell modules” are pairwise nonisomorphic ir-
reducible. In order to determine when a cell module is irreducible, Rui and Xi
computed the determinants of Gram matrices of certain cell modules [13, 8.1]. In
general, it is hard to compute the determinants for all cell modules.

In this note, we shall consider the semisimplicity of cyclotomic Temperley–Lieb
algebras. This is analogous to the question considered in [14] (see [2] for the case
m = 1). Following [11], we study two functors F and G between certain cate-
gories in Section 3. Via these functors and [13, 8.1], in Section 4 we show our
main result (Theorem 4.6), which states that TLm,n(δ) is semisimple if and only
if generalized Tchebychev polynomials do not take values zero for the parameters
δ̄i, 1≤ i ≤ m.

2. Cyclotomic Temperley–Lieb Algebras

In this section, we recall some of results on the cyclotomic Temperley–Lieb alge-
bras in [13]. Throughout the paper, we fix two natural numbers m and n.

A labeled Temperley–Lieb diagram (or labeled TL diagram)D of typeG(m,1, n)
is a Temperley–Lieb diagram with 2n vertices and n arcs. Each arc is labeled by
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an element in Zm = Z/mZ , which will be considered as the number of dots on
it. It should be noted that the arcs in a labeled TL diagram do not intersect. The
following are two special labeled TL diagrams:
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An arc in a labeled TL diagram D is said to be horizontal if its endpoints both
lie in the top row or in the bottom row; otherwise, it is said to be vertical. Given a
horizontal arc {i, j} with i < j, we denote by i (resp. j) the left (resp. right) end-
point of the arc. For a horizontal (resp. vertical) arc, we always assume that the
dots on this arc concentrate on the left endpoint (resp. the endpoint on the top row
of the labeled TL diagram D).

In order to define the composite of two labeled TL diagrams, we always assume
that a dot in the left (resp. right) endpoint of an horizontal arc, when moved to the
right (resp. left) endpoint, will be replaced bym−1dots at the right (resp. left) end-
point of the arc. A dot in a vertical arc can move freely from one endpoint to another.

Suppose an arc l1 joins another arc l2 with a common endpoint j. A dot on the
arc l1 can move to the arc l2. We always assume that a dot at the endpoint j ∈ l1
can be replaced by a dot at j ∈ l2.

Given two labeled TL diagrams D1 and D2 of type G(m,1, n), we follow [13]
and define a new labeled TL diagram D1 �D2 as follows. First, compose D1 and
D2 in the same way as was done for the Temperley–Lieb algebra to obtain a new
diagram P ; second, apply the rule for the movement of dots to relabel each arc
of P. We get a new labeled TL diagram, and this is defined to be D1 � D2. Let
n(ī,D1,D2) be the number of the relabeled closed cycles on which there are ī
dots. We display an example from [13] to illustrate the definition. If
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� � � � � � � � �
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then we have a diagram
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Thus the composition D1 �D2 of D1 and D2 is as follows:

D1 �D2 =
� � � � � � � � �

.
❍❍❍❍❍❍❍❍
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Now we relabel the closed cycles in P. By definition,
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In this case, n(ī,D1,D2) = 0 if ī 
= 2̄, 3̄ and n(2̄,D1,D2) = n(3̄,D1,D2) = 1
under the assumption m ≥ 4.

Definition 2.1 [13, 3.3]. Let R be a commutative ring containing 1 and δ0, . . . ,
δm−1. Put δ = (δ0, . . . , δm−1). The cyclotomic Temperley–Lieb algebra TLm,n(δ)

is an associative algebra over R with a basis consisting of all labeled TL diagrams
of type G(m,1, n), and the multiplication is given by

D1 ·D2 =
m−1∏
i=0

δ
n(ī,D1,D2 )
i D1 �D2.

Note that if we set δ0 = −(q + q−1) and m = 1 then we will get the usual
Temperley–Lieb algebra. However, the cyclotomic Temperley–Lieb algebra of
type G(2,1, n) is not the same as the blob algebra considered in [12] or [6] since
they have different defining relations. One can compare our generator’s Ti with c0

in [6, 5.3]. It would be interesting to know if there is an epimorphism from an ex-
tended affine Temperley–Lieb algebra [4; 5; 8] to our cyclotomic Temperley–Lieb
algebra, generalizing some of results on blob algebras in [12; 1]. It was shown in
[13] that TLm,n(δ) can be defined by generators and relations. For the details, see
[13, 2.1].

In the remaining part of this section we recall some results on the representa-
tions of TLm,n(δ). First, we recall the notion of a cellular algebra in [3], which
depends on the existence of a certain basis. There is also a basis-free definition of
cellular algebras; for this we refer to [10].

Definition 2.2 [3, 1.1]. An associative R-algebra A is called a cellular algebra
with cell datum (I,M,C, i) if the following conditions are satisfied.

(C1) The finite set I is partially ordered. Associated with each λ ∈ I is a finite
setM(λ). The algebraA has an R-basis CλS,T , where (S, T ) runs through all
elements ofM(λ)×M(λ) for all λ∈ I.

(C2) The map i is an R-linear anti-automorphism of A, with i2 = id, that sends
CλS,T to CλT,S.
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(C3) For each λ ∈ I and S, T ∈M(λ) and each a ∈A, the product aCλS,T can be
written as

aCλS,T =
∑

U∈M(λ)
ra(U, S)CλU,T + r ′,

where r ′ belongs toA<λ consisting of allR-linear combinations of basis ele-
ments with upper index µ strictly smaller than λ and where the coefficients
ra(U, S)∈R do not depend on T.

Assume that R is a field. For each λ ∈ I, one can define a cell module �(λ) and
a symmetric associative bilinear form  λ : �(λ)⊗R �(λ)→ R in the following
way (see [3, Sec. 2]). As an R-module, �(λ) has an R-basis {CλS | S ∈ M(λ)},
and the A-module structure is given by

aCλS =
∑

U∈M(λ)
ra(U, S)CλU . (2.1)

The bilinear form  λ is defined by

 λ(C
λ
S ,CλT )C

λ
U,V ≡ CλU,SC

λ
T,V (mod A<λ),

where U and V are arbitrary elements inM(λ).
Let rad�(λ) = {c ∈�(λ) |  λ(c, c ′) = 0 for all c ′ ∈�(λ)}. Then rad�(λ) is

an A-submodule of �(λ). Put L(λ) = �(λ)/rad�(λ). Then either L(λ) = 0 or
L(λ) is irreducible [3, 3.2]. We will need the following result in the next section.

Lemma 2.3. rad�(λ) is annihilated by A≤λ.

Proof. Let a = C
µ

S1,T1
∈ A≤λ and CλS ∈ rad�(λ). If µ < λ, then aCλS = 0 in

�(λ). If µ = λ, then we still have aCλS = 0 because ra(S1, S) =  λ(CλT1
,CλS ) and

CλS ∈ rad�(λ).

From now on, we assume that R is a splitting field of xm − 1. Then xm − 1 =∏m
i=1(x − ui) for some ui ∈ R, 1 ≤ i ≤ m. Let Gm,n be the R-subalgebra of

TLm,n(δ) generated by T1, T2 , . . . , Tn. Then Gm,n is a commutative algebra of di-
mensionmn. The cell modules over TLm,n(δ)will be studied by restricting toGm,n.

Let %(m, n) = {(i1, i2 , . . . , in) | 1 ≤ ij ≤ m}. Define i ≤ j if ik ≥ jk for all
1 ≤ k ≤ n. Then (%(m, n),≤) is a poset. For any i ∈%(m, n), we define C i

1,1 =∏n
j=1

∏m
l=ij+1(Tj − ul).

Lemma 2.4. The set {C i
1,1 | i∈%(m, n)} is a cellular basis of Gm,n.

The cell module overGm,n corresponding to i∈%(m, n) with respect to the cellu-
lar basis just described will be denoted by �(i).

An (n, k)-labeled parenthesis graph is a graph consisting of n vertices {1, 2,
. . . , n} and k horizontal arcs (hence 2k ≤ n and there are n− 2k free vertices that
do not belong to any arc) such that:

(1) there are at most m− 1 dots on each arc;
(2) there are no arcs {i, j} and {q, l} satisfying i < q < j < l; and
(3) there is no arc {i, j} and a free vertex q such that i < q < j.
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Condition (2) shows that the arcs in an (n, k)-labeled parenthesis graph do not
intersect.

Let P(n, k) be the set of all (n, k)-labeled parenthesis graphs. A labeled TL
diagram D with k horizontal arcs can be determined by a triple pair (v1, v2 , x),
x ∈Gm,n−2k , and v1, v2 ∈P(n, k) (see [13, Sec. 5]) and vice versa. Such a D will
be denoted by v1⊗ v2⊗ x. In this case, we define top(D) = v1 and bot(D) = v2.

Let %m,n = {(k, i) | 0 ≤ k ≤ [n/2], i ∈%(m, n − 2k)}. For any (k, i), (l, j) ∈
%m,n, we say (k, i) ≤ (l, j) if either k > l or k = l and i ≤ j. Then (%m,n,≤) is a
poset. For v1, v2 ∈P(n, k) and i∈%(m, n− 2k), define C(k,i)

v1,v2
= v1 ⊗ v2 ⊗ C i

1,1.

Proposition 2.5 [13, 5.3]. Let R be a splitting field of xm−1. The set {C(k,i)
v1,v2

|
(k, i)∈%n,m, v1, v2 ∈P(n, k)} is a cellular basis of TLm,n(δ).

Let �(k, i) be the cell module with respect to the cellular basis given in Proposi-
tion 2.5. Then

�(k, i) ∼= V(n, k)⊗R v0 ⊗R �(i), (2.2)

where V(n, k) is the freeR-module generated by P(n, k) and v0 is a fixed element
in P(n, k).

The algebra TLm,n−1(δ) can be considered as a subalgebra of TLm,n(δ) by
adding the vertical arc {n, n} to the right side of each labeled TL diagram in
TLm,n−1(δ). This embedding can be visualized as follows:

TLm,n−1(δ) �−→ TLm,n−1(δ)

� n

� n
.

Our next result is known as branching rule for the cell module �(k, i).

Proposition 2.6 [13, 7.1]. Suppose that chR � m. For i = (i1, i2 , . . . , in−2k) ∈
%(m, n − 2k), define i0 = (i1, i2 , . . . , in−2k−1) ∈%(m, n − 2k − 1) and i ∪ j =
(i1, i2 , . . . , in−2k , j)∈%(m, n− 2k + 1). Then there is a short exact sequence

0 → �(k, i0)→ �(k, i)↓ →
m⊕
j=1

�(k − 1, i ∪ j)→ 0, (2.3)

where we denote byM↓ the restriction of a TLm,n(δ)-moduleM to a TLm,n−1(δ)-
module.

Proof. It is proved in [13, 7.1] that

0 → �(k, i0)→ �(k, i)↓ → V(n−1, k−1)⊗R v0⊗R�(i)⊗RR〈tn−2k+1〉 → 0.

Since chR � m, it follows thatR〈tn−2k+1〉 is semisimple. Therefore,R〈tn−2k+1〉 ∼=⊕m
j=1�(j), where �(j) is the cell module of R〈tn−2k+1〉 with respect to the cel-

lular basis given in Lemma 2.4 (the casem = 1). By direct computation, we have

�(i)⊗R �(j) ∼= �(i ∪ j).
By (2.2), we obtain (2.3).
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AsGm,n-modules,�(0, i) ∼= �(i). Note that a cellular algebra is semisimple if and
only if all of its cell modules are pairwise nonisomorphic irreducible [3]. There-
fore, that TLm,n(δ) is semisimple implies that all�(i) are pairwise nonisomorphic
irreducible as Gm,n-modules. So, Gm,n is semisimple, which is equivalent to the
fact chR � m. Moreover, ui 
= uj for any i 
= j, 1≤ i, j ≤ m.

Henceforth, we assume chR � m and ui = ξ i for 1 ≤ i ≤ m, where ξ is a
primitive mth root of unity. The reason for making this assumption is that the
semisimplicity of Gm,n is necessary for TLm,n(δ) to be semisimple.

For later use, we need another construction of the cell modules as follows.
Let J≥km,n (resp. J>km,n) be the free R-submodule of TLm,n generated by labeled TL
diagrams with l horizontal arcs such that l ≥ k (resp. l > k). Let I km,n(δ) be the
submodule of J≥km,n/J

>k
m,n generated by the coset of v ⊗ v0 ⊗ x, with v ∈ P(n, k),

x ∈ Gm,n−2k , and v0 = top(En−2k+1 · · ·En−1) ∈ P(n, k). Then I km,n(δ) is a right
Gm,n−2k-module in which x ∈ Gm,n−2k acts on the free vertices of bot(D), D ∈
I km,n(δ). The following is an example that illustrates the action.

✝ ✆ ✝ ✆
✚

✚
✚

✚✚

✦✦✦✦✦✦✦✦✦

✦✦✦✦✦✦✦✦✦

☛ ✟ ✞ � • •
(2)
•
(3)
=

✝ ✆ ✝ ✆
✚

✚
✚

✚✚

✦✦✦✦✦✦✦✦✦

✦✦✦✦✦✦✦✦✦

☛ ✟ ✞ �
• •

(2)
•
(3)

=
✝ ✆ ✝ ✆
✚

✚
✚

✚✚

✦✦✦✦✦✦✦✦✦

✦✦✦✦✦✦✦✦✦

☛ ✟ ✞ �• •(2) •(3)

By the construction of cell modules, we have

�(k, i) ∼= I km,n(δ)⊗Gm,n−2k �(i). (2.4)

Moreover, {v ⊗ v0 ⊗Gm,n−2k C
i

11 | v ∈P(n, k)} is a free R-basis of �(k, i).

3. Restriction and Induction

In this section, we assume that there is at least one nonzero parameter, say δi .
Otherwise δ̄j = 0 for 1 ≤ j ≤ m (see (4.1) for the definition of δ̄j ). By [13, 8.1],
TLm,n(δ) is not semisimple.

Lemma 3.1. Suppose δi 
= 0. Let e = δ−1
i T

i
nEn−1∈TLm,n(δ). Then e2 = e, and

eTLm,n(δ)e ∼= TLm,n−2(δ).

Proof. Each element in eTLm,n(δ)e is a linear combination of the labeled TL dia-
gramsD in which top(D) (resp. bot(D)) contains a horizontal arc {n−1, n}where
there are i (resp. 0) dots. Let D0 be the labeled TL diagram obtained from D by
removing the horizontal arc {n−1, n} on top(D) and bot(D). By the definition of
the product of two labeled TL diagrams (Definition 2.1), one can easily verify that
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the R-linear isomorphism φ : eTLm,n(δ)e → TLm,n−2(δ) with φ(D) = δiD0 is
an isomorphism of R-algebras.

Now we may use the idempotent e to define two functors F and G as follows.

Definition 3.2. Let F : TLm,n(δ)-mod → TLm,n−2(δ)-mod with F(M) = eM
andG: TLm,n−2(δ)-mod→TLm,n(δ)-mod withG(M)=TLm,n(δ)e⊗TLm,n−2(δ)M.

In the following, we give a description of the image of the cell modules under the
functors F and G. A similar method is also used in [11; 2; 14].

Proposition 3.3. Assume i∈%(m, n− 2k).

(a) If ϕ is a nonzero TLm,n−2(δ)-homomorphism, then G(ϕ) 
= 0.
(b) FG is an identity functor.
(c) G(�(k − 1, i)) = �(k, i) and G(�(k − 1, i)↓) = �(k, i)↓;
(d) F(�(k, i)) = �(k − 1, i) and F(�(k, i)↓) = �(k − 1, i)↓.
Proof. (a) and (b) follow from a general result in [7, 6.2]. Part (d) follows from
(c) and (b) by applying the functor F to both sides of (c).

Letv0 = top(En−2k+1En−2k+3 · · ·En−1)∈P(n, k).We claim that, asTLm,n(δ)-
modules,

I km,n(δ)
∼= TLm,n(δ)e ⊗TLm,n−2(δ) I

k−1
m,n−2(δ). (3.1)

In fact, let l = n−2k. Then ε = T il+1T
i
l+3 · · · T in−3El+1El+3 · · ·En−3 ∈ I k−1

m,n−2(δ);
that is,

1

1

ε = · · ·

l

l

l + 1

l + 1

l + 2

l + 2

✞ �
✍ ✌•

(i) · · ·

n− 3

n− 3

n− 2

n− 2

.✞ �
✍ ✌•

(i)

SupposeD1e⊗D2 ∈TLm,n(δ)e⊗TLm,n−2(δ) I
k−1
m,n−2(δ). ThenD2 · ε = δk−1

i D2 ,
eD2 = D2e, and

D1e ⊗D2 = δ1−k
i D1e ⊗D2ε = δ−ki D1D

0
2e ⊗ ε,

where D0
2 can be obtained from D2 by adding two horizontal arcs {n − 1, n}

to the top and bottom row of D2. Obviously, D1D
0
2 ∈ I km,n(δ i). Therefore, any

element in TLm,n(δ)e ⊗TLm,n−2(δ) I
k−1
m,n−2(δ) can be expressed as a linear com-

bination of the element D3e ⊗ ε with D3 = D1D
0
2. Define the R-linear map

α : TLm,n(δ)e ⊗TLm,n−2(δ) I
k−1
m,n−2(δ)→ I km,n(δ) with α(D3e ⊗ ε) = D3. Then α

is an epimorphism. If D3 = 0, then either 0 = D3 ∈ TLm,n(δ) or bot(D3) con-
tains at least one extra arc, say (i ′, i ′ + 1), i ′ ≤ n − 2k − 1, in which there are s
dots. So,

D3e ⊗ ε = δ−1
i D3T

i−s
i′ Ei′T

s
i′ e ⊗ ε = δ−1

i D3e ⊗ T i−si′ Ei′T
s
i′ ε = δ−1

i D3e ⊗ 0 = 0.
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Therefore, α is injective. By (3.1) and (2.4),

G(�(k − 1, i)) = TLm,n(δ)e ⊗TLm,n−2(δ)

(
I k−1
m,n−2(δ)⊗Gm,n−2k �(i)

)

∼= (
TLm,n(δ)e ⊗TLm,n−2(δ) I

k−1
m,n−2(δ)

)⊗Gm,n−2k �(i)

∼= I km,n(δ)⊗Gm,n−2k �(i)

= �(k, i).

This completes the proof of the first isomorphism given in (c). The second iso-
morphism can be proved similarly.

Definition 3.4. For any TLm,n(δ)-modulesM and N, define

〈M,N〉n = 〈M,N〉TLm,n(δ) = dimR HomTLm,n(δ)(M,N).

Proposition 3.5. Suppose i ∈ %(m, n), j ∈ %(m, n − 2k), and k0 ∈ N. Then
〈�(k0, i),�(k + k0, j)〉n+2k0 
= 0 if and only if 〈�(0, i),�(k, j)〉n 
= 0.

Proof. “⇐” follows from Proposition 3.3(a) and (c) by applying G repeatedly.
“⇒” Suppose that 0 
= ϕ ∈ HomTLm,n+2k0 (δ)

(�(k0, i),�(k + k0, j)) and W =
ϕ(�(k0, i)). Let e = δ−1

i T
i
n+2k0−1En+2k0−1. We claim

eW 
= 0. (3.2)

Otherwise, we have eW = 0. Let vi = top(Ei) = bot(Ei). Then

E1 = δ−2
i (v1⊗ vn+2k0−1⊗ id) · T in+2k0−1En+2k0−1T

i
n+2k0−1 · (vn+2k0−1⊗ v1⊗ id).

Hence E1W = 0, which implies EW = 0 with E = E1E3 · · ·E2k0−1. On the
other hand, let U0 = rad�(k0, i). Then either �(k0, i) = U0 or �(k0, i)/U0 is
irreducible [3, 3.2]. Let m = (m,m, . . . ,m) ∈%(m, n). Since E ∈ TL(k0,m)

m,n+2k0
⊂

TL≤(k0,i)
m,n+2k0

, Lemma 2.3 shows EU0= 0. We haveW =ϕ(�(k0, i))∼=�(k0, i)/U.
We claim U ⊂ U0. Otherwise, U + U0 = �(k0, i) and hence U/(U0 ∩ U) ∼=
�(k0, i)/U0 is irreducible. So, there is a composition series of �(k0, i) such that
the multiplicity of L(k0, i) is greater than 2, a contradiction.

Let y = top(T i1T
i

3 · · · T i2k0−1E). Then v = y ⊗ v0 ⊗ C i
1,1 ∈ �(k0, i) is a

nonzero element, where v0 is a fixed element in P(n + 2k0, k0). Since δi 
= 0
we have T i1T

i
3 · · · T i2k0−1E · v = (δi)

k0v 
= 0, which implies v /∈ U. Therefore,
T i1T

i
3 · · · T i2k0−1E(v + U) = δk0

i (v + U) 
≡ 0 mod U, which contradicts the fact
eW = 0. This completes the proof of (3.2).

If eW 
= 0, then F(ϕ) 
= 0. Now the result follows from induction and (3.2).

Proposition 3.6. Suppose M is a TLm,n(δ)-module. Then M↑ ∼= G(M)↓,
whereM↑ is the induced module of a TLm,n(δ)-moduleM to TLm,n+1(δ). In par-
ticular, for any i∈%(m, n− 2k), �(k, i)↑ ∼= �(k + 1, i)↓.
Proof. We shall define a linear map α : TLm,n+1(δ) → TLm,n+2(δ)e. Suppose
x ∈TLm,n+1(δ). Add a (n+ 2)th vertex on top(x) and bot(x) to get a new labeled
TL diagram D in which the following statements hold.
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(1) The (n+ 2)th vertex of top(D) joins the vertex j if {j, n+ 1} is an arc in x;
here n + 1 is the (n + 1)th vertex in bot(x). Moreover, if there are s dots on
the arc {j, n+ 1} then there are s dots in the new arc {j, n+ 2} also.

(2) {n+ 1, n+ 2} is a horizontal arc in bot(D) in which there is no dot.

We give two examples to illustrate this definition.

✄  ✡
✡

✡
✡✡

✡
✡

✡
✡✡

✂ ✁•
•• >

✄  ✄  ✡
✡

✡
✡✡

✡
✡

✡
✡✡

✂ ✁• ✂ ✁• •

✂ ✁
❏

❏
❏

❏❏✄  •
✝ ✆

✄  • >

✂ ✁✝ ✆❏
❏

❏
❏❏

✡
✡

✡
✡✡✄  • ✄  •

Now, we define anR-linear mapα : TLm,n+1(δ)→ TLm,n+2(δ)e byα(x) = D.
Obviously, α is an R-linear isomorphism. By the definition of the product of two
labeled TL diagrams in Definition 2.1, α is a (TLm,n+1(δ), TLm,n(δ))-bimodule
isomorphism; that is,

TLm,n+1(δ) ∼= TLm,n+2(δ)e. (3.3)

For any TLm,n(δ)-moduleM,

M↑ ∼= TLm,n+1(δ)⊗TLm,n(δ) M

∼= TLm,n+2(δ)e ⊗TLm,n(δ) M (by (3.3))
∼= G(M)↓.

Corollary 3.7. Suppose chR � m, and assume that i = (i1, i2 , . . . , in) ∈
%(m, n). If j = (i1, i2 , . . . , in, j)∈%(m, n+ 1), then 〈�(0, i)↑,�(0, j)〉n+1 
= 0.

Proof. By Proposition 3.6, 〈�(0, i)↑,�(0, j)〉n+1 = 〈�(1, i)↓,�(0, j)〉n+1. Now
Proposition 2.6 implies that 〈�(1, i)↓,�(0, j)〉n+1 
= 0 for all j= (i1, i2 , . . . , in, j),
1≤ j ≤ m.
Proposition 3.8. Suppose chR � m and 〈�(0, i),�(k, j)〉n 
= 0 for i ∈%(m, n)
and j∈%(m, n− 2k).

(a) If i0 = (i1, i2 , . . . , in−1)∈%(m, n− 1), then 〈�(0, i0),�(k, j)↓〉n−1 
= 0.
(b) Let j0 = (j1, j2 , . . . , jn−2k−1) and j1 = (j1, j2 , . . . , jn−2k , j0), 1 ≤ j0 ≤ m.

Then either 〈�(0, i0),�(k, j0)〉n−1 
= 0 or 〈�(0, i0),�(k − 1, j1)〉n−1 
= 0.

Proof. Since i0 ∈ %(m, n − 1), Corollary 3.7 implies 〈�(0, i0)↑,�(0, i)〉n 
= 0.
Since chR � m, it follows that�(i) is a simpleGm,n-module, forcing�(0, i) to be
an irreducible TLm,n(δ)-module. So, 〈�(0, i0)↑,�(k, j)〉n 
= 0. Using Frobenius
reciprocity, we get (a).
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Let V = �(k, j)↓. By Proposition 2.6, there is a submoduleW ⊂ V such that
W ∼= �(k, j0), where j0 = (j1, j2 , . . . , jn−2k−1).

Let 0 
= S be the image of �(0, i0) in V. Since �(0, i0) is irreducible, S ∼=
�(0, i0). If S ⊂ W, then 〈�(0, i0),�(k, j0)〉n−1 
= 0. If S 
⊂ W, then S ∩W = 0.
Thus, (S ⊕W)/W ∼= S/(W ∩ S) = S is an irreducible submodule of V/W. By
Proposition 2.6,

V/W ∼=
m⊕
j=1

�(k − 1, j ∪ j).

Hence there exists a j1 = (j1, j2 , . . . , jn−2k , j0) ∈ %(m, n − 2k + 1) such that
(S ⊕W)/W ⊂ �(k − 1, j1), forcing 〈�(0, i0),�(k − 1, j1)〉n−1 
= 0.

4. Semisimplicity of the Cyclotomic Temperley–Lieb Algebras

In this section we shall give the necessary and sufficient conditions for the semisim-
plicity of TLm,n(δ). The key is [13, 8.1]. First, we recall some of the results in [13].

Let ui = ξ i , where ξ is a primitive mth root of unity. For any

i = (i1, i2 , . . . , in−2)∈%(m, n− 2),

let

5i(n,1) =




A B1

BT1 A B2

BT2 A B3

. . .
. . .

. . .
. . . A Bn−2

BTn−2 A




,

where Bj = (bst ) with bst = us−tij
(1 ≤ s, t ≤ m), BTi stands for the transpose of

Bi, and

A =




δ0 δ1 · · · δm−1

δ1 δ2 · · · δ0
...

... · · · ...

δm−1 δ0 · · · δm−2


.

Let p(x) = δ0x
m−1+ δ1x

m−2 + · · · + δm−1. Write

p(x)

xm − 1
= δ̄1

x − u1
+ δ̄2

x − u2
+ · · · + δ̄m

x − um . (4.1)

Then

δ̄j = p(uj )∏
i 
=j(uj − ui)

. (4.2)

Following [13], we partition i = (i1, i2 , . . . , in−2) into (i1,1, i1,2 , . . . , i1,j1, i2,1, i2,2 ,
. . . , i2,j2 , . . . , ir,jr ), with j1 + j2 + · · · + jr = n − 2, such that (a) m divides
ip,q + ip,q+1 for all p with 1≤ q < jp and (b) m does not divide ip,jp + ip+1,1 for
all 1≤ p < r. Let
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Pn(x1, . . . , xn) = det




x1 1
1 x2 1

. . .
. . .

. . .

. . . xn−1 1
1 xn



.

We call Pn(x1, x2 , . . . , xn) the nth generalized Tchebychev polynomial. The fol-
lowing result was proved in [13, Sec. 8].

Proposition 4.1. Keep the setup. Then

det5i(n, 1) = (−1)m(m−1)(n−1)/2mm(n−1)

× (δ̄1δ̄2 · · · δ̄m)n−1

∏r
p=1

(
δ̄m−ip,jp

∏jp
q=1 δ̄ip,q

)
r∏
p=1

Pjp (δ̄ip,1, δ̄ip,2 , . . . , δ̄ip,jp
).

Proposition 4.2. Suppose that i ∈%(m, n) and that j ∈%(m, n − 2). Then, if
〈�(0, i),�(1, j)〉n 
= 0, it follows that det5j(n, 1) = 0.

Proof. Since 〈�(0, i),�(1, j)〉n 
= 0, there is a ϕ ∈ HomTLm,n(δ)(�(0, i),�(1, j))
such that ϕ(v) 
= 0 for some v ∈�(0, i). Consider an element

T =
n−1∑
i=1

m−1∑
s=0

T si EiT
s
i ∈TLm,n(δ).

We have Tϕ(v) = ϕ(T v) = ϕ(0) = 0. Write

ϕ(v) =
n−1∑
i=1

m−1∑
s=0

ai,sv
(s)
i ⊗ v0 ⊗ C j

1,1,

where v(s)i = top(T si Ei) and v0 is a fixed element in P(n,1). We have

(v1 ⊗ v1 ⊗ C j
1,1)(v2 ⊗ v2 ⊗ C j

1,1) ≡ v1 ⊗ v2 ⊗ φ(n,1)v1,v2
(t1, t2 , . . . , tn−2)(C

j
1,1)

2

(mod TL<(1, j)
n,m ) for some elements φ(n,1)v1,v2

(t1, t2 , . . . , tn−2) in Gm,n−2. By a direct
computation,

0 = Tϕ(v) =
∑

1≤i,j≤n−1

∑
0≤s,t≤m−1

φ
(n,1)

v
(s)

i
,v
(t)

j

(uj1, uj2 , . . . , ujn−2)aj,tv
(s)
i ⊗ v0 ⊗ C j

1,1.

Hence for all i, s we have∑
1≤j≤n−1

∑
0≤t≤m−1

φ
(n,1)

v
(s)

i
,v
(t)

j

(uj1, uj2 , . . . , ujn−2)aj,t = 0.

Since ϕ(v) 
= 0, there is at least one of ai,t 
= 0; this implies det5j(n,1) = 0.

Proposition 4.3. Suppose R is a splitting field of xm − 1 with chR � m. If
det5i(l, 1) 
= 0 for all 2 ≤ l ≤ n and all i ∈ %(m, l − 2), then TLm,n(δ) is
semisimple.
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Proof. It is proved in [13] that TLm,n(δ) is a cellular algebra. Note that a cellu-
lar algebra is semisimple if and only if the determinants of the Gram matrices for
all cell modules are not equal to zero (see [3]). Now, suppose TLm,n(δ) is not
semisimple. Then there is a determinant of the Gram matrix with respect to a cell
module, say�(k1, i), that is equal to zero. Thus, we can find an irreducible module
D ⊂ rad�(k1, i). Observe that any simple module of a cellular algebra is the sim-
ple head of a cell module. As a result, D is the simple quotient of a cell module,
say �(k2 , j). Since D is a composition factor of �(k1, i), it follows from Defini-
tion 2.2 and (2.1) that (k1, i) ≤ (k2 , j). Moreover, (k1, i) 
= (k2 , j), for otherwise
�(k1, i)would have a simple headD. So, the multiplicity ofD in�(k1, i) is at least
2, a contradiction. We have 〈�(k2 , j),�(k1, i)〉n 
= 0. Moreover, either k1 > k2 or
k1 = k2 and i < j.

Suppose k1 > k2. Using Proposition 3.5, we can assume that j ∈%(m, l ) for
l = n − 2k2. Let k = k1 − k2. Then 〈�(0, j),�(k, i)〉l 
= 0. Applying Proposi-
tion 3.8 repeatedly, we can assume k = 1. By Proposition 4.2, det5i(l,1) = 0, a
contradiction.

Suppose k1 = k2 and i < j. By Proposition 3.5, 〈�(0, j),�(0, i)〉n−2k1 
= 0.
This is a contradiction since �(0, j) 
∼= �(0, i) and since both are irreducible
TLm,n(δ)-modules. Hence TLm,n(δ) is semisimple.

Lemma 4.4. Suppose det5i(n, 1) 
= 0 for all i∈%(m, n− 2) with m ≥ 2. Then
δ̄i 
= 0 for any i, 1 ≤ i ≤ m.
Proof. Take i = (m,m, . . . ,m)∈%(m, n− 2). Then i can be divided into one part
with j1 = n− 2. By Proposition 4.1, δ̄i 
= 0 (1≤ i ≤ m−1) because they are the
factors of det5i(n,1). Take i = (1,1, . . . ,1)∈%(m, n− 2). Then i can be divided
into either one part if m = 2 or n− 2 parts if m > 2. By Proposition 4.1, δ̄m 
= 0
since it is a factor of det5i(n,1) in any case.

It is proved in [13, 8.1] that det5i(n,1) 
= 0 for all i∈%(m, n−2) and that chR � m
if TLm,n(δ) is semisimple. The following proposition is the inverse of this result.

Proposition 4.5. SupposeR is a splitting field of xm−1 with chR � m andm ≥
2. If det5i(n, 1) 
= 0 for all i∈%(m, n− 2), then TLm,n(δ) is semisimple.

Proof. By Proposition 4.3, we need prove det5i(l,1) 
= 0 for all 2 ≤ l ≤ n and
i∈%(m, l− 2) under our assumption. If det5i(l,1) = 0 for some l, l 
= n and i∈
%(m, l − 2), then Pjp (δ̄ip,1, δ̄ip,2 , . . . , δ̄ip,jp

) = 0 for some p, 1 ≤ p ≤ r, by Propo-
sition 4.1 and Lemma 4.4.

On the other hand, take i0 = (i1, i2 , . . . , il−2 , a, a, . . . , a) ∈ %(m, n − 2) with
m � (il−2 + a). By Proposition 4.1, Pjp(δ̄ip,1, δ̄ip,2 , . . . , δ̄ip,jp

) must be a factor of
det5i0(n,1) and hence det5i0(n,1) = 0, a contradiction.

Remark. The reason we assume m ≥ 2 is that we need the fact that il−2 and a
cannot be in the same part. When m = 1, we cannot use the foregoing argument.
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However, one can obtain a necessary and sufficient condition for TL1,n to be
semisimple [16, Sec. 5].

Together with [13, 8.1] and Proposition 4.5, we now have the main result of this
paper as follows.

Theorem 4.6. Supposem ≥ 2. Let R be a splitting field of xm−1 that contains
1, δ0, . . . , δm−1. Then the following conditions are equivalent.

(a) TLm,n(δ) is semisimple.
(b) TLm,n(δ) is split semisimple.
(c) chR � m and det5i(n, 1) 
= 0 for all i∈%(m, n− 2).
(d) All cell modules �(k, i) with (k, i) ∈%n,m are pairwise nonisomorphic irre-

ducible.

Proof. Since TLm,n(δ) is a cellular algebra, it follows that (a), (b), and (d) are
equivalent. By Proposition 4.5 and [13, 8.1], (a) and (c) are equivalent.

Our next corollary follows immediately from [13, 8.1] and Proposition 4.5.

Corollary 4.7. Keep the setup. Then TLm,n(δ) is semisimple if and only if

(a) chR � m,
(b) P1(δ̄i) = δ̄i 
= 0, 1 ≤ i ≤ m, and
(c) Pl(δ̄i1 , δ̄i2 , . . . , δ̄il ) 
= 0, 2 ≤ l ≤ n, for any (i1, i2 , . . . , il) ∈%(m, l ) with m |

(ij + ij+1), 1 ≤ j ≤ l − 1.

Remark. Note that Theorem 4.6 is not true if m = 1. In this case, %(m, n) con-
tains only one element (1,1, . . . ,1) that can be partitioned into one part. Corollary
4.7 for m = 1 is Westbury’s theorem given in [16, Sec. 5].
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