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On the Problem of Kähler Convexity
in the Bergman Metric

Gregor Herbort

1. Introduction

Let (M, ds2) be a complete Kähler manifold of dimension n, and let Hp,q
(2) (M) be

the space of square-integrable harmonic forms of bidegree (p, q). McNeal has
studied the question: Under which reasonable conditions about the Kähler metric
can one prove the vanishing of Hp,q

(2) (M) when p + q �= n? As a sufficient condi-
tion he found that there should exist an exhausting function V for M that is at the
same time a potential for ds2 such that V dominates its gradient. We define this
property as follows.

Definition. Assume that the Kähler metric ds2 has a global potential V ∈
C2(M) on M. Then we say that V dominates its gradient if there exist constants
A,B ≥ 0 such that

|∂V |2
ds2 ≤ A + BV (1.1)

throughout M.

In [M2] such a Kähler manifold is called Kähler convex; if (1.1) holds with B =
0, it is called Kähler hyperbolic.

In complex analysis there is a case of special interest in which M = D is a pseu-
doconvex bounded domain in C

n that is endowed with the Bergman metric. Let
KD(z) denote the Bergman kernel function on the diagonal of D×D. Then VD =
logKD is a potential of the Bergman metric.

Donnelly and Fefferman [DoFe] proved the vanishing of Hp,q
(2) (D) when p +

q �= n andD is strongly pseudoconvex. Later, Donnelly [Do1; Do2] gave a simpler
proof of this by a method that applies also to the case of finite-type pseudoconvex
domains in C

2 and to certain classes of finite-type domains in C
n with n ≥ 3 (see

e.g. [M1]). In these cases he showed using results of [C; M1] that even Kähler
hyperbolicity holds. Also in [Do2] it was shown that the domain D = {z ∈ C

3 |
|z1|2 + |z2|10 + |z3|10 + |z2|2|z3|2 < 1} is not Kähler hyperbolic in the Bergman
metric.

The purpose of this paper is to show (by means of an example) that, on a smooth
bounded weakly pseudoconvex domain of finite type, the potential VD in general
will not dominate its gradient. We will do this using ideas from [Do2; M2]; the
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key point is that the estimate (1.1) for V = logKD can be reformulated in terms of
domain functionals from Bergman theory.

2. Certain Domain Functionals

Let � be a bounded domain in C
n. By ‖·‖ we denote the usual L2-norm for

functions that are square-integrable over � with respect to the Lebesgue measure.
The subspace H 2(�) = O(�) ∩ L2(�) is closed and induces a Hermitian kernel
K�(·, ·), the Bergman kernel function of �. The function V(z) = logK�(z, z) is
smooth and strictly plurisubharmonic; hence it is the potential of a Kähler metric,
the Bergman metric B2

� on �.

For X = (X1, . . . ,Xn) ∈ C
n and a function f ∈C1(�), we denote by X(f ) the

directional derivative

X(f )(z) =
n∑

j=1

∂f

∂zj
(z)Xj . (2.1)

Besides the well-known representation of K�(w,w),

K�(w,w) = max{|f(w)|2 | f ∈H 2(�), ‖f ‖ ≤ 1}, (2.2)

we also consider the following domain functional:

E�(w;X) := max{|f(w)|2 | f ∈H 2(�), ‖f ‖ ≤ 1, X(f )(w) = 0}.
By means of Bergman’s method [B] we obtain

E�(w;X) = K�(w,w)2B2
�(w;X)

XX̄(K�)(w,w)
. (2.3)

This maximum is attained for the function

f(w;X)(z) :=
√
E�(w;X)

K�(w,w)2B2
�(w;X)

(
XX̄(K�)(w,w) · K�(z,w)

− X(K�(·,w))|w · X̄(K�(z,w))
)
. (2.4)

Let
F�(w;X) := E�(w;X)

K�(w,w)
.

We denote by Q�(w) the length of the gradient(
∂ logK�(z, z)

∂z1

∣∣∣∣
z=w

, . . . ,
∂ logK�(z, z)

∂zn

∣∣∣∣
z=w

)

measured in the Bergman metric. Then, by the Cauchy–Schwarz inequality, we
have |X(K�(·,w))|w|2

K�(w,w)2
≤ Q�(w)B2

�(w;X) (2.5)

and hence

F�(w;X) = B2
�(w;X)

B2
�(w;X) + |X(K�(·, w)|w |2

K�(w, w)2

≥ 1

1 + Q�(w)
. (2.6)

This shows our first result, as follows.
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Lemma 2.1. On the domain �, the potential logK� dominates its gradient in
the Bergman metric if and only if there exist nonnegative constants A,B such that,
for any X ∈ C

n \ {0},
F�(w;X) ≥ 1

A + B · logK�(w,w)
. (2.7)

In [M2, Prop. 3.1] it is shown that this estimate is sufficient. Its necessity is a con-
sequence of (2.5) and (2.6).

In the next section we study a class of bounded weakly pseudoconvex domains
with real-analytic boundary yet in which (2.7) is violated.

3. A Series of Examples

Our examples are domains in C
3. Let a, b, c, d,m be positive integers and let

P(z2, z3) := |z2|2m + |z3|2m + |z2|2a|z3|2b + |z2|2c|z3|2d .
We require that

a > b, a > c, d > c, d > b;
ad − bc < m · min{a − c, d − b}.

Let us furthermore put

x2 = d − b

2(ad − bc)
and x3 = a − c

2(ad − bc)
.

Then
2ax2 + 2bx3 = 1, 2cx2 + 2dx3 = 1,

and also

x2 >
1

2m
, x3 >

1

2m
.

We shall prove the following theorem.

Theorem 3.1. Let

r(z1, z2, z3) := Re z1 + |z1|2 + P(z2, z3)

and
D = {r < 0}.

Assume that a < 2b. If

0 < ε <
1

2

(
a

b
− 1

)(
x2 − 1

2m

)
,

then for sufficiently small t > 0 we have

FD(w(t), e2) ≤ c0 t
2ε

with an unimportant constant c0. Here e2 = (0,1, 0) and w(t)= (−t, t (1/2m)+ε, 0).

Remarks. (i) Certainly KD(w(t),w(t)) ≤ Ct−4, hence logKD(w(t),w(t)) ≤
4 log(1/t)+C (with some constantC > 0). This proves that (2.7) cannot hold onD.
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(ii) The theorem applies for example in the case a = 7, b = 5, c = 6, d = 8,
and m ≥ 27.

Proof of Theorem 3.1

We prove the theorem in three steps.

First Step: Model Domains

For t > 0 let
�t = {

(z2, z3)∈ C
2 | P(z2, z3) <

t
4

}
and

Dt = *
(−t, t

2

) × �t.

Then, for t < 1/16 we have
Dt ⊂ D

because, for such t,
r(z) ≤ − t

4 + 4t 2 < 0

for z = (z1, z2, z3)∈Dt.

We claim that, with w̃(t) = (t (1/2m)+ε, 0) we have

ED(w(t), e2) ≤ 4

πt 2
E�t

(w̃(t), (1, 0)). (3.8)

For this we use
ED(w(t), e2) ≤ EDt

(w(t), e2),

which is a well-known property of the domain functionals under consideration.
Next we exploit the Cartesian product structure of Dt to derive

KDt
(w(t),w(t)) = 4

πt 2
K�t

(w̃(t), w̃(t)),

∂ 2KDt
(w(t),w(t))

∂z2∂z̄2
= 4

πt 2

∂ 2K�t
(w̃(t), w̃(t))

∂z2∂z̄2
,

B2
Dt
(w(t), e2) = B2

�t
(w̃(t); (1, 0)).

Substituting into (2.3) yields

EDt
(w(t), e2) = 4

πt 2
E�t

(w̃(t); (1, 0))

and hence (3.8).
Our next project is a good lower bound on the Bergman kernel of D at w(t)

by means of the Bergman kernel of a suitable model domain of dimension 2. We
begin with a preparatory lemma.

Lemma 3.1. Let

�∗
t := {(z2, z3)∈ C

2 | P(z2, z3) < t − t 2}.
Then there exists a constant C > 0 (independent of t) such that

KD(w(t),w(t)) ≥ Ct−2K�∗
t
(w̃(t), w̃(t)).
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Proof. We will demonstrate the existence of a constant C1 > 0 such that, given
a function f ∈ H 2(�∗

t ), one can find a function f t ∈ H 2(D) with the following
properties:

f t(−t,w ′) = 1
t
f (w ′) for w ′ ∈�∗

t , ‖f t‖ ≤ 2C1‖f ‖L2(�∗
t )
.

By virtue of (2.2), this implies

KD(−t,w ′) ≥ |f t(−t,w ′)|2
‖f t‖2

≥ 1

4C2
1 t

2

|f(w ′)|2
‖f ‖2

for any f ∈H 2(�∗
t ) and w ′ ∈�∗

t . From this the lemma will follow easily.
Let f ∈ H 2(�∗

t ). Then we can view f as a function that is holomorphic on
D∩{z1 = −t} = {(−t, z ′) : z ′∈�∗

t }. In order to find f t, we use a result of Ohsawa
[O]. Since Re z1 < 0 for z∈D, we have

∣∣ z1+t

z1−t

∣∣ < 1 on D. Hence the function

ψ(z) := −2 log|z1 − t |
satisfies

Cψ := sup{ψ(z) + 2 log|z1 + t |, z∈D} ≤ 0

and is a negligible weight (in the sense of [O]). Furthermore, the function 1
t
f

satisfies ∫
D∩{z1=−t}

∣∣∣∣f(z
′)

t

∣∣∣∣
2

e−ψ(−t,z ′ ) d 4z ′ = 4‖f ‖2

and, by Ohsawa’s result, there exists a holomorphic extension f t of 1
t
f to D such

that

‖f t‖2 ≤ C1e
Cψ

∫
D∩{z1=−t}

∣∣∣∣f(z
′)

t

∣∣∣∣
2

e−ψ(z ′ ) d 4z ′ ≤ 4C1‖f ‖2

with some unimportant constant C1 > 0.

Hence, so far we have obtained (with some constant C∗ > 0)

FD(w(t), e2) ≤ C∗
E�t

(w̃(t), (1, 0))

K�∗
t
(w̃(t), w̃(t))

, (3.9)

and everything is reduced to the problem of giving a good upper bound for
E�t

(w̃(t), (1, 0)) and a suitable lower bound for K�∗
t
(w̃(t), w̃(t)).

Second Step: Estimating the Domain Functionals of the �t and �∗
t

We use the fact that �t is a Reinhardt domain in C
2 with center at 0. Therefore,

its Bergman kernel can be represented as

K�t
(z ′,w ′) =

∞∑
k,.=0

1

ak.

(z2w̄2)
k(z3w̄3)

., (3.10)

where z ′ := (z2, z3) and ak. denotes the normalizing factor,

ak. =
∫
�t

|ζ k
2ζ

.
3 |2 d 2ζ2 d

2ζ3.
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If now w3 = 0 then the maximizing function f(w2,0),(1,0) defined in (2.4) takes
the form

f(w2,0),(1,0)(z)

:=
√
E�(w; (1, 0))

K�(w,w)2B2
�(w;X)

(
∂ 2K�

∂z2∂z̄2
((w2, 0), (w2, 0)) · K�(z

′, (w2, 0))

− ∂K�

∂z2
((z2, 0), (w2, 0))

∣∣∣∣
z2=w2

· K�

∂w̄2
(z ′, (w2, 0))

)
.

By virtue of (3.10), only the terms with . = 0 will contribute to the function and
hence it is independent of the variable z3.

We now choose w ′ = w̃(t) and write

fw̃(t),(1,0)(z) =
∞∑
k=0

bk

zk
2√
ak

,

where ak = ak0 and where bk = bk(t) denotes the inner product between fw̃(t),(1,0)

and ζ k
2 /

√
ak. By the Cauchy–Schwarz inequality we have

|bk| ≤ 1

for all k. But the auxiliary condition
∂fw̃,(1,0)

∂z2
(w̃(t)) = 0 requires

b1√
a1

= −
∞∑
k=2

kbk

(w̃(t))k−1
2√

ak

, (3.11)

which in turn implies that

fw̃(t),(1,0)(w̃(t)) = b0√
a0

− (w̃(t)2)

∞∑
k=2

kbk

(w̃(t))k−1
2√

ak

+
∞∑
k=2

bk

(w̃(t))k2√
ak

= b0√
a0

+
∞∑
k=2

(1 − k)bk

(w̃(t))k2√
ak

.

Taking absolute values, we find (since |bk| ≤ 1) that

√
E�t

(w̃(t), (1, 0)) = |fw̃(t),(1,0)(w̃(t))| ≤ 1√
a0

+
∞∑
k=2

(k + 1)
(w̃(t))k2√

ak

.

In the same way, we treat the Bergman kernel of �∗
t at w̃(t):

K�∗
t
(w̃(t), w̃(t)) =

∞∑
k=0

w̃(t)2k
2

a∗
k

≥ w̃(t)2
2

a∗
1

,

where
a∗
k =

∫
�∗

t

|ζ2|2k d 2ζ2 d
2ζ3

for all k ≥ 0.

Third Step: Bounds on the Coefficients ak and a∗
1

In the following lemma we describe the lower bound for the ak and the suitable
upper bound on a∗

1 that is needed.
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Lemma 3.2. For k ≥ 1,

ak ≥ c∗
1

k + 1
36−2(k+1)t (k+1)/mt 2x3+(2a/b)(x2−1/2m).

Moreover,

a0 ≥ c∗ t 2x2+2x3 and a∗
1 ≤ 1

c∗
t 2x3+(2a/b)(x2−1/2m)+2/m,

where c∗ denotes some unimportant constant.

Proof. (i) We first carry out the details for the coefficients ak with k ≥ 1. Let

φ(y) :=
[(

1

t

)1/2m

+
(
y2b

t

)1/2a

+
(
y2d

t

)1/2c ]−1

.

Then we have {
z ′ ∣∣ |z3| < 1

2 t
1/2m, |z2| < 1

12φ(|z3|)
} ⊂ �t.

Using polar coordinates and then the scaled variable η = t−x3y, we obtain

ak ≥
∫

|z3|<t1/2m/2

(∫
|z2|<φ(|z3|)/12

|z2|2k d 2z2

)
d 2z3

= 4π2
∫ t1/2m/2

0
y

(∫ φ(y)/12

0
x 2k+1 dx

)
dy

= 2π2

k + 1
12−2(k+1)

∫ t1/2m/2

0
yφ(y)2k+2 dy

= 2π2

k + 1
12−2(k+1)t 2x3

∫ t−(x3−1/2m)/2

0
η(φ(t x3η))2k+2 dη.

But we observe that

φ(t x3η) =
[(

1

t

)1/2m

+ ηb/a

t x2
+ ηd/c

t x2

]−1

= t x2ψ(η)

with

ψ(η) = 1

t x2−1/2m + ηb/a + ηd/c
.

This gives us

ak ≥ 2π2

k + 1
12−2(k+1)t 2(k+1)x2+2x3

∫ t−(x3−1/2m)/2

0
ηψ(η)2k+2 dη

≥ 2π2

k + 1
12−2(k+1)t 2(k+1)x2+2x3

∫ 1

0
ηψ(η)2k+2 dη

for small enough t. Here we use that x3 > 1/2m.

We split the interval [0,1] into I1 and I2, where

I1 = [0, t (a/b)(x2−1/2m)] and I2 = [t (a/b)(x2−1/2m),1].
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On I1 we have
ψ(η) ≥ 1

3 t
−(x2−1/2m);

hence ∫
I1

ηψ(η)2k+2 dη ≥ 3−2(k+1)t−2(k+1)(x2−1/2m)

∫
I1

η dη

= 1

2
· 3−2(k+1)t (2a/b)(x2−1/2m) · t−2(k+1)(x2−1/2m).

Thus we obtain the estimate

ak ≥ π2

k + 1
12−2(k+1)t 2(k+1)x2+2x3 3−2(k+1)t (2a/b)(x2−1/2m) · t−2(k+1)(x2−1/2m)

= π2

k + 1
36−2(k+1)t (k+1)/mt 2x3+(2a/b)(x2−1/2m). (3.12)

(ii) For the case k = 0, we also use the interval I2:

a0 ≥ π2

72
t 2x2+2x3

∫ 1

t (a/b)(x2−1/2m)

ηψ(η)2 dη.

On this interval we have
ψ(η) ≥ 1

3η
−b/a

and ∫
I2

ηψ(η)2 dη ≥ 1

9

∫ 1

t (a/b)(x2−1/2m)

η1−2b/a dη

= 1

18(1 − b/a)
(1 − t 2(1−b/a)(a/b)(x2−1/2m)).

For small enough t, this will give us

a0 ≥ c∗ t 2x2+2x3 .

(iii) We now estimate a∗
1 from above in a similar way, starting with

a∗
1 ≤

∫
|z3|<t1/2m

(∫
|z2|<φ(|z3|)

|z2|2 d 2z2

)
d 2z3

= 4π2
∫ t1/2m

0
y

(∫ φ(y)

0
x3 dx

)
dy

= π2 t 2x3

∫ t−(x3−1/2m)

0
η(φ(t x3η))4 dη

= π2 t 4x2+2x3

∫ t−(x3−1/2m)

0
ηψ(η)4 dη

= π2 t 4x2+2x3

(∫
I1

ηψ(η)4 dη +
∫
I2

ηψ(η)4 dη +
∫
I3

η(ψ(η))4 dη

)
, (3.13)

where I3 = [1, t−(x3−1/2m)].
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Now we estimate from above:∫
I1

ηψ(η)4 dη ≤ t−4(x2−1/2m)

∫ t (a/b)(x2−1/2m)

0
η dη

≤ t−4(x2−1/2m)+(2a/b)(x2−1/2m) = t (2a/b−4)(x2−1/2m);
∫
I2

ηψ(η)4 dη ≤
∫ 1

t (a/b)(x2−1/2m)

η1−4b/a dη.

Because 2b > a, we have∫
I2

ηψ(η)4 dη ≤ 1

2(2b/a − 1)
t (2a/b−4)(x2−1/2m).

Finally,
∫
I3

ηψ(η)4 dη ≤
∫ t−(x3−1/2m)

1
η1−4d/c dη ≤

∫ ∞

1
η1−4d/c dη = 1

2(2d/c − 1)
.

In conjunction with (3.13), this yields

a∗
1 ≤ c ′t 4x2+2x3+(2a/b−4)(x2−1/2m) = c ′t 2x3+(2a/b)(x2−1/2m)+2/m,

which proves the lemma.

We now can finish our proof of Theorem 3.1:√
E�t

(w̃(t), (1, 0))

≤ 1√
a0

+
∞∑
k=2

(k + 1)
t ((1/2m)+ε)k

√
ak

≤ 1

t x2+x3
+ 1

t x3+(a/b)(x2−1/2m)+1/2m

∞∑
k=2

(k + 1)3/2(36t−1/2m)kt ((1/2m)+ε)k

= 1

t x2+x3
+ 362 t 2ε

t x3+(a/b)(x2−1/2m)+1/2m

∞∑
k=2

(k + 1)3/2(36t ε)k−2

≤ 1

t x2+x3
+ c ′′ t 2ε

t x3+(a/b)(x2−1/2m)+1/2m
(for t < 72−1/ε)

≤ c∗ t 2ε

t x3+(a/b)(x2−1/2m)+1/2m
,

with some constants c ′′, c∗ > 0 (independent of t). In the second inequality we
have used (3.12); and in the next-to-last line, the second member dominates the
first one. This follows from the choice of ε.

On the other hand,
√
K�∗

t
(w̃(t), w̃(t)) ≥ √

c∗
t ε

t x3+(a/b)(x2−1/2m)+1/2m
.
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Hence we obtain
E�t

(w̃(t), (1, 0))

K�∗
t
(w̃(t), w̃(t))

≤ ĉt 2ε;

together with (3.9), this proves the theorem.
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