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Introduction to the Toric Mori Theory

OsaMu FuiriNo & HIROSHI SATO

1. Introduction

The main purpose of this paper is to give a simple and noncombinatorial proof of
the toric Mori theory. Here, the toric Mori theory means the (log) minimal model
program (MMP, for short) for toric varieties.

In his famous and beautiful paper [R], Reid carried out the toric Mori theory
under the assumption that the variety is complete. His arguments are combinato-
rial. Thus, it is not so obvious whether we can remove the completeness assump-
tion from his paper. We quote his idea from [R].

(0.3) Remarks. The hypothesis that A is complete is not essential; it
can be reduced to the projective case, or possibly eliminated by a careful
(and rather tedious) rephrasing of the arguments of §§1-3. The projec-
tivity hypothesis on f is needed in order for the statement of (0.2) to
make sense, since without projectivity the cone NE(V/A) will usually
not have any extremal rays.

We prefer not to simply rephrase his approach, which entails tedious combinato-
rial arguments. Instead, our proof (which is independent of Reid’s proof) heavily
relies on the general machinery of the MMP and the special properties of toric
varieties. Thus, our proof works without the completeness assumption.

For the details of the toric Mori theory, see [O, Sec. 2.5; KMM, Sec. 5.2; OP;
L; I2; Ma, Ch. 14; W; Fjl]. Matsuki [Ma] corrected some minor errors in [R]
and pointed out some ambiguities in [R] and [KMM]; see Remarks 14-1-3(ii),
14-2-3, and 14-2-7 in [Ma]. We believe that these remarks help the reader to
understand [R]. We recommend that the reader compare this paper with [Ma,
Ch. 14]. Shokurov treats the MMP for toric varieties in a noncombinatorial way
(see [Sh, Ex. 3]). His arguments are quite different from ours. For the more ad-
vanced topics of toric Mori theory, see [Fj2]. For the outline of the general MMP,
which is still conjectural in dimension > 4, see [KMM, Introduction] or [KoMo,
2.14, Sec. 3.7].

We note that the Zariski decomposition on toric varieties has already been treated
by various researchers. The reason we treat it here is to show that the Zariski
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decomposition on toric varieties is an easy consequence of the toric Mori theory.
The partial resolutions of nondegenerate hypersurface singularities were treated
by Ishii [11], who divided the cone by the data of the Newton polytope. One of
her proofs contains a gap (see Remark 6.6), but the results themselves are correct.
Her results also become easy consequences of the toric Mori theory.

Note that we cannot recover combinatorial aspects of [R] and [11] by our method.
So, this paper does not depreciate [R] and [I1].

Almost all the results in this paper are more or less known to the experts. How-
ever, some had not been stated explicitly before. Also, some of the proofs that we
give in this paper are new and much simpler than the known ones. We hope that
this paper will help the reader to understand the toric Mori theory.

In Section 2, we fix the notation and collect basic results. Section 3 explains
the toric Mori theory. Section 4 is the main part of this paper, where we give a
simple and noncombinatorial proof of toric Mori theory. In Section 5, we con-
sider the Zariski decomposition on toric varieties. In Section 6, we apply the toric
Mori theory to the study of the partial resolutions of nondegenerate hypersurface
singularities and also reprove Ishii’s results.

NotAaTION. Here is a list of some of the standard notation we use.

(1) For a real number d, its round down is the largest integer < d, which is de-
noted by Ld. If D = Y _d;D; is a divisor with real coefficients and the D;
are distinct prime divisors, then we define the round down of D as LD, :=
> vd;.D;.

(2) Let f: X — Y be a proper birational morphism between normal varieties.
Then, f is said to be small if f is an isomorphism in codimension 1.

(3) The symbol Z>¢ (resp. Q>0,R>0) denotes the set of nonnegative integers
(resp. rational numbers, real numbers).

Throughout, we will work over an algebraically closed field k. The characteristic
of k is arbitrary from Section 2 to Section 5 (unless otherwise stated); in Section 6,
we assume that k is the complex number field C.

ACKNOWLEDGMENTS.  We would like to thank Professors Shigefumi Mori and
Tatsuhiro Minagawa for fruitful discussions and useful comments. We are grate-
ful to Professor Shihoko Ishii, who kindly answered our questions about the proof
of [I1, Thm. 3.1] and offered several useful comments. Finally, we thank Profes-
sor Tadao Oda, whose comments on the preliminary version made this paper more
readable.

2. Preliminaries

2.1. Toric Varieties

In this section we recall the basic notion of toric varieties and fix notation. For
basic results about toric varieties, see [ Ke+; D; O; FI].

2.1. Let N =~ 7Z" be a lattice of rank n. A toric variety X(A) is associated to a
fan A, a finite collection of convex cones 0 C Nr := N ®z R that satisfy the
following conditions.
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(1) Each convex cone o € A is rational polyhedral in the sense that there are
finitely many vy, ...,v; € N C Np such that

0 = {rw;+--- + 10 r; € Rxg forall i}
and is strongly convex in the sense that
o N (—o) ={0}.

(ii) Each face 7 of a convex cone o € A again belongs to A.
(iii) The intersection of two cones in A is a face of each.

DEFINITION 2.2.  The dimension dim o of o is the dimension of the linear space
R -0 =0 + (—0o) spanned by o.

We define the sublattice N, of N generated (as a subgroup) by o N N as follows:
Ny, =0 NN+ (—oNN).

The star of a cone t can be defined abstractly as the set of cones o in A that
contain t as a face. For any such cone o, the image

0 = (0 + (No)r)/(No)r C N(T)r
by the projection N — N(t) := N/N; isaconein N(t). These cones {c; T < o}
form a fan in N(7), and we denote this fan by Star(z). We set V(7) = X(Star(7)).
It is well known that V(7) is an (n — k)-dimensional closed toric subvariety of
X(A), where dimt = k. If dim V(t) = 1 (resp. n — 1), then we call V(7) a rorus

invariant curve (resp. torus invariant divisor). For details on the correspondence
between t and V(7), see for example [Fl, 3.1, Orbits].

DEFINITION 2.3 (Q-Cartier Divisor and Q-Factoriality). Let D =Y d;D; be a
Q-divisor on a normal variety X; that is, d; € Q and D; is a prime divisor on X
for every i. Then D is Q-Cartier if there exists a positive integer m such that mD
is a Cartier divisor. A normal variety X is said to be Q-factorial if every prime
divisor D on X is Q-Cartier.

The next lemma is well known (see e.g. [R, (1.9)] or [Ma, Lemma 14-1-1]).

LEMMA 2.4. A toric variety X(A) is Q-factorial if and only if each cone o € A
is simplicial.

The following remarks are easy but important.

REMARK 2.5. Let D be a Cartier (resp. Q-Cartier) divisor on a toric variety.

Then D is linearly (resp. Q-linearly) equivalent to a torus invariant divisor (resp.
Q-divisor).

REMARK 2.6 (cf. [R, (4.1)]). Let X be a toric variety and D the complement of
the big torus regarded as a reduced divisor. Then Kx + D ~ 0.

2.7 (Kleiman—Mori Cone). Let f: X — Y be a proper morphism between nor-
mal varieties X and Y; a l-cycle of X/Y is a formal sum ) a;C; with complete
curves C; in the fibers of f and with a; € Z. We put



652 OsaMUu FuJsiNo & HIROSHI SATO

Z(X/Y) := {l-cycles of X/Y}
and
Zi(X/Y)g = Z(X/Y) ® Q.
There is a pairing
Pic(X) x Zi(X/Y)g — Q
defined by (£, C) +— degc¢ L, extended by bilinearity. Define
NY(X/Y) := (Pic(X) ® Q)/=,
Nl(X/Y) = Z](X/Y)Q/E .
where the numerical equivalence = is by definition the smallest equivalence rela-

tion that makes N'! and N, into dual spaces.
Inside N,(X/Y) there is a distinguished cone of effective 1-cycles,

NE(X/Y) = {z | 2= a,C; with a; € on} C Ni(X/Y).

A subcone F C NE(X/Y) is said to be extremal if u,v e NE(X/Y)andu +ve F
together imply u, v € F. The cone F is also called an extremal face of NE(X/Y).
A one-dimensional extremal face is called an extremal ray.

We define the relative Picard number p(X/Y) by

p(X/Y) :=dimg N'(X/Y) < oc.

Anelement D € N'(X/Y) is called f-nef if D > 0 on NE(X/Y).

If X is complete and Y is a point, write NE(X) and p(X) for NE(X/Y) and
p(X/Y), respectively. We note that N;(X/Y) C N;(X) and that N'(X/Y) is the
corresponding quotient of N'(X).

2.2. Singularities of Pairs

In this section we quickly review the definitions of singularities that we use in the
MMP (see e.g. [KoMo, Sec. 2.3] for details). We recommend that the reader skip
this section on first reading.

2.8. Let us recall the definitions of the singularities for pairs.

DEFINITION 2.9 (Discrepancies and Singularities of Pairs). Let X be a normal
variety and D = )_d;D; a Q-divisor on X, where the D; are distinct and irre-
ducible such that Kx + D is Q-Cartier. Let f: Y — X be a proper birational
morphism from a normal variety Y. Then we can write

Ky = f*(Kx + D)+ Y _a(E,X,D)E,

where the sum runs over all the distinct prime divisors £ C Y and where
a(E,X,D) € Q. This a(E, X, D) is called the discrepancy of E with respect
to (X, D). We define

discrep(X, D) := irgf{a(E, X, D) | E is exceptional over X}.
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From now on, we assume that 0 < d; < 1 for every i. We say that (X, D) is

terminal >0,

canonical >0,

klt if discrep(X, D) >—land oD, =0,
plt > —1,

Ic > —1.

Here kit is an abbreviation for Kawamata log terminal, plt for purely log terminal,
and Ic for log-canonical.

Suppose there exists alog resolution f: Y — X of (X, D). Thatis, suppose Y is
nonsingular, the exceptional locus Exc( f) is a divisor, and Exc(f)U f ~'(Supp D)
is a simple normal crossing divisor. Assume that a(E;, X, D) > —1 for every ex-
ceptional divisor E; on Y. Then the pair (X, D) is said to be dlt, which is an abbre-
viation for divisorial log terminal.

For details on dlt, see [KoMo, Def. 2.37 & Thm. 2.44]. The following results
are well known to the experts; see, for example, [Fjl, Lemma 5.2] or [Ma, Prop.
14-3-2].

PrROPOSITION 2.10. Let X be a toric variety and let D be the complement of the
big torus regarded as a reduced divisor. Then (X, D) is log-canonical. Let D =
>, Di be the irreducible decomposition of D. We assume that Kx + Y, a;D; is
Q-Cartier, where 0 < a; < 1 (resp. 0 < a; < 1) for everyi. Then (X, Za,-D,-)
is Kawamata log terminal (resp. log-canonical).

3. Toric Mori Theory

Throughout this section we will work over an algebraically closed field k of arbi-
trary characteristic. We begin by explaining the MMP for toric varieties.

3.1 (Minimal Model Program for Toric Varieties). We start with a projective
toric morphism f: X — Y; thatis, f is induced by a map of lattices, where X =:
Xy is a Q-factorial toric variety and where a Q-divisor Dy := D on X. The aim
is to set up a recursive procedure that creates intermediate f;: X; — Y and D;
on X;. After finitely many steps, we obtain final objects f: X — ¥ and D on X.
Assume that we have already constructed f;: X; — Y and D; with the following
properties:

(i) X; is Q-factorial, and f; is projective;

(ii) D; is a Q-divisor on X;.

If D; is f;-nef, then we set X = X; and D= D;. If D; is not f;-nef, then we
can take an extremal ray R of NE(X;/Y) such that R - D; < 0 (see Theorem 4.1).
Thus we have a contraction morphism ¢g : X; — W; over Y (see Theorem 4.5). If
dim W; < dim X; (in which case we call ¢ a Fano contraction), then we set X =
X; and D= D; and stop the process. If g is birational and contracts a divisor
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(we call this a divisorial contraction), we put X; | := W; and D; 1 := @g.D; and
then repeat this process. In the case where @y is small (we call this a flipping con-
traction), then there exists a log-flip ¥ : X; --» X" over Y. Here, a log-flip means
an elementary transformation with respect to D; (see Theorem 4.8). Note that v
is an isomorphism in codimension 1. We put X;,; := Xi+ and D;y| := Y. D;
and then repeat this process. By counting the relative Picard number p(X;/Y),
divisorial contractions can occur finitely many times (see Theorem 4.5). By The-
orem 4.9, every sequence of log-flips terminates after finitely many steps. Hence,
this process always terminates and we obtain f: X — Y and D. We call this
process the (D-)minimal model program over Y, where D is a divisor used in the
process. When we apply the minimal model program we say that, for example,
we run the MMP over Y with respect to the divisor D.

REMARK 3.2 (Toric Mori Theory vs. the General MMP).  The general (log) MMP
is still conjectural in dimension > 4 [KoMo, Sec. 3.7]. As we shall see in Sec-
tion 4, the MMP for toric varieties is fully established and works for any Q-divisor
D. A generalization of the MMP for non-Q-factorial toric varieties is treated in
[Fj2, Sec. 2].

REMARK 3.3 (Original Toric Mori Theory). In the general MMP, if we assume
that Y is projective, X has only terminal singularities, f is birational, and D = Kx
is the canonical divisor of X, then we can recover the original toric Mori theory of
[R, Thm. (0.2)].

REMARK 3.4. In 3.1, it is sufficient to assume that D is an R-divisor. We do not
treat the R-generalization here because this generalization is obvious for experts
and we do not need R-divisors in this paper. We leave the details to the reader.

REMARK 3.5. In general, the assumption that X is (Q-factorial is not crucial in
the toric Mori theory. By [Fjl, Cor. 5.9], there always exists a small projective
Q-factorialization. Namely, for any toric variety X, there exists a small projective
toric morphism X — X such that X is Q-factorial (see also [Fj1, Sec. 5], which
is a baby version of this paper). Observe that we can remove the assumption that
X is complete in [Fjl, Thm. 5.5 & Prop. 5.7] by the results in Sections 3 and 4 of
this paper.

REMARK 3.6. Let X be a toric variety and D a Q-divisor on X. The assumption
that D is Q-Cartier can be removed in some cases. In fact, by replacing X with its
small projective Q-factorialization, we can assume that D is Q-Cartier. See the
proof of Corollary 5.8.

4. Proof of Toric Mori Theory

In this section, we give a simple and noncombinatorial proof of the toric Mori
theory.

THEOREM 4.1 (Cone Theorem). Let f: X — Y be a proper toric morphism.
Then the cone



Introduction to the Toric Mori Theory 655

NE(X/Y) C Ni(X/Y)

is a polyhedral convex cone. Moreover, if f is projective then the cone is strongly
convex.

Proof. By taking the Stein factorization of f, we may assume that f is surjective
with connected fibers. We consider V(o) C Y for some cone o. Then f~!(V(0))
is a union of V(r) C X for some cones 7, since f is a proper toric morphism. We
divide Y into a finite disjoint union of tori ¥ = LI;¥;. We put V; := ) - Y.
Let L1;V;; be the normalization of V;. Then we can check that Vj; is a toric variety
for every i, j by using this fact—that f~'(V (o)) is a union of orbit closures—
inductively on dim V(o). We note that Vj; is dominant onto ¥; for every i, j since
Y; is a torus. Thus we obtain a collection of proper surjective toric morphisms
with connected fibers: {V;; — Y;}; ;. By changing the notation V;;, we write
{fi: Xi = Y3} for {V;; — Y;}; ;. Note that i # i’ does not imply ¥; # ¥y in this
notation. Since Y; is atorus, X; >~ F; x Y; for every i, where F; is a complete toric
variety (cf. the exercise on p. 41 of [F1]).

CrLAaM. We have the commutative diagram
Ni(Fi) =~ Ni(Xi/Y)
U U
NE(F;) =~ NE(X;/Y)
for every i. In particular, NE(X;/Y;) is a polyhedral convex cone for every i.

Proof. We consider the cycle map Z,(F;) — Z,(X;/Y;) that is induced by the in-
clusion F; >~ F; x {apointof ¥;} C F; x ¥; >~ X;. It induces

@i: Ni(F;) — Ni(X;/Y)).
Let 0 #v € Ni(F;). Then there exists £ € Pic(F;) such that £ - v £ 0. Let
pi: X; — F; be the first projection. Then p;*L - ¢;(v) = L - v # 0 by the projec-
tion formula. Therefore, ¢; is injective. Since ¥; is a torus and X; ~ F; x V;, itis

obvious that ¢; is surjective. Since NE(F;) is well known to be a polyhedral con-
vex cone (cf. [Fl, Prop., p. 96]), the other parts are obvious. O

We now resume our proof of the theorem. Consider the following commutative
diagram:
@D Mi(Xi/Y:) —» Ni(X/Y)
U U
D, NE(X;/Y;) —» NE(X/Y),

and observe that @), Z,(X;/Y;) — Z(X/Y) is surjective. So, by combining this
with the previous claim, we obtain the required cone theorem for NE(X/Y) C
Ni1(X/Y). The last part follows from Kleiman’s criterion. O

We give another proof of Theorem 4.1 that works by assuming the characteristic
of k to be zero. This assumption is required only in the following proof.
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Proof of Theorem 4.1 in Characteristic Zero. Assume that the characteristic of k
is zero. We further assume that X is quasi-projective and Q-factorial. Let T be
the big torus of X. Weput D = )", D; = X \ T regarded as a reduced divisor.
We can take an ample Q-divisor L = ), a;D; with 0 < a; < 1 for every i. Then

—<KX +y - a,»)D,-) ~ > aiD;

is ample (obviously, f-ample) and (X, >.a- a,-)D,-) is kit by Proposition 2.10.
Hence, the well-known relative cone theorem (see e.g. [KMM, Thm. 4-2-1] or
[KoMo, Thm. 3.25]) implies that NE(X/Y) is a rational polyhedral convex cone.
Next, by Chow’s lemma and the desingularization theorem, we can take a proper
birational toric morphism X’ — X from a nonsingular quasi-projective toric va-
riety X'. As a result, the general case follows from the foregoing special case.
Details are left to the reader. U

REMARK 4.2. In Theorem 4.1, if X is complete then every extremal ray of
NE(X/Y) is spanned by torus-invariant curves on X. Related topics are treated in
the first author’s paper [Fjl]. If X is not complete then NE(X/Y) is not necessar-
ily spanned by a torus invariant curve, as the following example shows.

ExampPLE 4.3. Let Y be a one-dimensional (not necessarily complete) toric vari-
ety. Weput X = ¥ xPL Let f: X — Y be the first projection. Then NE(X/Y) is
a half-line. When Y is a one-dimensional torus, there are no torus-invariant curves
in the fibers of f. If Y ~ P! or A, then NE(X/Y) is spanned by a torus-invariant
curve in a fiber of f.

The following remark is obvious, since a torus is a connected linear algebraic
group (cf. [Su, Lemma 5]). We present it here for the reader’s convenience.

REMARK 4.4. Let T be the big torus of X. Then T acts on NE(X/Y). Let R be an
extremal ray of NE(X/Y'). Then there exists a nef torus-invariant Cartier divisor
D on X such that D - [C] = 0 if and only if [C] € R. Therefore, R is T -invariant
and so T acts on NE(X/Y) trivially. Hence, the action of T on N;(X/Y) is trivial
as well.

As a consequence, an extremal ray R of NE(X/Y) does not necessarily contain a
torus-invariant curve even though it is torus invariant.

THEOREM 4.5 (Contraction Theorem). Let f: X — Y be a projective toric mor-
phism, and let F be an extremal face of NE(X/Y). Then there exists a projective
surjective toric morphism

op: X — Z

over Y with the following properties.

(1) Z is a toric variety that is projective over Y.
(ii) @p has connected fibers.
(iii) Let C be a curve in a fiber of f; then [C] € F if and only if ¢r(C) is a point.
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Furthermore, if F is an extremal ray R and if X is Q-factorial, then Z is Q-
factorial and p(Z]Y) = p(X/Y) — 1 if g is not small.

Proof. Since NE(X/Y) is a polyhedral convex cone, we can take an f-nef Cartier
divisor D such that D - [C] > 0 for every [C] e NE(X/Y) and D - [C] = 0O if and
only if [C] € F. Replacing D with a linearly equivalent divisor, we may assume
that D is a torus-invariant Cartier divisor on X. We put ¢r: X — Z as in Propo-
sition 4.6. Then gpr: X — Z has the required properties. The latter part of the
contraction theorem is well known (see e.g. [KoMo, Prop. 3.36]). U

PrOPOSITION 4.6.  Let f: X — Y be a proper surjective toric morphism between
toric varieties. Let D be an f-nef torus-invariant Cartier divisor on X. Then D is
f-free, that is, f*f.Ox(D) — Ox (D) is surjective. Moreover, we have a projec-
tive toric morphism ¢ : X — Z over Y such that

(1) @ has only connected fibers, and
(ii) for any irreducible curve on X and with f(C) a point, ¢(C) is a point if and
onlyif D-C =0.

Proof. Let
fix Sy by

be the Stein factorization of f. For part (i), we may assume that Y is affine (hence
so is Y). It is sufficient to prove that D is g-free. We can apply the argument in
[Fl1, Prop., p. 68] with minor modifications. See also [N, Ch. IV, 1.8 Lemma (2)]
and [Ma, Lemma 14-1-11]. For part (ii), ¢: X — Z := Proj; D, 8:Ox (mD)
is equivariant by construction. When Y is a point, it is well known that Z is a pro-
jective toric variety constructed from a suitable polytope. Let T C Y be the big
torus. Then g~'(T) ~ T x F for some complete toric variety F. Hence Z con-
tains a torus as a nonempty Zariski open set by the previous case (where Y is a
point). It is obvious that Z is normal and has a suitable torus action by construc-
tion. Therefore, Z is the required toric variety. O

THEOREM 4.7 (Finitely Generatedness of Divisorial Algebra). Let f: X — Y
be a proper birational toric morphism and D a torus invariant Cartier divisor on
X. Then

D 1.0x(mD)

m=>0

is a finitely generated Oy-algebra.

Proof. We may assume that Y is affine. It is thus sufficient to show that
P H'(x, 0x(mD))
m>0

is a finitely generated k-algebra. We put X = X(A); that is, X is a toric variety
associated to a fan A in N. Let ¥/p be the support function of D. We put
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Pp={ueMg |u>ypon|Al},
P,p ={ueMp |u>aypp on|Al},

where M := Homy(N, Z) is the dual lattice of N and |A| stands for the support
of the fan A. We define

C={u,a)e Mr x R>¢ | uc P,p}

and Cz = C N (M x Zsg). The k-algebra &, -, HO(X,Ox(mD)) is the semi-
group ring associated to Cz. We can easily check that C is a finite intersection of
half-spaces, which are defined over the rational numbers, in M x R. Hence C
is a rational polyhedral convex cone and so Cy is a finitely generated semi-group.
This implies that ) H(X,Ox(mD)) is a finitely generated k-algebra. OJ

m=>0
We will generalize Theorem 4.7 in Corollary 5.8 to follow.

THEOREM 4.8 (Elementary Transformation). Lef ¢: X — W be a small toric
morphism and let D be a torus-invariant Q-Cartier divisor on X such that —D is

p-ample. Let | be a positive integer such that LD is Cartier. Then there exists a
small projective toric morphism

et Xt := Projy @w*Ox(mlD) — W

m=>0

such that D% is a ¢t -ample Q-Cartier divisor, where D" is the proper transform
of D on X*t. The commutative diagram

X\W/+

is called the elementary transformation (with respect to D).
Moreover, if X is Q-factorialand p(X/W) = 1, then likewise X " is Q-factorial
and p(XT/W) = 1.

Proof. The first part is obvious by the previous theorem and the construction of
pt: X — W. See, for example, [Ko+, Prop. 4.2] or [KoMo, Lemma 6.2]. The
latter part is well known (see e.g. [KoMo, Prop. 3.37]). O

THEOREM 4.9 (Termination of Elementary Transformations). Let

Xo————3X|————3Xyg———>--
Wo W,

be a sequence of elementary transformations of toric varieties with respect to a
fixed Q-Cartier divisor D. More precisely, the commutative diagram
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Xi————=>Xin
W;

is the elementary transformation with respect to D;, where Dy = D and D; is the
proper transform of D on X; for every i (see Theorem 4.8). Then the sequence
terminates after finitely many steps.

Proof. Suppose there exists an infinite sequence of elementary transformations,
and let A be the fan corresponding to Xj. Since the elementary transformations
do not change one-dimensional cones of A, there exist numbers k < [ such that
the composition Xy --+ X4 --» .-+ --» X; is an identity. This contradicts the
negativity in Lemma 4.10. O

The following result is easy but very important. The proof is well known (see e.g.
[KoMo, Lemma 3.38]).

LeEMMA 4.10 (Negativity Lemma). Consider a commutative diagram

ay

N

and Q-Cartier divisors D and D' on U and V, respectively, where:

(1) f: U — Wandg:V — W are birational morphisms between varieties;

(2) fuD = g.D’;

(3) —D is f-ample and D' is g-ample; and

@4 w:Z — Uandv: Z — V are common resolutions.

Then w*D = v*D’ + E, where E is an effective Q-divisor and E is exceptional
over W. Moreover, if f or g is nontrivial then E # 0.

5. On the Zariski Decomposition

In this section, we treat the Zariski decomposition on toric varieties. Since the
MMP works for any divisors, it is obvious that the Zariski decomposition holds
with no extra assumptions.

There are many variants of the Zariski decomposition. Here we adopt the fol-
lowing definition (cf. [KMM, Def. 7-3-5]).

DEFINITION 5.1 (Zariski Decomposition). Let f: X — Y be a proper surjec-
tive morphism of normal varieties. An expression D = P 4+ N with R-Cartier
divisors D, P, and N on X is called the Zariski decomposition of D relative to f



660 OsaMUu FuJsiNo & HIROSHI SATO

in the sense of Cutkosky—Kawamata—Moriwaki (we write CKM for short) if the
following conditions are satisfied:

(1) Pis f-nef,

(2) N is effective, and

(3) the natural homomorphisms f,Ox (LmP_) — f.Ox(LmD.) are bijective for
allmeN.

The divisors P and N are said to be the positive and negative part of D, respectively.

DEeFINITION 5.2 (Pseudo-Effective Divisors). Let f: X — Y be a projective
morphism between varieties and let D be a Q-Cartier divisor on X. Then D is
[f-pseudo-effective if there is an f-big (see [KoMo, Def. 3.22]) Cartier divisor A
on X such that nD + A is f-big for every n > 0.

REMARK 5.3. Let f: X — Y be a projective morphism between varieties and
let D be a Q-Cartier divisor on X. It is not difficult to see that, if D is f-pseudo-
effective, then nD + A is f-big for every n > 0 and any f-big Cartier divisor A (cf.
[Mo, (11.3)]). In particular, if D is an effective divisor on X, then D is f-pseudo-
effective. More generally, if there exists an m > 0 such that f,Ox(mD) # 0, then
D is f-pseudo-effective.

The following theorem is a slight generalization of [K, Prop. 5]. Related topics
are in [N, Ch. IV, Sec. 1]. Both [K] and [N] showed how to subdivide a given fan.

THEOREM 5.4 (cf. [K, Prop. 5]). Let f: X — Y be a projective surjective toric
morphism and let D be a Q-Cartier divisor on X. Assume that D is f-pseudo-
effective. Then there exists a projective birational toric morphism w: Z — X
such that w*D has a Zariski decomposition relative to f o u in the sense of CKM
whose positive part is f o p-semi-ample (see [KMM, Def. 0-1-4]).

REMARK 5.5. If f,Ox(mD) # 0 for some positive integer m, then it is easy to
check that ( f3).Ox, (mDy) # Oforevery k; here f: Xy — Y isasinthe following
proof. Hence, that proof works without any changes even if we replace the assump-
tion that D is f-pseudo-effective with a slightly stronger one that f,Ox(mD) # 0
for some positive integer m. Thus, it may not be necessary to introduce the notion
of f-pseudo-effective divisors. See Corollary 5.6 and the proof of Corollary 5.8.

Proof of Theorem 5.4. By taking a resolution of singularities, we may assume
without loss of generality that X is nonsingular. Run the MMP on X over Y with
respect to D. We obtain a sequence of divisorial contractions and elementary trans-
formations over Y:

X=Xg->X-2Xy - = Xp - Xpyg - .

Since Dy is pseudo-effective over Y for every k, there exists an [ such that D is
nef over Y (for the definition of Dy, see 3.1). The reader may verify that relative
pseudo-effectivity of D is preserved in each step by Lemma 4.10 and Remark 5.3.
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Take a nonsingular quasi-projective toric variety Z with proper birational toric
morphisms p: Z — X and u;: Z — X; for every 0 < i < [. Then we obtain
that u*D = uiD; + E, where E is an effective Q-divisor by the negativity in
Lemma 4.10. This decomposition is the Zariski decomposition of D in the sense
of CKM. O

The next corollary is obvious by Theorem 5.4.

COROLLARY 5.6. Let f: X — Y be a projective surjective toric morphism and
let D be a Q-Cartier divisor on X. Then D is f-pseudo-effective if and only if
f«Ox(mD) # 0 for some positive integer m.

REMARK 5.7. There exist various generalizations of Theorem 5.4. We do not
pursue such generalizations here. For example, Theorem 5.4 holds for a (not nec-
essarily R-Cartier) R-divisor D, with suitable modifications. We leave the details
to the reader.

The following result is a generalization of Theorem 4.7.

COROLLARY 5.8 (Finitely Generatedness of Divisorial AlgebraIl). Let f: X —
Y be aproper surjective toric morphism, and let D be a (not necessarily Q-Cartier)

Weil divisor on X. Then
D 7.0x(mD)

m=>0

is a finitely generated Oy-algebra.

Proof. By Remarks 3.5 and 3.6, we may assume that X is Q-factorial. Hence, D
is Q-Cartier. By replacing X birationally, we may assume that f is projective. If
f+Ox(mD) = Oforevery m > 0, then the claim is obvious. Therefore, we may as-
sume that f,Ox(mD) # 0forsomem > 0, thatis, D is f-pseudo-effective. Since
(by Theorem 5.4) there exists a projective birational toric morphism p: Z — X
such that u*D has a Zariski decomposition with f o p-semi-ample positive part,
it follows that P, o f«Ox (mD) is finitely generated. O

6. Application to Hypersurface Singularities

In this section we apply toric Mori theory to the study of singularities, and we shall
recover Ishii’s results [11]. We work over the complex number field C throughout
this section.

Let us briefly recall the notion of nondegenerate hypersurface singularities. For
the details, see [I1].

DEFINITION 6.1 (Nondegenerate Polynomials). For a polynomial

f= Zamxmec[xo,xl,---,xn],
m
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where x™ = x'%x" .- - x™ form = (mg,my,...,m,) € Z';{)l, and a face y of
the Newton polytope Iy (f) of f, denote Zmey amx™ by f,,. A polynomial f is
said to be nondegenerate if, for every compact face y of I' ;. (f), the 9f, /ox; (i =
0, ...,n) have no common zero on (C*)"*1.

The following definitions are due to Ishii; see the introduction of [I1]. For the def-
initions of the singularities, see Definition 2.9.

DEFINITION 6.2 (Minimal and Canonical Models). Let (x € X) be a germ of
normal singularity on an algebraic variety. We call a morphism ¢: ¥ — X a min-
imal (resp. the canonical)) model of (x € X)) if

(1) ¢ is a proper and birational morphism,
(2) Y has at most terminal (resp. canonical) singularities, and
(3) Ky is ¢-nef (resp. p-ample).

Obviously, if a canonical model exists then it is unique up to isomorphisms over X.
The next theorem is [I1, Thm. 2.3].

THEOREM 6.3. Let X C C"™! be a normal hypersurface defined by a nondegener-
ate polynomial f. Then (0 € X) has both a minimal model and a canonical model.

Proof. Take a projective birational toric morphism g: V — C"*! such that V is
a nonsingular toric variety and the proper transform X’ of X on V is nonsingular
(see e.g. [I1, Prop. 2.2]). Run the MMP over C"*! with respect to Ky + X’. Then
we obtain ¢: (V,X) — C"*! such that Ky + X is ¢-nef. We note that the pair
(V, X) has canonical singularities and that V has at most terminal singularities;
hence V is nonsingular in codimension 2. Thus we obtain K; = (K + X))z %-
Therefore, Ky is nef over X. It is not difficult to check that X has at most ter-
minal singularities. Hence, this X is a minimal model of (0 € X) (see Defini-
tion 6.2). By using the relative base point—free theorem (see e.g. [KMM, Thm.
3-1-1 & Rem. 3-1-2(1)] or [KoMo, Thm. 3.2.4]) we obtain the canonical model
of (0 e X). O

DEFINITION 6.4 (DIt and Log-Canonical Models). Let (x € X) be as in Defini-

tion 6.2. We call a morphism ¢: Y — X a dlit (resp. the log-canonical)) model of

(x eX)if:

(1) ¢ is proper birational;

(2) (Y, E) is dlt (resp. log-canonical), where E is the reduced exceptional divisor
of ¢; and

(3) Ky + E is @-nef (resp. p-ample).

Clearly, if a log-canonical model exists then it is unique up to isomorphisms over
X. The notion of dIt models is new.

The next result is a slight generalization of [I1, Thm. 3.1]. The arguments in the
following proof are more or less known to experts of the MMP.
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THEOREM 6.5. Let X C C"! be a normal hypersurface defined by a nondegen-
erate polynomial f. Then (0 € X) has both a minimal model and a log-canonical
model.

Proof. Take a projective birational toric morphism fy: Vo — C"*! such that
(a) Vo is a nonsingular toric variety and (b) the proper transform X, of X on Vj is
nonsingular. We may assume that the reduced exceptional divisor E of f inter-
sects X transversally, that is, Eg U X is a simple normal crossing divisor on Vj
(see e.g. [11, Prop. 2.2]). We note that f is an isomorphism outside E(. Run the
MMP over C"+! with respect to K vo + Xo + Eo. Then we obtain a sequence of
divisorial contractions and elementary transformations

Vo-—»Vi-—Vy-—> .o -3 Vi -3 Vg - -+,

and the final object f: V — C"*! has the property that Ky + X + E is f-nef,
where X is the proper transform of X, on V and E is the reduced f-exceptional
divisor. We note that the exceptional locus of V; — C"*!is of pure codimension 1
for every i, since C"*! is nonsingular. Therefore, f is an isomorphism outside
E. Since (V X + E ) is dIt (cf. [KoMo, Cor. 3.44]), V is nonsingular in codimen-
sion 2 around X N E (cf. [KoMo Cor. 5.55]). Thus, we obtain that K3 + E|x =
(Ky + X+ E)|X and that (X, E|X) is dlt (cf. [KoMo, Prop. 5.59]). We have to
check that E| is a reduced f|g-exceptional divisor. Let E = Y, E; be the
irreducible decomposition. It is sufficient to show that f (E; ) - Smg(X ), where
Sing(X) is the singular locus of X. We write Ky, + X+ > a; Ei = f*(Kcon +X).
Hence, > (1 —a; VE; is f -nef. If f(E) Z Smg(X) then a; < 1. We note that
(C" X)) is plt outside Sing( X ) (for the definition of plt, see Definition 2.9). This
implies that f(E;) C Sing(X) for every i by [KoMo, Lemma 3.39]. Therefore,
(X, E| %) 1s a dlt model of (O € X). By construction, f | ; is an isomorphism out-
side E| 3. Since Ky + X + E is nef over C"*', we obtain a contraction morphism
V — V’ over (C"“ with respect to the divisor Ky + X + E (cf. Theorem 4. 5)
Let X© be the normalization of the proper transform of X on V. We put E? :
+(E| ), where 11 X — X©. Then it is not difficult to see that Kyo + E© is am-
ple over X, E @ is the reduced exceptional divisor of X © > X, and K; + E s =
w*(Kyo + E). Thus, (X%, E®) is the required log-canonical model of (0 € X).
O
REMARK 6.6 (Ishii’s Constructions). Answering our questions, Ishii informed
us that the definition of E in Claim 3.8 in the proof of [I1, Thm. 3.1] is not cor-
rect. She told us that E should be defined as v(Kr,(x,) + X(Z,) + E) — Ky,
and then all discussions go well in the proof of that theorem. Though we did not
check the proof according to her corrected definition of E, we see that our models
coincide with her models. From now on, we freely use the notation in [I1].

Let F be the complement of the big torus of Ty(X). Then the pair (Ty (%),
X(X)) (resp. (Ty(X2), X(X¥) 4+ F)) has only canonical (resp. log-canonical) sin-
gularities. Therefore, by the arguments in Claim 2.8 of [I1], it is not difficult to see
that mq > 0 (resp. mq > —1) for every q € 2[1] \ Xo[1] (resp. q € E [11\ Z,[1D)
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without the assumption that Dq N X (f]) # @ in Claim 2.8 (resp. Claim 3.5) in
[11]. Thus, we see that (Tx(Z0), X(X¢)) (resp. (Tn(Z2), X(Z2) + E)) has only
canonical (resp. log-canonical) singularities. Ishii told us that she did not know
the notion of singularities of pairs when she wrote [I1]. Therefore, Ty (Xo) =~
Projcni1 @D,,-¢ 8«Ov (m(Ky + X')), where g, V, and X’ are as in the proof of
Theorem 6.3, and Ty (X) = Projenst @D,,- ¢ foxOx (m(Ky, + Xo + Ep)), where
Vo, Xo, Eo, and fy are as in the proof of Theorem 6.5. Hence it is not difficult to
see that the models constructed in [I1] coincide with ours. Details are left to the
reader.
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