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Geodesics on Quotient Manifolds and
Their Corresponding Limit Points

TorBIJIORN LUNDH

1. Introduction

Consider a discrete group and its quotient manifold. We can choose to view a
point& on the unit circle or its corresponding geodesics on the manifold. It is well
known that if¢ is in the conical limit set then the geodesic will return infinitely
often. What is the general relation of the tangency level of the accumulating orbit
points att and the “escape rate” of the geodesic?

What is the relation between the geodesic escape rate artditinessof the
archipelagoof the group seen from the limit poig®

Let us now give some more background and details on these two main questions.

1.1. Discrete Groups and Geodesics

LetT" be a discrete group of M6bius mappings preserving the unit ball (or the unit
disc whem: = 2). Sincerl is discrete, we know that all the cluster points of the
orbit UyEF y(0) are situated on the unit sphere. This set of accumulation points
is called the limit set A. An important subset oA\ is the conical limit setA.,
which consists of those limit points that have orbit points accumulating in a non-
tangential way.

A way to study how the orbit points accumulate toward the boundary is to see
at what “rate” they approach the limit set by using fPancaré seriesh(s), of
the grouprl™; this series can be defined as

h(s) =Y A—1y )"

yel

By Sullivan’s dichotomy, the conical limit set has either full or empty Lebesgue

measure, depending on whether the séri@s- 1) diverges or converges; see [17].
Nicholls [14] studied a family_ («) of generalized limit sets (see Definition 2.3

in the next section), where for example= 1 gives the usual conical limit set

anda = % gives a limit set for which parabolic tangency of the clustering orbit

points is allowed. From [14, Thm.R1] we se¢hat if #(«(n — 1)) converges then

|L ()| = 0.
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The convergence of the Poincaré series is quantified bgrtieal exponent
of T, defined as(I") = inf(s : h(s) < oo). Bishop and Jones showed in [6,
Thm.1.1]that the Hausdorff dimension of the conical limit set of a nonelementary
Kleinian group(n = 3) equals the critical exponent.

A point in the conical limit set can be represented by a geodesic on the quotient
manifold (see Section 2) that returns infinitely often to a compact neighborhood
of the starting point, so the main result of Bishop and Jones was also formulated
in terms of studying the set of initial directions of geodesics that remain bounded.
There is quite a history to this problem formulation; see for example [7; 11; 15; 16].
More recently, Fernandez and Melian [9] have shown a three-way classification
for the sets of escaping geodesics on Riemann manifolds—that js, dima (¢) =
oo, depending on the cases if the manifold has finite area or if a Brownian motion
onitis recurrent or transient. In [5], Bishop presents a result on the Hausdorff di-
mension on the limit set using the sets of geodesics that remain bounded as well
as the “linear escape limit set”. See Remark 4.7 for the connection with the limit
setsL(w).

Bishop suggested the following problem to the author: Let a point particle
trace with unit speed along a given geodesic on a quotient manifold apd)et
be the distance to the starting point from the particle at timé&e know that if
liminf,_, » ¢(t) < oothenthe geodesic corresponds to a conical limit paivitat
can be said in general about the limit pointf the functiong(¢) is known?

In Theorem 4.1 we have the following result connectinwith the limit sets
L(a). Suppose that is on the unit sphere. Théne L(«), for % <a <1 ifand
only if

Iingf (a(p@) +1) —1t) < oo.

1.2. A Potential Theoretic Connection

By studying different limit set< («), we take into consideration the kind of ap-
proach with respect to the rate of tangency of orbit points clustering toward a limit
point on the boundary.

In [13] the author studied an alternative measure of the orbit that was linked to
potential theory. This was done by asking if the “fattened” orbit (i.e., the archipel-
ago; see Section 8) is “thin”, in various meanings, when viewed from the boundary
point in question.

In Proposition 9.2 we give a result connecting the functérn and its related
point& on the unit sphere with the thinness of the archipelagb of the follow-
ing sense. The archipelago is ithin até (see Definition 9.1) if

3P = oo,
i

whereg; is theith (generalized) local minimum ef(z).

From various results in [13, p. 310], one sees that the conical limit set and the set
on the boundary where the archipelago is not minimally thin (see Definition 8.1)
are quite close. The question has been raised of whether they do in fact coincide
there; that question is now settled by an example (see Section 10) of a Fuchsian
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group with a limit point outside the conical limit set but where the archipelago is
not minimally thin.

In Remarks 8.2, 8.4, and 10.1 we give an intuitive probabilistic motivation for
why the counterexample works by implicating recurrence of a special stochastic
process on the Riemann surface depicted in Figure 6.

2. The Setup

Let B be the unit ball inR” (or the unit disk ifn = 2) and letl" be a discrete
group of Mdbius transformations that presenBsWe will denote the elements
inT by y;. LetS = B/T" be the (Riemann) quotient manifold obtained frénby
identification ofl"-equivalent points. (If: < 3 thenS is a manifold. For higher
dimensions it may be an orbifold rather than a manifold, but we will adopt the
notion from [1, p. 79] and calf a quotient manifold nevertheless.)

Furthermore, let be the base point aficorresponding to the origin if, and
let g(¢) be a parameterized geodesic $8uch thatg(0) = xo and such that the
arc length ofg(z) for r from O tot is 7. Let ¢(¢) be the distancé(g(z), xo) on
the manifold. Thus we have thatt) < ¢. The geodesic fromyg is viewed inB
as a straight line from the origin to a boundary pdirand thus corresponds to a
geodesicg(t), on S.

We can think ofS as the result of taking the Dirichlet domain&naround 0 and
gluing together corresponding sides according to the generatbrd bk “seams”
on S will then correspond to the set shwhere the graph af “has a corner”—that
is, there are at least two different geodesics fogyo a seam point; see Figure 1.

(1) A

\J

Figure 1 Example of a graph af

We will now give some definitions taken from [13] and [14].

DEFINITION 2.1 [14, p. 5]. Let € B andk, @ > 0. We define

a
X - —

I(a: k,a)= {xeaB:
la|

< k(- |a|)“}.
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DEFINITION 2.2 [14, p. 23]. Lety; be the elements of the discrete grdund
let z be the base point of the orbit. Then

Lz ko) =) JIi@ k. a).

m=1i>m

In the next definition we take the base point to be the origin.
DEFINITION 2.3 [13, Def. 3.14]. Denote the-limit set by
L) =|JLO:k ).

k>0

REMARK 2.4. The special case when= 1 gives us the conical limit set (also
called the nontangential limit set); thati(l) = A.. See forexample [13, Lemma
3.13] for a more detailed comparison.

In [13, Def. 5.2], a subset of the limit s€f(«w) was introduced by taking the inter-
section instead of the union in the following manner.

DEeFINITION 2.5.  We define thetronge-limit setto be

Li(@)=[LO:k o).

k>0
For any strictly positivex, we have
0B D L(a) D Ly(a) D L(a+¢) forall ¢ > 0.

It is well known that the conical limit sef (1) is independent of the choice of
base point (see e.g. [10, p. 29]). We will show that the same holds wke®B, 1),
telling us that our restriction in Definitions 2.3 and 2.5 to fix the base point to the
origin is not that essential.

LemMA 2.6. For any pointz in B,
UL(z:k,(x) = UL(O:k,a)

k>0 k>0
if « < 1 That is, L(«) is independent of the base point of the orbiiif< 1.
Similarly, £, (@) is independent of the base point of the orbit ik 1.

Proof. Given anx < land & € B, supposer € | J,. o L(z : k, o); thenx € L(z :
k, a) for somek > 0. We want to show that there iskasuch thatt € L(0 : K, ),
whereK is dependent on, z, andk.

Denote byé the hyperbolic distance from 0 tg § = d(0, z). Since a Mdbius
mapping acts as an isometry, it follows tldat d(y;(0), y:(2)).

Sincex € L(z : k, @), we havex € I(y;(z), k, «) for infinitely many indices.
Call that set of indiced. Lete < 1/2¢% and define/, to be the (infinite) subset
of J such that

Je=1{ieJ |1-1|yi(2)| <&}
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Thus, ifi € J, then

'x _ @ < ke®. @
lyi(2)]
We know thaty;(0) lies on the hyperbolic sphere

C={¢eB|d( vyi(z) =48}

Let us now make an Euclidean estimate of howyfa0) can be fromy;(z) by
computing the two extremal distancestdrom y;(z). Leta be the distance from
y;(z) tov, the point closest to the origin ifi, and letb be the distance to the point
B furthest away from the origin i@'. See Figure 2.

-t

X

Figure 2 y,(0) lies on the hyperbolic sphei@ centered ay = y;(z) with v, B,
andy lying in the unit ball on the ray from the origin throughwherev is the point
on the sphere that is closest to the origin ghid the point farthest away; is the
Euclidean distance fromto v, and similarlyb is |8 — y|

We have that

A—1vD) 1+|Vi(Z)|>
1=y A+1vD

and thus may derive the following rough estimate:

3¢°A— 1y < 1= | < 2°L - |yi(2)).

5 = d(yi(2), v) = d(0, 1i(2)) — (O, v) = Iog(

We can then estimateas
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a=lyi—Pl=A-)—A- |y
<2e°(L— |y (D)) — A= 1yi(D)]) < e(2e® = D). (2)

Similarly, for b we have

1 1
b=|Bl—lri()| < A— i) - @(1— lvi(2)D) < 8(1— @). 3)

Defining# to be arctatu/|y;(z)]), we estimate

I I I 7€)
lyi(0)] lyi(2)| '
But from (2) and since we have choser: 1/2¢°, we can estimaté as follows:
s _
o —arctan—r— < 4 ¢ _ s@e - < e2¢’.
i ~ vl 1-e¢ 1-¢
Using inequality (1), it follows that
(0
‘x—& < ke® +g2¢° for ieJ,. (4)
ly:(0)]
Now (3) yields
1 £
We aim to find aK such thatt € L(0 : K, «), that is,
vi(0) -
— —— (1= (0. 6
IO A ©

Let us therefore study the right-hand side of this expression. From (4) and (5) we
obtain
yi(0) ' - 5 ( € )“"
x— ——=I(1— |y 0D < (ke” +£2e°)| 5—
‘ IO A 260
= (2¢°)“(k + 2¢%"%). ©)

Sincea < 1 we have that'~® < 1. Hence, by pickingk = (2¢%)%(k + 2¢?%),
inequality (6) will be satisfied and soe L(0 : K, «). This proves that («) is
independent of the base point of the orbitif 1, which ends the first part of the
proof.

To prove the statement about the strenrtimit set, let us suppose that

xeﬂL(z:k,(x), a<l (8)
k>0
We aim to show that € (), L(0 : k, «). Itis therefore enough to show that
L(0: k, ) for any givenx > 0.
Note from (8) thatx € L(z, k, «) holds trivially with the special choice @f =
Kk /2% where (as before) = d(0, z). Thus,x € I(y;(z) : k, ) for infinitely
many indices. Let us denote this set of indices y Now pick
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k 1/(1~a)

LO:c,a) CLO:co,a) if ¢1 <cp,

Since

we can without loss of generality assume that 2(2¢%)2*. That gives us that
k < (2¢%)* ande < 1/2¢%, so we can use the estimate in (7). LetJ;; then

(0
x — M‘a— 1y (0)) ™% < (2e°)%(k + 2€°e1%) = 2k(2¢°)% = k.
17:(0)]
Thus as in (6) we have that, for everye J. (which are infinitely many)x €
I(v;(0) : «x, ). Hencex € L(0 : k, @), which ends the proof. O

REMARK 2.7. Itis easy to see thél (1) is notindependent of the base point. For
example, lef” be a Fuchsian group generated by a single hyperbolic generator in
the unit ball. Then the limit set consists only of the two fixed points that are in
A; however, the points are ifi; (1) if and only if the base point is taken to be the
origin.

3. The Case < a < 3

Supposé is a parabolic fixed point that can be reached from the origin along a ray
inside the Dirichlet domain. The geodesic will then run straight out on a parabolic
cusp on the quotient manifold. Hengé&) = ¢, which is the maximal escape rate.
That is,¢(¢) < 1 will always be true, even far ¢ A.
Thus thep function will not be of any help for classifying points £ («) when
1

0 <« < 3. Letus quickly turn to the next case.

4. The Case: <a <1

THEOREM 4.1. Suppose tha is on the unit sphere. Then we have the following
two equivalences

(i) £ €L(w), for <o <1, ifandonly if

|ip1 inf (a(p() +1t) —t) < oo;

(i) € €Ly(x), for 2 <a <1, ifand only if

Iingf (a(p@)+1t) —t) = —o0.

COROLLARY 4.2. Let% <o <1 Then

1-—
fe L = liminf 0 <17,

o
lim inf @ 1o

—>00

— e li(a).
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Before we plunge into the proofs, let us turn our attention to an auxiliary sequence
related to the functiop.

4.1. The Sequence of Generalized Local Minimagfah

Let the sequencg(t;)} be the sequence géneralizedocal minima for the func-
tion ¢ in the following sense. Let us follow the geodesic mapped to the unit ball,
where it will be the ray from the origin to the boundary pajnaind letD; be the

ith fundamental domain that we visit on our way from @Gtdbserve thaD; is a
copy of the Dirichlet domain around the origin mappedybyLet nowg; be the
(hyperbolic) distance to the ray from the single orbit paif{D) in D;, and let,

be the distance from the origin to the point on the ray that is closest@p, see
Figure 3.

r(t;)

&

Figure 3 Depiction of case where the closest point (on the ¢ay,(r)), toward&)
to y;(0) lies outside the fundamental domdn; compare taps in Figure 4

If the closest point on the ray lies insidg theng; = ¢(z;) will be a local min-
imum, since we travel with unit speed along the ray. However, in the case shown
schematically in Figure 3, we will getgeneralizedocal minimum point outside
the graph ofp(¢); see Figure 4.

ReEMARK 4.3. Note that such generalized local minigyawill never be smaller
thane(z;) because the closest orbit pointis ;(0) for every point inD;_;.
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@3 T ==

\J

I3l [5) I3

Figure 4 Example of thep(r) graph and the sequence of generalized local minima
atg; = ¢(1;); note thatp; = ¢(11) andg, = ¢(12) butes > ¢(t3)

We will repeatedly use this auxiliary sequerice ¢;} of generalized local minima.

LEmmA 4.4. If
0 <liminf 2 ~ 1
t—00 t
then
! i
iminf 2% — liminf £
t—00 t i—00 i

Proof. We can assume thép;} is an infinite sequence. If not, then there exists an
integer! such thaty; is the last generalized local minimum. That is, the ray from
the origin in the unit ball toward the poigtwould never leave the fundamental
domainD;. Letr(¢) be the ray toward € 0B such thati(r(z), 0) = ¢. Letr > 1,

and consider the hyperbolic triangle £ with corners inr(¢), r(z;), andy; (0).
The side lengths are—¢;, ¢;, andp(¢). Note that the angle atz;) is/2. From

the triangle inequality we have that

=t <) <t—1+¢r.
Hence,

liminf @:L

11— 00

which is not allowed. Thus we have that;} is an infinite sequence, and then

liminf £
i—oo
exists.
By Remark 4.3 we have immediately that
t . i
iminf 2% < liminf ¥, ©)

t—00 t [—00 i
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Let us first assume(r;) = ¢; for all i; that is, we assume the generalized local
minima are true local minima fag(-). (At the very end of this proof we will treat
the general case.) In this situation we have that, for a givéimere is &; such
thatz; + §; is a local minimum of the functiog(-)/ - . Note that the line from
the origin to the points; + §;, ¢ (¢; + 8;)) will be a tangent to the graph ¢f As
before, we examine a right-angled triangle with corners(in+ §;), r(¢;), and
¢;(0). The side lengths are thén ¢;, andy; := o(t; + §;).

We will use the hyperbolic version of Pythagoras’s theorem (cf. [4, p. 146]):

coshy; = coshs; coshy;. (10)
From our previous assumption and (9), we have that
@)

0 < liminf —= < lim |nf —

t—00 t i—o0 ti

Thusg; — oo. Hence
e§01
coshy; ~ —
i 2
if i is large.
Sincey; > ¢;, we have the following approximation of (10) for large index

eVi ~ coshs;e? .
Therefore,
@(1) ¥i

liminf —= = liminf

t—00 t i—00

; + log(coshs;
— liminf <p+g—()
i—>00 t; + 6;

(11)

ti i
Let us now separately study two cases.
Case 1:limsup_, ., 8; < oo. In this case we see from (11) that
_ i/t: +log(coshs;))/t; . . i
liminf — (p() = liminf vi/ti + 109 )/ — liminf £
1—00 i—00 1+ 5,-/1‘,- i—o0 f;

Case 2:limsup_, ., 8; = oo. In this case there are infinitely many indices
such that

e 13
coshs; ~

2
From (11) we have that
o i+68 —log2 . i/ti +68;/t;
fimint 20 _jiming £00 71092 i g @/0 i/t (12)
1—00 t i—o00 t; +6; i—00 146/t
To simplify the notation, let
. . i k +x
k=liminf — and
o fx) = Trx
We have then that s
t i
liminf 20} > lim inf f(—)
t—00 t i—00 t;

We note also that & k£ < 1 and that
fl(x) >0 & k<1



Geodesics on Quotient Manifolds and Their Corresponding Limit Points289

If Kk =1thenf(x) =1and thus

liminf 20} >1
t—00 t
which is not allowed. Hence we have tltak 1, which yields
- o 8 - i
I|£n inf @ > liminf f<7> > f(0) =k = liminf <p_ 

We are now done under the assumption that) = ¢; for all ;.

Finally, let us treat the case whepér;) < ¢;, schematically depicted in Figure 4
for i = 3. We first concentrate on the graph consisting of the dotted-arc contin-
uation whery is such that (r) € D;. In other words, we examine the quotients
d(r(t), vi(0))/t. Asin the preceding arguments (starting at the point where we as-
sumedp(t;) = ¢;), we conclude that

liminf £- = liminf inf

i—oo I i—oo t

On the other hand,
e d(0), 7(0)

dr(®). v(0)
t

dor®). ) _ o e

< inf ——————2 =
t t r(t)eD; t r(t)eD; t
Thus ) ©
L i . . t . t
lim inf #i < liminf inf & = liminf (p—. O
i—»oo i—oo r(t)eD; t t— 00 t

We will also need the following variant of Lemma 4.4.

Lemma 45. Let <o <1 If liminf,_.o ¢(t) = oo and if
|itm inf (a(p(t) +1t) — 1) < oo,
then
Ii[n inf (a(p(t) + 1) — 1) = liminf (a(g; + 1;) — 1;).

Proof. Since the proof is completely analogous to the proof of Lemma 4.4, we
give only a short outline.

For simplicity we defineb(¢) := a(¢(t) + t) — t. With the same triangle argu-
ment as before, we see thatdf;} is finite then

a2t —t) —t <O@) <at—t;+¢p) —t,
and sincex > $ we have that
liminf ® (1) = co.
11—

Hence we can safely assume that the sequéngés infinite.
Next we assume that(¢) has a local minimum at + §;. Similarly to (11), we
have
liminf ®(r) = liminf a(p; + log(coshé;) + 1 +8;,) —t; — &;.
11— 00

—>00
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Now we treat the two cases.
Case l:limsups$; < oo. Then
liminf ®(¢) = liminf a(p; + ) — t;.
t—00 i—00
Case 2:lim supé; = co. Then
liminf &) =liminf a(p; + 1) —t; + 8;(2¢ — 1) > liminf a(p; + ;) — 1;,
—>00 1—00 1—00

sincea > 1. O

4.2. Proof of Theorem 4.1

For part (i), note that we already know thaite £(1) = A, if and only if
liminf,_ . @) < oo. This takes care of the case= 1. From now on in the
proof, we will assume that < 1 and that liminf_, o, ¢(¢) = co.

We have that € L(«) if and only if there is & > 0 such that € L(0 : k, «).
This is equivalent to saying that, for infinitely mapyin T,
g - Lol < k@— D

il

This can be expressed using the notation in Figure 8;as kh{ or as

r; Sin(9;) < k(r; cog6;))” (13)

for infinitely manyi.

We note from Figure 5 that; is small if and only if the anglé; is small. There-
fore & € L (@) if and only if (13) holds for infinitely many such local minimum
points in{z;}.

Let us now give estimates for the components in (13). From a standard calcula-

tion we have that
2 — T
t; = log .
i

Sincer; « 1, we have the estimate
ri A 2 expl—1;). (14)

See [4, p. 162] for the following relations betwegnand the angl®; in Fig-
ure 5:

sin(9;) = tanh(g;); 15)
1

cog¥;) = W, (16)

tan(9;) = sinh(g;). a7

Since we assumed thats not a conical limit point, we know that lim ipf. ., ¢; =
oo and thus we can make two estimates of (15) and (16) as follows:
sin(6;) =~ L, (18)
2

cog6;) ~ P (19)
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I

r(t;) ©;
vi(0)

¥

Ri

Figure 5 Geometric relations betweeh, ¢;, ands; (the latter two shaded to in-
dicate they are the only hyperbolic distances in the figure) in the upper half-space,
whereg; is the shortest hyperbolic distance from the orbit point to the vertical line
(i.e., the hyperbolic distance along the circular arc from the orbit point#o on

the vertical line); the hyperbolic distance frotf;) to the image of the origin in the
upper half plane is;

Using the estimates (14), (18), and (19) in condition (13), we obtain the relation
Eel(a) = Qexp—1)"" < K(2exp—g¢;))"
for infinitely many indices and for some constaik. Let
C =log(K) + (2« — 1 log 2.
We can now write the preceding inequality as
—til—a) < —ap; + C.
Hencet € L(«) if and only if there exists & such that
alpi+t)—t; < C

for infinitely many indices. Thus

tel(n) < Iipl!)ron‘ (@i +1;) —1;) < 00, (20)
which (thanks to Lemma 4.5) is equivalent to the statement

tel(a) < Iingf (a(p(t) +1) — 1) < 0.

(Recall that we could make the assumption that lim.inf ¢ () = oo after treat-
ing the casex = 1 separately in the beginning; hence all the assumptions in
Lemma 4.5 are fulfilled.) We are done with the proof of the first statement.

In proving part (ii) of Theorem 4.1, we shall treat the case % separately at
the end.
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We note that € L,(«) ifand only if& € L(0 : k, «) for all £ > 0. Using the
same arguments as before, we will in this case have the analogue to condition (13)
as¢ € L («) if and only if

ri Sin(9,-) < k(r; COS(@,-))“ (21)

for infinitely manyi and for allk > 0. Using (14), (18), and (19), we see that (21)
is equivalent to
—ti(l—a) < —ap; = C

for infinitely many indices and for allC < co. Thusé € L, () if and only if
liminf (a(p; +1;) —t;) = —o0, (22)
which by Lemma 4.5 is equivalent to

tel(n) < Iitnngf (a(p(t) +1) —t) = —o0.

For the case = % we note that the assumption> % in Lemma 4.5 is used only
to make sure that we have an infinite sequefggk

Suppose now that = 1 and thats € £,(3). We will show that in this case
{e;} must be infinite. The idea of that argument is taken from the proof of [14,
Thm. 2.4.10], which states that a conical limit point cannot appear on the boundary
on a Dirichlet domain.

Let us study the unit ball tessellated by images of the Dirichlet domain around
the origin. We know that the ray tp visits such a domain only once. Since the
number of local minima is finite, we conclude that there is a dom&inwhere
the ray finally enters and then never leaves on its way; tthat is, there is &
such that¢ € F; for everyc > C. Recall that every point in this open domdin
has the property that it is closer to the orbit poi0) in it than to any other or-
bit point. Let us for simplicity map the whole picture by the mapgip‘d, so that
Fo = ylfl(Fi) is a Dirichlet domain centered at the origin. Let us now study the
ray from the origin tatg = y,.‘l(g). We see that this ray is iy and parameterize
it by c&p for ¢ € (0,1). Let us now construct an open hyperbolic ball centered at
c&o with radiusd (c&, y;(0)). That s, let

B. = {z :d(z, céo) < d(céo, 0)}.
We note thatB, does not contain any orbit points, and the same is true for the
union .
B= U B,.
ce(0,])

We note that? is a horoball(with Euclidean radiu%) that is tangent to the unit
ball at&,.

Finally, let us mapB back toy;(B), which is tangent t§, has a radius greater
than or equal tql — |y;(0)|)/2, and contains no orbit points. We conclude then

from Definition 2.5 that ¢ £,(3). We thus conclude that the sequerigg} is
infinite.
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Furthermore, sincé e LZS(%) we have
liminf (¢; — ;) = —o0 < o0
11— 00
by the reasoning that led to equation (22), which is still valid. Becéuges in-
finite, we can now use the proof for Lemma 4.5 to obtain that
liminf (¢(t) — 1) = —c0.
—>00
On the other hand, assume that
liminf (p(t) —t) = —o0.
—>00
If {¢;} is finite then, from the beginning of the proof of Lemma 4.5, we have
(sincea = 1) that2(e(r) — 1) = ®(t) = —3#;, which contradicts our assump-
tion. Hence we conclude th@p;} is infinite. As before, we can use the proof of

Lemma 4.5 to see that
liminf (¢; — ;) = —o0,
1—> 00

which is equivalent tg € £,(3). O
4.3. Proof of Corollary 4.2
Supposé € L(«). Then, from Theorem 4.1(i), it follows that
Ii{‘n inf (a(p) +1t) —t) < oo.

Hence there is & < oo such that
L 11—«
liminf | p(t) — ——¢ ) = K.
t—00 o

iminf ¥ < 1=«
=00 t o

Thus

For the second implication, suppose that

a = liminf 20 L 17%
t—00 t o
By Lemma4.4a = ¢;/t;. Lets .= (1—a)/a —a.
We now have that for, every > 0, there is an infinite set of indices = {;}
such that

—= —a<e¢ forall jelJ.

()
lj

This will especially be valid for our choice ef = §/2 (note thats > 0 by our
previous assumption). Therefore,

p(t;) <tila+e) forall jeJ
and so

l1-«

) b<tfate—T"%) =5 =—2
) — i<tila+e———)=ti(e—=08) =—=t.
AY; <1 o J 2l
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We conclude, using Lemma 4.5, that
liminf a(e(t) +1) — 1) = —o0,
1—00

which by Theorem 4.1(ii) is equivalent foe L (). O

4.4. A Global Result
Using Theorem 4.1 together with a Borel-Cantelli type result from [14] yields a
global result for the limit setg ; (@) and their corresponding Poincaré series.

CoroLLARY 4.6. Let yy be a geodesic off/I" starting at the reference point
xg in the 6 direction, where) is on the unit sphere, and lgi, be they distance
function fory,. Let|-| be the(n — 1)-dimensional Lebesgue measure on the unit
sphere, and le§ < o <1 If

He lim inf @(ps(6) + 1) — 1) < ooH ~0
then the Poincaré type series
> A= @) = oo

viel
Proof. If liminf,_, o (a(@e(t) + 1) —t) < oo then by Theorem 4.1 we have that,
wheny, is transformed into the unit ball, it ends at a pointfx). Hence if
‘{9 : Ii!”n inf(a(pe(t) +1) — 1) < ooH >0
then|L(«)| > 0. Now [14, Thm. 21.1]tells us that if| L («)| > 0 then
> A= @) = oo. m
viel
REMARK 4.7. Compare this corollary with the forthcoming [5, Lemma 2]. From

the definition ofA, in [5] and Corollary 4.2 here, it follows that\ A, = 5(1%0()

5. A Ladder-like Example

We now study a Riemann surface that looks like a ladder or a “one-dimensional
jungle gym”. Our surface is an infinitely long body with evenly distributed “holes”;
see Figure 6.

3] C2 C3 Cq
€ —,‘ﬂ e O

Figure 6 A one-dimensional jungle gym
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For simplicity let us assume that the distance between the centers of two con-
secutive holes is 1, and denote the shortest curve circumscribing; Hmfec;.
Furthermore, let be a geodesic frong not intersecting any; and such that
(@) = t alongc. We will also assume that the shortest closed arc crossing both
¢j andc has length 1.

We will study a geodesig(¢) started inxg and winding through the holes in
a consecutive way. That is, the geodesic will alternate between crossjrand
c, and if g(s) € ¢c; theng(¢) ¢ ¢, fort > s andk < j. Let N(j) be the number
of intersections of () with ¢;. Note thatg(¢), and hence the corresponding limit
point& € 9B, will be completely determined by the sequerisé j)}72;.

This jungle-gym construction, together with Corollary 4.2, will be used to give
simple examples of € L(a) \ L(a) Where% <a<a <1l

CoroLLARY 5.1. LetT be given by the jungle-gym construction just described
andé& by the geodesic making( ;) turns in hole;j twisting out in a consecutive
way. Assume that(j) > 1 and that the limit average of the number of turns is
bounded, that is,

i} 1<
N = limsup- N(j) < oo.
i»oco I ]Z:;

§e£3<_L)\L<]Y—+1>.
N+1 N+2

Proof. We have that ¢ £(1) because the geodesic does not return at all.

Now we estimate the local minimum @fz) about where the geodesic has made
N(@) turns in holei. Let us denote that “ending” local minimum lpgy, = ¢(#;,).
Using the “little ordo”o(-) function immediately yields the estimate

Then

i, —o(,) < Pi, < ip +o0(,).

We will use the following estimate:

ie+ Y (N() =D —o0(ie) < ti, <ic+ Y NG+ o).

j=1 j=1
We see from the construction that

liminf 2 = liminf %
i— 00 i i—00 tig
Hence the previous estimates give
liminf —————— <liminf LA liminf -———.
imoe 1+ 373 5N imoe 1l imoo 23 NG

Thus we see that

-
1
3
le =
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Now, if x = (1 — a)/a thena = 1/(x + 1). We can then use Corollary 4.2 and
Lemma 4.4 to conclude that

e\
N+1 N+2

which is the desired expression. O

6. The Casex =1

Itis well known that if the geodesig(r) returns infinitely often to a compact neigh-
borhood ofxg then the limit poin is in the nontangentially limit set .. Let us
try to be a little more precise about this.

ProprosITION 6.1. Letthe setL(- : -, -) be as in Definition 2.2. Then
£eL@:sinhK),]) <— Iil"n inf p(t) < K.
Furthermore,
el Ii[m inf (z) = 0.

Proof. Suppose thaf € L(0 : sinh(K), 1). Using the notation from Figure 5, we
know that there are infinitely many orbit pointg0) such thatR; < sinh(K)#;.
We can reformulate this as: there are infinitely man{) such that

tan(;) < sinh(K).

Using equation (17) gives us that, for infinitely many indicessnh(¢;) < sinh(K)
and thusy; < K for infinitely manyi. Hence

£eL(0:sinkK),1l) < liminf ¢; < K,
which by Lemma 6.2 yields the first equivalence:
£eL:sinhK),1) < liminf ¢(¢) < K.
—00

(Note that we can use Lemma 6.2 because we can safely assume;thist
infinite.)

For the second statement, we argue as before and concludgetldail) if and
only if, for every K > 0, there are infinitely many indicessuch thatp; < K.
Hence, using Lemma 6.2, we obtain

tel;() — Ii|;n inf (z) = 0. O

LemMma 6.2. If the sequencéyp;} is infinite then

liminf ¢; = Iitm inf ¢(2).

i—00
Proof. We have from Remark 4.3 that

liminf ; > liminf ¢(z;) > liminf ¢().
1—> 00 —00

1—>00
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On the other hand, we can use an argument similar to that used in (the latter part
of) the proof of Lemma 4.4 to obtain the following inequality:

¢i =infd(r(®), y:(0)) < r(t'QfD,. d(r(1), y:i(0)) = m'?efp,- @(1).
Therefore,
liminf ¢; <liminf inf @)= Iitm inf (). O

i—00 i—oo r(t)eD;

7. The Casex > 1

Whené € L(«) for ¢ > 1, we have immediately th&te A, and hence that there
exists a bounded subsequencé®f. But we can say more than this.

ProrosiTioN 7.1. Suppose tha# > 1. Then we have the following two equiva-
lences

(i) & € L(«) if and only if there exists & < oo such that
|itm inf o(r)e® " < K;
(i) & e L;(x)ifandonly if
liminf ()e@ " = 0.
—>00
Proof. We have that € L(«) if and only if there is & < oo such that is in

infinitely many L (0 : k, o). With the notation from Figure 5, this translates into
R; < kh¢ for infinitely manyi, or

r; Sin(0;) < k(r; cog6;))* for infinitely manyi.

Now, using (14), (15), and (16) yields thiaE L («) if and only if there exists &
such that, for infinitely many,

. 23

cosmm) (23)

We know thatr > 1, so it follows that every cone with vertex @ahas infinitely
many orbit points inside even if the opening angle is very small. Thus we have

2e¢ " tanh(g;) < k<2@"'

liminf 6; - 0

1—>00
and hence, using equation (15),
0= Iliminf sin(g;) = liminf tanh(g;).
1—>00 11— 00
Therefore,
liminf ¢; = 0.
11— 00
Using this fact in (23) gives us the following asymptotic relatigre £(«) if and
only if there is ak such that
liminf ¢; < k20 te~tie=b,

1—>00
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We conclude that € £(«) if and only if there is &K < oo such that

liminf ;@Y < K. (24)
11— 00
We will now show that inequality (24) is equivalent to
lim inf )™V < K’ (25)
—>00

for somek’.
In order to simplify the notation, let

f(t) =)', gi(t) =dr @), yi(0), fi(t) = gi(t)e" @™V,
Note that
fi(t) = f(t) whenr(t)e D, (26)

and thatg;(z;) = ¢; is a local minimum forg;.
On the other handf; has a local minimum not at but rather at; — §; for some
positives;. Hence, after differentiation, we get that

gi(ti —8;) = —(a — Dgi(t; — 8)). (27)
So again the Pythagorean theorem is used to obtain
coshgi(t; — 8;)) = coshé;) cosh(y;),
and by differentiation with respect tp we have

—sinh(g;(ti — 8;))g;(t; — 8;) = sinh(§;) cosh(g;). (28)
Combining (27) and (28) then yields
sinh(g;(t; — 8;))gi(t; — 8;)(a — 1) = sinh(§;) cosh(g;). (29)

From (28) we see tha}‘;g(ri — x) decreases from 0 tecoshy;) asx goes
from 0 tooco. Thus,

—gi'(t; — 8;) < cosh(g;). (30)
This estimate, together with (27), gives us that
gi(ti —d;) < COSI‘((p,-)- (31)
a—1
By (28) we see that
: —sinh(g;(t; — 8,))g;(t; — &;) :
, hs:) = i h e (t: — 8:)):
8; < sinh(é;) COS“(D[) =< Sin (gl(tl 81));
using (31), we obtain
5 < sinh<M). (32)
a—1

Since
gi(ti —8;)

filti = 8) = giti — 8p)e =D = fitye Y,

l

we have the following estimate for the functigh
filti = 8:) < filtye 7P, (33)
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We now have that
Iil‘n inf f(z) <liminf fi(#),

and the following inverse inequality will be used to prove the equivalence of (24)
and (25):

"{L"Qf f@) = Illnllorgf r(zl)nefD,- f(@) = (26) = |II;]1I£f r(:)nefDi fi(@®)

> liminf fi(t; — 8;) = (33) = liminf f;(1;) exp(—8; (e — 1))

> (32) = liminf ﬁ(t,»)exp(—sinh(cooesﬁ(/ii))(a — 1))

> (Iim inf f,~(t,~)) exp(—sinh(cosmim Inf~ oo (pi)>(a - 1)).
i—00 a—1

We can assume that liminf ., ¢; = 0 since otherwise it would follow, by Propo-
sition 6.1 and Lemma 6.2, that

£¢ L) D L) forall o >1

Hence
liminf f(z) > liminf ﬁ(rQexp(—sinh(il)(a - 1))
t—00 i—00 o —

K' =K exp(—sinh(i>(a - 1)>,
oa—1

then (24) and (25) are equivalent. This concludes our proof of part (i).

To prove part (ii) we need only observe ti§at L («) if and only if, for every
k > 0, & is in infinitely manyL (0 : k, «). Following the same arguments as be-
fore, we obtain that € £(«) if and only if

and so, if

lim inf @ie@ =0,

=00

where this expression is equivalent, by our previous reasoning (vith0), to

liminf ()@Y = 0. O
=00

Point- and Line-Transitive Sets

Note from Remark 2.7 that the results in Proposition 7.1 depend on the choice of
base pointxg € B/I". We now allow the base point to vary, letting () be as

o(t) above except that we replaeg, the image of the origin, by,, the image of

a € B. Then itis easy to see, using Figure 5 and the definitions in [14, pp. 26, 27],
thaté is a point transitive limit point¢ € 7,,) if and only if

Iip‘n inf ,(t) =0 forall aeB
and that is a line transitive limit poin{7;) if and only if

Iilm inf (. () + ¢p()) =0 forall pairsa, b e B.
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REMARK 7.2.  We have trivially thal; C 7,. Furthermore7; = @ if T is of the
firstkind, andZ, = @ if T is of the second kind (see e.g. [14, Thms. 2.2.2, 2.3.3]).

8. A Question about the Archipelago ofl’

Thearchipelagoof a discrete group is defined in [13, p. 300]. LeB; := {z € B |
d(z,y;(0)) < rr, y; e D\ {I}}. Sincerl is discrete, it is possible to find ap > 0
such that the ball®; do not intersect each other. Let us fix suchrarand let
E = U/‘ B;. Thatis,E is the “fattened” orbit of", and we call it thearchipelago
of I'.

Minimal Thinness

For the convenience of the reader, let us here include a short background and a
definition of minimal thinness (essentially taken from [13, Sec. 4]).

We denote the class of nonnegative superharmonic functions in the unit ball by
SH(B) and the Poisson kernel ate 8B, (1 — |z]?)/|z — t|", by P;. The Pois-
son kernel is a harmonic function. It is minimal in the sense thatjsfa positive
harmonic function such that(z) < P,(z) forall z € B, thenh(z) =0 orh(z) =
cP.(z) for a constant.

Let us now make a variant of this. Lete SH(B) be such that:(z) > P.(z)
holds on a subsef of the unit ball. How strong is this condition? Can there be
such a functiont and a point; in B \ E such thatu(z) < P.(z)? The answer
depends on how “bigE is close to the pole. The concept ofminimal thinness
was introduced when studying similar questions in [12]. Let us now turn to the
definition.

Thereduced functiomf 4 with respect to a subsét of B is defined as

Rf(w) = inf{u(w) : u € SH(B) andu > h on E}.

We can make this function lower semicontinuous by regularizing it—that is, ob-
taining theregularized reduced functioﬁ,f(z) =liminf,_, R,f(w).

DEerFINITION 8.1. A setE is minimally thinatt € aB if there is az in the unit ball
such thatRf (z) < P(z).

REMARK 8.2. There is an interesting probabilistic interpretation of minimal thin-
ness; see for example [3, p. 102] or [8, (bl), p. 208] combined with [8, (7.3sm),
p. 686]. LetB, be a Brownian motion in the unit ball that is conditioned by the
Doob’s h-condition, where: is the Poisson kernel with pole &at This process

will then be conditioned to exiB at¢ € 9B. Hence,E is minimally thin at¢ if

and only if there exists a pointe B such that

Pr.[B; avoidsE] > O.

Let us now combine the discrete group and the concept of minimal thinness, with
help from the following set.
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DErFINITION 8.3 [13, Def. 5.1]. We define the s#tto be

I = {x € 3B : the archipelago is not minimally thin aj.

REMARK 8.4. Using the probabilistic interpretation of minimal thinness in Re-
mark 8.2, we can view the sét in the following heuristic way. The Brownian
motion in B is conditioned using the Poisson kernel and so we see that, at each
pointx € B, there is a drift perpendicular to the level sets of the Poisson kernel
with pole in&. Since these level sets are horospheres, it follows that the drifts
are directed along hyperbolic geodesics fromowardé. Lifting this conditioned
process in the unit ball to the quotient-manifold results in a stochastic process that
is conditioned to “eventually follow” the geodesgj¢s) on the manifold. This is a
recurrent process if and onlygfe 0.

By [13, Secs. 5, 6],
A CNC Ly()

whena < 1. We also haveC (1) € £(1) = A.. Furthermoret andA . have the
same Hausdorff dimension and, in the case wheiggeometrically finite9t =
A, (see [13, Thm. 5.4, Cor. 6.1]).

The following question was raised in [13, Sec. 5, p. 316]in fact9t = A.?
We will answer this question negatively in Section 10.

9. A Generalized Version of Minimal Thinness

We now give a relationship between minimal thinness and the funetion The
result holds for a generalization of minimal thinness given in the next definition.

DEerINITION 9.1. The sef is g-thin aty if there is a measurg such that

liminf kg pu(x) > kg * n(y),
—y,x€E

wherekg(x) is the Riesz kernglx|f~".

Note that we here useglinstead ofx as the parameter so as to avoid confusion.
To find out more about this type of thinness, see for example [2, pp. 155-158].
We have that 0-thinness is the same as minimal thinness (cf. [2, Cors. 7.4.3(iv),
7.4.7(iv)]).

Let E be the archipelago df. What can be said about thethinness ofE if
the sequencgy;} is known? We have immediately that, if there is a bounded sub-
sequence ofy;}, then& € A, (and thus, by [13, Prop. 4.144,€ 91), which then
would imply thatE is not-thin at& for any g > 0 (cf. again [2, Cor. 7.4.3(iv)]).
The following result gives a more precise statement.

ProrosiTION 9.2. Let{p;} and& be as before and It € [0, 1). Then the archi-
pelago of I' is not 8-thin até& if

Zef(nfﬂ)w - 0.
i
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Proof. Let E be the archipelago df, and let{Q;} be a Whithey decomposition
of the unit ball. Using the estimates in [13, Lemma 4.11; 2, Cor. 7.4.3, p. 155], we
obtain thatE is g-thin at¢ if and only if

J @« isp-thinate.
QuNE#N
By [2, Cor. 7.4.3(iv)] it then follows thakE is g-thin at& if and only if
( diam(Q;) )"‘5
2 \asione) =%
o ST\ diSt(Q1. §)
Thus, by Lemma 4.11in [13] and (7) and (8) in its proof, we have

diam(Qy) )""3 (|1— |yj(0>|>”“’ <h,» )”"3
E _ C E _ C E — ,
<d|3t(Qka$) = { & — y;(0)| = R

QKNE#Y vjer} {oi} !
with the notation from Figure 5. Since
hi 1
—- = Cos6;) =

R;
we conclude thak' is notS-thin at¢ if

Ze*(n*ﬂ)wi — 00. 0
i

COROLLARY 9.3. If } . e = oo thenf e M.

coshy;)’

The corollary follows immediately from the preceding proposition because 0-
thinness is minimal thinness. We will use Corollary 9.3 to give a concrete example
in Section 10 of a Fuchsian group with a limit poing 91\ A..

Rarefiedness

Beside minimal thinness, let us study another potential theoretic set measure called
rarefiednessTo give a definition of rarefiedness, we recall thatRiesz massf

a positive superharmonic functionis a measure: such that, by the Riesz rep-
resentation theoreny,(x) = Gu + h, whereGu is the Green potential of the
measureuw and# is a harmonic function.

DEeFINITION 9.4 (cf. [2, Def. 12.4, p. 74). A subsét of the unit ballB is rar-
efiedat & € 9B if there exists a positive functiom in the upper half-spacél =
{x = (x1,..., x,); 0 < x,} with no Riesz mass at infinity such that

u(x) > x|, xekE’,

whereE’ is the image off under the Mébius mapping that mapsto H and&
to oo.

What can we say about rarefiedness of the archipelagoifatve know ¢(1)?
“Nothing in general” is the negative answer, as seen in the following example.
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Consider a Fuchsian grotipwith a parabolic element for whichis a fixed point.

The corresponding geodesic on the Riemann surface will be going out on a para-
bolic cusp with maximal rate (i.eg(z) = t), and we cannot tell just by looking

at ¢ () that we are heading toward a limit point at all. On the other hand, [13,
Lemma 6.3] tells us that the archipelagoldfs not rarefied at.

10. A Counterexample

Again we use the jungle-gym construction of Section 5. Recall that given a start-
ing pointxo we can completely determine the geodesic, and thus the related limit
point& on the unit sphere for the underlying discrete gréujpy the number of
turns N(j) that the geodesic makes in each hole. Because we suppose that the
holes are visited in strict order, going to the “right” for example as in Figure 6, it
follows thatg; is increasing. We will show that iv(j), the number of turns in
the jth hole, is chosen to be the upper integer part of 2Ky j thené will be in
N but notinA..

Note that in this setup; ~ j and thusp; — oo, hencet ¢ A.. From Corol-
lary 9.3 itis sufficientto showthat, with the choicefj) as beforezw e~ —

oo and
Y= Y NG A Y NG
{pi} { }

hole; {hole;}
2j 1
e .
> Y Cere Y e
(hotey (hole} /

Hence we conclude that, # .

ReMark 10.1. Recalling the conditioned stochastic process described in the heu-
ristic Remark 8.4, we can argue that, by making more and more turns, the resulting
outward drift on the jungle gym itself will be relatively small—so small that the
process will be recurrent.
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