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On the Problem of Kéhler Convexity
in the Bergman Metric

GREGOR HERBORT

1. Introduction

Let (M, ds?) be a complete Kéhler manifold of dimension 7, and let H‘fj)q (M) be
the space of square-integrable harmonic forms of bidegree (p,q). McNeal has
studied the question: Under which reasonable conditions about the Kihler metric
can one prove the vanishing of ’Hfj)" (M) when p + g # n? As a sufficient condi-
tion he found that there should exist an exhausting function V for M that is at the
same time a potential for ds? such that V dominates its gradient. We define this
property as follows.

DEFINITION.  Assume that the Kihler metric ds? has a global potential V &
C%*(M) on M. Then we say that V dominates its gradient if there exist constants
A, B > 0 such that

V|5, < A+ BV (L.1)

throughout M.
In [M2] such a Kéhler manifold is called Kdhler convex;, if (1.1) holds with B =
0, it is called Kdhler hyperbolic.

In complex analysis there is a case of special interest in which M = D is a pseu-
doconvex bounded domain in C” that is endowed with the Bergman metric. Let
Kp(z) denote the Bergman kernel function on the diagonal of D x D. Then Vp =
log K is a potential of the Bergman metric.

Donnelly and Fefferman [DoFe] proved the vanishing of #{3/(D) when p +
q # n and D is strongly pseudoconvex. Later, Donnelly [Dol; Do2] gave a simpler
proof of this by a method that applies also to the case of finite-type pseudoconvex
domains in C? and to certain classes of finite-type domains in C" with n > 3 (see
e.g. [M1]). In these cases he showed using results of [C; M1] that even Kihler
hyperbolicity holds. Also in [Do2] it was shown that the domain D = {z € C? |
12112 + 12210 + |23]' + |z2]?| z3]* < 1} is not Kihler hyperbolic in the Bergman
metric.

The purpose of this paper is to show (by means of an example) that, on a smooth
bounded weakly pseudoconvex domain of finite type, the potential Vp in general
will not dominate its gradient. We will do this using ideas from [Do2; M2]; the
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key point is that the estimate (1.1) for V = log Kp can be reformulated in terms of
domain functionals from Bergman theory.

2. Certain Domain Functionals

Let Q be a bounded domain in C”. By ||-|| we denote the usual L?>-norm for
functions that are square-integrable over €2 with respect to the Lebesgue measure.
The subspace H 2(Q) = O(Q) N L*(R) is closed and induces a Hermitian kernel
Kq(-,-), the Bergman kernel function of 2. The function V(z) = log Kq(z,z) is
smooth and strictly plurisubharmonic; hence it is the potential of a Kéhler metric,
the Bergman metric Bé on 2.

For X = (Xy,..., X,) € C" and a function f € C'(2), we denote by X(f) the
directional derivative n

of

X(H@ =) 5 -@)X;. (A))
j=1 %%

Besides the well-known representation of Kq(w, w),
Ko(w,w) = max{|f(w)|* | f e H* Q). |f] <1}, (2.2)
we also consider the following domain functional:
Eq(w: X) := max{| f(w)[* | f € H*(Q), [ fIl <1, X(f)(w) = 0}.
By means of Bergman’s method [B] we obtain
Ko(w, w)*Bg(w; X)
XX(Ko)(w,w)
This maximum is attained for the function

VvEq(w; X)

(w, w)?B3 (w; X)

Eq(w; X) = (2.3)

fu(@) = = (XX(Ko)(w, w) - Ka(z, w)
Q

— X(Ka(,w)lw - X(Ka(z,w))).  (24)
Eq(w; X)

Ko(w,w)’

We denote by Qq(w) the length of the gradient

<810g Ka(z,2) dlog Ka(z,2)
9z, ’ Zn

Let
FQ(w; X) =

g

Z=w>

measured in the Bergman metric. Then, by the Cauchy—Schwarz inequality, we

have
IX(Ka(, w)|wl*

I=w

Kowwp = Qo (w)Bg (w; X) (2.5)
and hence
B2 (w; X
Fo(w; X) = — Q(w\m)( > oo (2.6)
. Qs Wiy w
Baws X) + o wr ?

This shows our first result, as follows.
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LEMMA 2.1. On the domain 2, the potential log Ko dominates its gradient in
the Bergman metric if and only if there exist nonnegative constants A, B such that,
forany X € C" \ {0},

1
Fo(w; X) > .
A+ B -log Ko(w,w)

2.7)

In [M2, Prop. 3.1] it is shown that this estimate is sufficient. Its necessity is a con-
sequence of (2.5) and (2.6).

In the next section we study a class of bounded weakly pseudoconvex domains
with real-analytic boundary yet in which (2.7) is violated.

3. A Series of Examples

Our examples are domains in C3. Leta,b,c,d,m be positive integers and let
2 2 2 2b 2 2d
P(z22,23) == |z22|™ + |z3|™" + z22]™1 237" + |22 [ 23]

We require that
a>b, a>c, d>c, d=>b;

ad — bc < m -min{a — ¢, d — b}.

Let us furthermore put

d—>b a—c
Xp=——— and x3= ————.
2(ad — bc) 2(ad — bc)
Then
2ax, +2bxz =1, 2¢xy +2dxz =1,
and also
1 1
X2 > 2m’ X3 > 2m.

We shall prove the following theorem.

THEOREM 3.1. Let

r(z1,22,23) i= Rezi + |z211* + P(22,23)
and
D ={r <0}.

Assume that a < 2b. If

1/a 1
O<e<=|=——1){x2——,
2\b 2m
then for sufficiently small t > 0 we have
Fp(w(t),e2) < cot™

with an unimportant constant cqy. Here e; = (0,1,0) and w(t) = (—t,tV/2™+e ().

REMARKS. (i) Certainly Kp(w(¢), w(?)) < Ct™*, hence log Kp(w(t), w(t)) <
41og(1/t)+ C (with some constant C > 0). This proves that (2.7) cannot hold on D.
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(i) The theorem applies for example in the casea =7, b =5,c = 6,d =8,
and m > 27.

Proof of Theorem 3.1

We prove the theorem in three steps.

First Step: Model Domains

Fort > 0 let
Q= {(22.23) €C* | P(22,23) < %}
and

Then, for r < 1/16 we have
D, c D

because, for such t,
r(z) < —L+4° <0

for z = (z1,22,23) € D;.
We claim that, with @ (7) = (t/?™+¢,0) we have
4 .
Ep(w(t),e) < FEQ,(IU(I),(LO))' (3.8)

For this we use
ED(U)([), 62) = ED,(w(t)3 62)9

which is a well-known property of the domain functionals under consideration.
Next we exploit the Cartesian product structure of D, to derive

4
Kp,(w(1),w(t)) = WKQ,(LD(I), w(t)),

9?Kp,(w(), w(1)) 4 9%Kgq,((1),w(1))
022072 a2 022072
B}, (w(1),e2) = B ((1); (1,0)).
Substituting into (2.3) yields

s

4
Ep,(w(t),e2) = WEQ,(IDU); (1,0))

and hence (3.8).

Our next project is a good lower bound on the Bergman kernel of D at w(¢)
by means of the Bergman kernel of a suitable model domain of dimension 2. We
begin with a preparatory lemma.

LeEMMA 3.1.  Let
Q :={(22,23) €C* | P(22,23) <t —1°}.
Then there exists a constant C > 0 (independent of t) such that
Kp(w(1), w(t)) = Ct*Kar (W(1), w(1)).
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Proof. We will demonstrate the existence of a constant C; > 0 such that, given
a function f € HZ(Q;‘), one can find a function f' € H?(D) with the following
properties:

fli=tw)y = 1fw") for w'eQy, £ <2Ci £l
By virtue of (2.2), this implies
|f! (=1, w")? 1 | fw)P

Kp(—t,w') > >
Ifo? 4C2t2 | fI1?

forany f € H*(Q}) and w’ € Q}. From this the lemma will follow easily.
Let f € H*(Q¥). Then we can view f as a function that is holomorphic on
DN{zi=—t}={(—1,2') : 2’€QF}. Inorder to find f’, we use a result of Ohsawa

[O]. Since Re z; < 0 for z € D, we have |T_rl | < 1 on D. Hence the function

¥ (z) := —2log|z; — 1]

satisfies
Cy = sup{¥(z) +2log|lz; +1t],ze D} <0

and is a negligible weight (in the sense of [O]). Furthermore, the function % f

satisfies
/;ﬂ{z1=t}

and, by Ohsawa’s result, there exists a holomorphic extension f’ of % f to D such
that

2

I
f(z ) e—lp(—t,zl) d4Z/ — 4||f”2

t

2

FE@E | e
i sces [ TE v gt e
DNfz1=—1}
with some unimportant constant C; > 0. UJ

Hence, so far we have obtained (with some constant C,, > 0)

Eq,(w(r), (1,0))

Fp(w(1),e2) < G K (@), 9(1))

(3.9

and everything is reduced to the problem of giving a good upper bound for
Eq,(w(1),(1,0)) and a suitable lower bound for Kox (w(7), w(7)).
Second Step: Estimating the Domain Functionals of the Q; and QF

We use the fact that €2, is a Reinhardt domain in C? with center at 0. Therefore,
its Bergman kernel can be represented as

o0
! / 1 - -
Ko,(Z,w') = Y —(22102)"(z33)", (3.10)
k=0 4ke
where 7z’ := (z2,z3) and ay, denotes the normalizing factor,
are = [ 1858517 d*¢2d?es.

Q
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If now w3 = 0 then the maximizing function f(,, 0),a,0) defined in (2.4) takes
the form

Saws,0),1,00(2)
Eq(w; (1,0)) ( 9%Kq

= Ko, B w; X) \ 9305, (W2 O (2. 0) - Ka(z' 2, 0)

0K q
— —((22,0), (w2,0))
922

Ko
: _—(Z > (w27 O)) .
n=w> dw,
By virtue of (3.10), only the terms with £ = 0 will contribute to the function and
hence it is independent of the variable z3.
We now choose w’ = w(¢) and write

25

Var

where a; = ayo and where by = by (¢) denotes the inner product between [, 1,0)
and g“é‘ /</ai. By the Cauchy—Schwarz inequality we have

oo
faw.a0n@ =Y _ by
k=0

|bi| <1
for all k. But the auxiliary condition af';"ft’o)(tI)(t)) = 0 requires
by o, @(@0)57
— == kbj————, (3.11)
Jai ; N

which in turn implies that

fiaw,0,0@(1) = \/__ — (1)) Zkbk (B(1))5 Zbk (W(1))4

k=2 Va vk
(w(f))g
1-k)b
\/_0+E ( Yo ——= Ja

Taking absolute values, we find (since |b;| < 1) that

Eo,(0(0), (1,00) = | fa, 0.0 (@) < \/— + Z(" +1 (u;(%)z'

In the same way, we treat the Bergman kernel of Q7 at w(t):
()2 D)2
Ko (b(t), (1) = » @ > &)2

*
= %k 4

0Z=/ 10212 d?¢, dPes
Qf

where

forall k > 0.

Third Step: Bounds on the Coefficients ay and af

In the following lemma we describe the lower bound for the a; and the suitable
upper bound on af that is needed.
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LEmMA 3.2. Fork > 1,

a > 36 2(k+D p(k+1)/m  2x3+Q2a/b) (x2—1/2m)

1
Cy
k
Moreover,

1
ao > et and at < 23+ Q2a/b) (2= 1/ 2m)+2/m.

Cx

where Cx denotes some unimportant constant.

Proof. (i) We first carry out the details for the coefficients a; with k > 1. Let
1 1/2m y2” 1/2a yzd 1/2¢ -1
d(y) = |:<;> + (T) + (T) :| .

{2/ | 123l < 327, |22] < S (123D} C Q.

Then we have

Using polar coordinates and then the scaled variable n = t~*y, we obtain

ai > / (/ 22| d2Z2) d’z;
lzal<t/2m/2\ J 22| <9 (123])/12
11/2m/2 (/12
= 4712/ y<f x 2K dx) dy
0 0

tl/Zm 2

22
— 12—2(k+1)/ y¢(y)2k+2 dy
K+1 0

27_[2 t—(xg—l/Zm)/z

— 1272(k+1)t2)c3 / n(¢(tx3n))2k+2 dn
k+1 0

But we observe that

1 1/2m b/a dfc-1
¢(fx3rl)=[<-> TR :| =12y ()

t 12w

with
1

px2=1/2m 4 nb/a + nd/c :

Y(n) =

This gives us
27[2 l—(x3—1/2m)/2
a > ; 112—2(k+1)t2(k+1)x2+2x3/ ()2 dn
+ 0
27.[2 1
> . 12—2(k+1)t2(k+1)x2+2x3f nw(n)2k+2 dn
+1 0

for small enough ¢. Here we use that x3 > 1/2m.
We split the interval [0, 1] into /; and I, where

I = [O’I(u/b)(m—lﬂm)] and I, = [[(a/b)(Xz—l/ZWt)’ 1.
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On I, we have
Y(n) > j1m 2,

hence

/77150(77)2’“r2 dn > 372(k+1)t*z(kJrl)(xzfl/Zm)/ ndn
I

I

= l . 37 2(kAD 2a/b)(x2=1/2m) | =2(k+1)(x2—1/2m)

Thus we obtain the estimate

2
T 122041 (20k+Dx2+2x3 3 =2(k+1) ; 2a/b) (x2=1/2m) _ ;=2(k+D)(x2~1/2m)

>
=

2
T 36—20k+D) f (k+1)/m  2x3+(2a/b)(x2—1/2m) (3.12)

T k1
(ii) For the case k = 0, we also use the interval I,:
72 1
ap > —tz"z”“/ ny(n)* dn.
72 ((@/b)(x2—1/2m)

On this interval we have
Y(n) = 7

and

1 1
f nY(n)?dn = —/ n' =2 dy
I 9 t(a/b)(x2—1/2m)
— 1 ( _ t2(17b/a)(a/b)(xzfl/2m))'

18(1 — b/a)

For small enough ¢, this will give us

ap > C*f2X2+2X3.

(iii) We now estimate g from above in a similar way, starting with

aj < / </ |Z2|2d222) d*z;
lz3]<r1/2m\ J 22| <9 (| z3])
t1/2m d(y)
=47t2/ y(/ x3dx>dy
0 0

zf(ngl/Zm)

22 fo n(é (5 m)* dn

t*(.\:3fl/2m)

— 7T2t4x2+2x3/ r],(//(n)4 dn
0

=n2t4)‘2+2”< f nyr(n)* dn + / nyr(n)* dn + /1 n(wn))“dn), (3.13)
I I 3

where I3 = [1, ¢~ (x3-1/2m)],
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Now we estimate from above:

1@/b)(x2—1/2m)

/ nyr(n)*dn < t“““‘l/z’”)/ ndn
I

0
< t74(xz71/2m)+(211/b)(xz71/2m) — t(2a/b74)(xzfl/2m),

1
[ mtan= [ 1=/ gy
I @/b)(x2—1/2m)

Because 2b > a, we have

1
4 a/b—4)(x2—1/2m)
dn < —— ¢ .
o < s

Finally,
l—(x3—l/2m) oo 1
4 1 —4d/c 1—4d/c _
dn < dn < dn= ———.
/ISW(U) n_/l n < /1 n n 20dje—1)

In conjunction with (3.13), this yields

4x2+2x3+Q2a/b—4)(x2—1/2m) — C/

t2x3+(2a/b)(xz71/2m)+2/m

af <c't
which proves the lemma. O

We now can finish our proof of Theorem 3.1:

Eq,(w(1),(1,0))
£(/2m)+)k

< — +Z(k+1) N

1 1
pr2+x3 + IX3+(a/b)(xz71/2m)+1/2m

IA

oo
Z (k + ])3/2(36t—l/2m)kt((l/2m)+8)k
=2

1 36%1%¢ > 372 P
— Kk e\k—
- tX2+x3 + IX3+(a/h)(xz—1/2m)+1/2m Z(k + 1) (36t )
k=2
1 t2£

< ”
— pXotax3 e IX3+(a/b)(xz—1/2m)+l/2m

(for t < 727Y#)

t25
*
=c¢ tx3+(@/b)(x2—1/2m)+1/2m ’

with some constants ¢”,c¢* > 0 (independent of ¢). In the second inequality we
have used (3.12); and in the next-to-last line, the second member dominates the
first one. This follows from the choice of ¢.
On the other hand,
tE
VKo (w(1), w(1)) >

Vs @b (a1 2m+1/2m
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Hence we obtain -
Eq (w(1),(1,0)) .,
— <ot

Ko:@(),w(1) —
together with (3.9), this proves the theorem.
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