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C+-Actions on Contractible Threefolds

Shulim Kaliman & Nikolai Saveliev

1. Introduction

The aim of this paper is to generalize the theorem of Miyanishi [M1] stating that,
for any nontrivial algebraic C+-action on C3, the algebraic quotient C3//C+ is iso-
morphic to C2. Our main result is that, for a nontrivial algebraic C+-action on a
smooth contractible affine algebraic threefold X, the algebraic quotient X//C+ is
isomorphic to a smooth contractible affine surface S. Since all such surfaces are
rational [GS], we deduce that X is rational as well. Furthermore, if the action is
free, then we conclude that X is isomorphic to S × C and that the action is in-
duced by translation on the second factor by virtue of [K3], where this result was
proved under the additional assumption that S is smooth. Another consequence
of our main result is that, when X admits a dominant morphism from a threefold
of form C × C2, the quotient S is isomorphic to C2. We also give an independent
proof of the latter fact that (unlike our main result) does not use the difficult theo-
rem of Taubes [T] about the absence of simply connected homology cobordisms
between certain homology spheres. In fact, the rationality of X can also be proved
without this theorem; however, this would require another difficult theorem that
all logarithmic Q-homology planes are rational [PS; GPS; GP]. In conclusion, we
derive the following criterion: If there is a free algebraic C+-action on a smooth
contractible affine algebraic threefold X that admits a dominant morphism from
C × C2, then X is isomorphic to C3.

2. The Main Result

Let ρ : X → S be the quotient morphism of a nontrivial algebraic C+-action on a
smooth contractible affine algebraic threefold X. By Fujita’s result, X is factorial
(see e.g. [K1]). Some other properties of ρ : X → S proved in [K3, Lemma 2.1,
Prop. 3.2, Rem. 3.3] are summarized in the following lemma.

Lemma 2.1.

(1) The surface S is affine and factorial, and ρ−1(s) is a nonempty curve for every
s ∈ S.
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(2) There is a curve 
 in S such that S̆ = S \
 is smooth and ρ−1(S̆ ) is naturally
isomorphic to S̆ × C, so that the projection onto the first factor corresponds
to ρ.

Lemma 2.2. In the foregoing notation, let S ∗ be the smooth part of the quotient
S = X//C+. Then the groups π1(S

∗) and H2(S
∗) are trivial.

Proof. The set F of singular points of S is finite because S is factorial. According
to Lemma 2.1, L = ρ−1(F ) is a curve and hence π1(X \ L) = π2(X \ L) = 0.

Let γ be a loop in S ∗ = S \ F. After a small homotopy if necessary, we may
assume that γ ⊂ S̆ with S̆ as in Lemma 2.1. Since ρ−1(S̆ ) = S̆ × C, the loop γ

lifts to a loop γ ′ ⊂ X \ L. The loop γ ′ is homotopic to zero in X \ L, so γ is
homotopic to zero in S ∗. This shows that π1(S

∗) = 0.
Now, by the Hurewicz theorem, H2(S

∗) is isomorphic to the second homotopy
group of S ∗. An element of π2(S

∗) can be viewed as a continuous map ϒ from
the 2-sphere S2 to S ∗. Without loss of generality, one may assume that its image
meets 
 at a finite number of general points and that {ζ1, . . . , ζn} = ϒ−1(
) is fi-
nite. Let Si be the germ of S at ϒ(ζi). According to [K3, Lemma 4.1], there is a
germ Pi ⊂ X of a surface such that Si is a homeomorphic image of Pi under ρ.
Consider small discs �i in S2 centered at ζi . Put

ϒi = (ρ|Pi
)−1 � ϒ |�̄i

and S2
0 = S2

∖ n⊔

i=1

�i;

then ϒ(S2
0) ⊂ S̆. By the Tietze extension theorem, there is a continuous map

ϒ0 : S2
0 → X̆ � S̆ × C such that ρ � ϒ0 = ϒ |S2

0
and ϒ0|∂�i

= ϒi |∂�i
for every

i = 1, . . . , n. Hence ϒ0 and the ϒi together define a continuous map ϒ ′ : S2 →
X \L such that ρ �ϒ ′ = ϒ. Since π2(X \L) = 0, we see that π2(S

∗) and hence
H2(S

∗) are trivial.

Let s1, . . . , sk be the singular points of S. For each i = 1, . . . , k, there exists a neigh-
borhood Ui of si in S such that Ui is an open cone over a closed connected oriented
3-manifold �i = ∂Ūi . If S ↪→ Cn is a closed embedding, one can find a closed
ball B ⊂ Cn of sufficiently large radius such that, if U0 = S \ B, then S \U0 is a
deformation retract of S. Hence S0 := S \ ( ⊔k

i=0 Ui

)
is a deformation retract of

S ∗; in particular, π1(S0) = H2(S0) = 0. Let �0 = ∂Ū0 and � = ∂S0, so that
� = ⊔k

i=0 �i.

Lemma 2.3. Let � be as before. Then H1(�) = H2(�) = 0; that is, each of the
�0, . . . ,�k is a homology sphere. Moreover, the 3-cycles �1, . . . ,�k form a free
basis of H3(S0) = Zk.

Proof. SinceH1(S0) = H2(S0) = 0 by Lemma 2.2, the exact homology sequence

· · · −→ H3(S0,�) −→ H2(�) −→ H2(S0)

−→ H2(S0,�) −→ H1(�) −→ H1(S0)
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implies that H1(�) = H2(S0,�). By Lefschetz duality, H2(S0,�) = H 2(S0).

The latter group vanishes because H 2(S0) = Hom(H2(S0), Z) = 0; see Lemma
2.2. By Poincaré duality, H2(�) = H1(�) = 0. Since H3(S0,�) = H1(S0) = 0
and H4(S0,�) = H 0(S0) = Z , it follows by extending the homology sequence
to the left that 0 → Z → H3(�) → H3(S0) → 0. This yields the last claim.

The following lemma is a special case of Satz 2.8 in [B].

Lemma 2.4. Let S be the germ of a normal surface at a point s, and let P be the
germ of a smooth surface at a point p. Let ψ : P → S be a finite morphism such
that ψ−1(s) = p. Then s is at worst a quotient singularity.

Proposition 2.5.

(1) For every nontrivial algebraic C+-action on a smooth contractible affine alge-
braic threefold X, the quotient S = X//C+ has at worst quotient singularities
of type x 2 + y3 + z5 = 0.

(2) S is contractible.
(3) If the Kodaira logarithmic dimension κ̄(S ∗) of S ∗ is 1 then S is smooth, and

if κ̄(S ∗) = −∞ then S � C2.

Proof. We know from Lemma 2.1 that ρ : X → S is surjective and that the fibers
of ρ are curves. Therefore, we can choose a germ P of a smooth surface at a
smooth point p of ρ−1(s) (where s ∈ S) that is transversal to the curve ρ−1(s).

The restriction of ρ to P yields a finite morphism ψ : P → S, where S is the germ
of S at s. By Lemma 2.4, s is at most a quotient singularity; in particular, its local
fundamental group is finite. On the other hand, by Lemma 2.3, the local first ho-
mology group at s is trivial. Therefore, the local fundamental group is perfect.
The only quotient singularity whose fundamental group is perfect is E8—that is,
it is of the type x 2 + y3 + z5 = 0 (see [B]).

To prove the second statement, note that π1(S) = 0 because π1(S
∗) = 0 by

Lemma 2.2. The statement will follow from the Whitehead and Hurewicz theo-
rems as soon as we show that H2(S) = 0 (since we already know that Hi(S) =
0 for i ≥ 3; see [N]). Let Ui, �i, and S0 be as defined just before Lemma 2.3,
U 0 = ⊔k

i=1Ui, and �0 = ⊔k
i=1�i. Then S \U0 = S0 ∪ Ū 0 and �0 = S0 ∩ Ū 0.

Recall that each Ui is contractible for i ≥ 1; in particular, H2(Ū
0) = 0. Then

H2(S0) = 0 by Lemma 2.2 and H1(�
0) = 0 by Lemma 2.3. The Mayer–Vietoris

sequence now implies that H2(S \U0) = 0 and therefore H2(S) = 0, since S \U0

is a deformation retract of S.
If κ̄(S ∗) = 1 then any singularity of S must be cyclic quotient [GM]; hence S

is smooth by virtue of (1). For κ̄(S ∗) = −∞, the only logarithmic contractible
surfaces with at worst E8-type singularities are C2 or the surface x 2 + y3 + z5 =
0 in C3 (see [MSu, Thm. 2.7]). The second possibility should be eliminated be-
cause π1(S

∗) �= 0, contrary to Lemma 2.2. This implies (3).

Corollary 2.6. Every smooth contractible affine algebraic threefold with a
nontrivial algebraic C+-action is rational.
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Proof. According to Proposition 2.5, surface S is contractible logarithmic (i.e., it
has at worst quotient singularities) and hence rational by [GPS; PS; GP]. There-
fore, S × C is rational, and so is X by virtue of Lemma 2.1(2).

Theorem 2.7. For every nontrivial algebraic C+-action on a smooth contractible
affine algebraic threefold X, the quotient S = X//C+ is a smooth contractible
affine surface.

Proof. Let S0, �, and �i be as defined before Lemma 2.3. Assume first that S has
only one singular point. Then the boundary � of S0 consists of two components.
One component is �1, which (according to Proposition 2.5) is the link of singu-
larity at 0 of x 2 + y3 + z5 = 0. The manifold �1 is also known as the Poincaré
homology sphere. The other component is �0, which is also a homology sphere
by Lemma 2.3. Lemmas 2.2 and 2.3 imply that π1(S0) = 0 and that the embed-
dings �0 ↪→ S0 and �1 ↪→ S0 induce isomorphisms in homology. Thus S0 is a
simply connected homology cobordism between �1 and �0. But this contradicts
the Taubes theorem ([T]; see also [FSt, Thm. 5.2]), which states that the Poincaré
homology sphere cannot be homology cobordant to any homology sphere via a
simply connected homology cobordism.

To complete the proof, it is enough to consider the case of two singular points;
the general case will follow by a similar argument. If S has two singular points,
then � is a disjoint union of �0, �1, and �2. Let us join a point x0 ∈ �0 with a
point x2 ∈�2 by a path γ in S0. Let V2 and V1 be tubular neighborhoods of γ in
S0 (i.e., each Vi is homeomorphic to γ ×Bi where Bi is a three-dimensional ball,
and Vi meets �j , j = 0, 2, along the ball xj ×Bi) such that intV2 ⊃ V1. Put S1 =
S0 \V1. Then the boundary of S1 consists of two components, �1 and �′, where
�′ is a connected sum of �0 and �2 (and hence is a homology sphere). Note that
π1(S1) = π1(S0 \ γ ) = 0 by the dimension argument. In order to show that we
have a homology cobordism between �1 and �′ and thus get a contradiction with
the Taubes theorem, we need only show that H2(S1) = 0 and that the 3-cycle �1

generates H3(S1) = Z.

The Mayer–Vietoris sequence of S0 = V2 ∪S1 implies that H2(S1) is the image
of H2(V2\V1) under the natural embedding. Note that x2 × (B2\B1) is a deforma-
tion retract of V2 \V1. Therefore, every element of H2(S1) can be represented by
a 2-cycle in x2 × (B2 \B1) ⊂ �2 \ (x2 ×B1). Since �2 is a homology sphere, we
conclude that H2(�2 \ B2) = 0 and hence H2(S1) = 0. Because H3(V2 \V1) =
H3(V2) = 0 and H2(V2 \V1) = Z , applying once again the Mayer–Vietoris se-
quence yields the exact sequence 0 → H3(S1) → H3(S0) → Z → 0. Since
{�1,�2} is a free basis of H3(S0) according to Lemma 2.3, we see that H3(S1) is
freely generated by �1.

This leaves us with just one possibility: that S has no singular points and hence
is smooth. That it is contractible was already proved in Proposition 2.5(2).

Corollary 2.8. Let X be a smooth contractible affine algebraic threefold with
a nontrivial algebraic C+-action on it.

(1) If the action is free, then X is isomorphic to S × C and the action is induced
by a translation on the second factor.
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(2) If X admits a dominant morphism from a threefold of form C × C2, then the
algebraic quotient S = X//C+ is isomorphic to C2.

(3) If the assumptions of both (1) and (2) hold, then X is isomorphic to C3.

Proof. The first statement was proved in [K3, Thm. 5.4(ii)] under the additional
assumption that S = X//C+ is smooth. Theorem 2.7 removes this assumption and
proves (1) in full generality. In the second statement, we have a dominant mor-
phism C × C → S. Since the Kodaira logarithmic dimension κ̄(C × C) equals
−∞, we conclude that κ̄(S) = −∞. Because S is also smooth and contractible,
it is isomorphic to C2 (see e.g. [M2]). The third statement is an obvious conse-
quence of (1) and (2).

Two C+-actions on a variety are said to be equivalent if they have the same general
orbits (i.e., if the associated locally nilpotent derivations have the same kernel). In
particular, nonequivalent actions generate different quotient morphisms. Corol-
lary 2.8(3) implies the following result.

Corollary 2.9. Suppose that a smooth contractible affine algebraic threefold
X admits two nonequivalent nontrivial algebraic C+-actions. Then X//C+ = C2

for any nontrivial algebraic C+-action. Furthermore, X is isomorphic to C3 if it
admits a free C+-action.

It is worth mentioning that Corollary 2.6 also follows from Theorem 2.7 and [GS].

3. The Case When S � C2

The aim of this section is to give an independent proof of Corollary 2.8(2) (and
hence of Corollary 2.8(3)) that does not use the Taubes theorem.

Let X be the complement to an effective divisor D of simple normal crossing
type in a projective algebraic manifold X̄. Consider the sheaf %k(X̄,D) of loga-
rithmic k-forms on X̄ alongD (that is, each section of this sheaf over an open subset
U ⊂ X̄ is a holomorphic k-form on U ∩X that has at most simple poles at general
points of U ∩D). Let r be the rank of %k(X̄,D) (i.e., r = Cn,k , where n = dim X̄

and Cn,k is the number of combinations), Sm%k(X̄,D) its symmetric m-power,
and 
(X̄, Sm%k(X̄,D)) the space of holomorphic sections of Sm%k(X̄,D) over
X̄. We say that the Kodaira–Iitaka–Sakai logarithmic k-dimension κ̄k(X) of X is
−∞ if no symmetric power of %k(X̄,D) has a nontrivial global section; other-
wise, we put

κ̄k(X) = lim sup
m→+∞

log dim
(X̄, Sm%k(X̄,D))

logm
− r + 1.

This definition does not depend on the choice of simple normal crossing comple-
tion X̄ of X [I; K2]. One can easily see that κ̄k(X) = −∞ if k > dimX, and
κ̄k(X) is the usual Kodaira logarithmic dimension in the case when k = dimX.

Lemma 3.1 [I; K2, Prop. 4.2]. Let X̄1 and X̄2 be complete complex algebraic
manifolds, and let D1 and D2 be divisors of SNC-type in X̄1 and X̄2 , respectively.
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Suppose that f̄ : X̄1 → X̄2 is a morphism and that f̄ is an extension of a dominant
morphism f : X1 → X2 , where Xi = X̄i −Di. Then f̄ generates a natural homo-
morphism f ∗ : Sm%k(X̄2 ,D2) → Sm%k(X̄1,D1).

The word “natural” here means that we treat 
(X̄i, Sm%k(X̄i,Di)) as the sub-
space of 
(X̄,%k(X̄i,Di)

⊗m) invariant under the natural action of the symmet-
ric group S(m) and that f ∗ is generated by the induced mapping of k-forms. In
particular, f ∗ sends nonzero sections of Sm%k(X̄2 ,D2) to nonzero sections of
Sm%k(X̄1,D1). We thus have the following result.

Corollary 3.2. Let f : X1 → X2 be a dominant morphism of algebraic vari-
eties and let ni = dimXi. Then κ̄k(X1)+Cn1,k ≥ κ̄k(X2)+Cn2,k. In particular,
if κ̄k(X1) = −∞ then κ̄k(X2) = −∞.

Let H be a hyperplane in P s, that is, Cs = P s \ H. Then X ′ = X̄ × P s is a com-
pletion of X × Cs and D ′ = X ′ \ (X × Cs ) is of simple normal crossing type.
Using the fact that any sheaf of the form

%1(P s,H )⊗m1 ⊗ · · · ⊗ %s(P s,H )⊗ms

has no global nonzero sections over P s, one can show that


(X̄,%k(X̄,D)⊗m) = 
(X ′,%k(X ′,D ′)⊗m),

which implies the following.

Lemma 3.3. Let Y = X × Cs and n = dimX. Then

κ̄k(Y ) = κ̄k(X) + Cn,k − Cn+s,k for any k ≥ 0.

In particular, κ̄k(Y ) = −∞ when k > n.

Applying the theorem about removing singularities of holomorphic functions in
codimension 2, we obtain the following result.

Lemma 3.4. LetZ be a subvariety of codimension at least 2 in an algebraic man-
ifold X. Then κ̄k(X) = κ̄k(X \ Z) for every k.

Theorem 3.5. Let X be a smooth contractible affine algebraic threefold such
that κ̄2(X) = −∞. Then, for every nontrivial algebraic C+-action on X, the
algebraic quotient S = X//C+ is isomorphic to C2.

Proof. Let F be the set of singular points of S. According to Lemma 2.1, L =
ρ−1(F ) is a curve. Therefore, κ̄2(X \ L) = −∞; see Lemma 3.4. By Corol-
lary 3.2, κ̄2(S

∗) = −∞, and the statement follows from Proposition 2.5(3).

Now Lemma 3.3 implies Corollary 2.8(2).

Remark. Consider an n-dimensional smooth contractible affine algebraic vari-
ety X and an algebraic action of a unipotent group U on X. Suppose that U has
dimension n− 2 (i.e., U is isomorphic to Cn−2 as an affine algebraic variety) and
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there are only finitely many orbits nonisomorphic to Cn−2. It was mentioned in
[K3, Rem. 5.4] that the morphism X → S = X//U is surjective. Because sur-
jectivity of the quotient morphism is the only crucial argument in the proof of
Proposition 2.5, we can extend some of our results to this action of U. That is,
X//U is a smooth contractible surface that is isomorphic to C2 in the case when
X admits a dominant morphism from an n-fold of form C × Cn−1.
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