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1. Introduction

Consider a discrete group and its quotient manifold. We can choose to view a
pointξ on the unit circle or its corresponding geodesics on the manifold. It is well
known that ifξ is in the conical limit set then the geodesic will return infinitely
often. What is the general relation of the tangency level of the accumulating orbit
points atξ and the “escape rate” of the geodesic?

What is the relation between the geodesic escape rate and thethinnessof the
archipelagoof the group seen from the limit pointξ?

Let us now give some more background and details on these two main questions.

1.1. Discrete Groups and Geodesics

Let0 be a discrete group of Möbius mappings preserving the unit ball (or the unit
disc whenn = 2). Since0 is discrete, we know that all the cluster points of the
orbit

⋃
γ∈0 γ (0) are situated on the unit sphere. This set of accumulation points

is called the limit set,3. An important subset of3 is the conical limit set,3c,

which consists of those limit points that have orbit points accumulating in a non-
tangential way.

A way to study how the orbit points accumulate toward the boundary is to see
at what “rate” they approach the limit set by using thePoincaré series,h(s), of
the group0; this series can be defined as

h(s) =
∑
γ∈0

(1− |γ (0)|)s.

By Sullivan’s dichotomy, the conical limit set has either full or empty Lebesgue
measure, depending on whether the seriesh(n−1) diverges or converges; see [17].

Nicholls [14] studied a familyL(α) of generalized limit sets (see Definition 2.3
in the next section), where for exampleα = 1 gives the usual conical limit set
andα = 1

2 gives a limit set for which parabolic tangency of the clustering orbit
points is allowed. From [14, Thm. 2.1.1] we seethat ifh(α(n−1)) converges then
|L(α)| = 0.
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The convergence of the Poincaré series is quantified by thecritical exponent
of 0, defined asδ(0) = inf(s : h(s) < ∞). Bishop and Jones showed in [6,
Thm.1.1] that the Hausdorff dimension of the conical limit set of a nonelementary
Kleinian group(n = 3) equals the critical exponent.

A point in the conical limit set can be represented by a geodesic on the quotient
manifold (see Section 2) that returns infinitely often to a compact neighborhood
of the starting point, so the main result of Bishop and Jones was also formulated
in terms of studying the set of initial directions of geodesics that remain bounded.
There is quite a history to this problem formulation; see for example [7; 11; 15; 16].
More recently, Fernández and Melián [9] have shown a three-way classification
for the sets of escaping geodesics on Riemann manifolds—that is, limt→∞ ϕ(t) =
∞, depending on the cases if the manifold has finite area or if a Brownian motion
on it is recurrent or transient. In [5], Bishop presents a result on the Hausdorff di-
mension on the limit set using the sets of geodesics that remain bounded as well
as the “linear escape limit set”. See Remark 4.7 for the connection with the limit
setsL(α).

Bishop suggested the following problem to the author: Let a point particle
trace with unit speed along a given geodesic on a quotient manifold and letϕ(t)

be the distance to the starting point from the particle at timet. We know that if
lim inf t→∞ ϕ(t) <∞ then the geodesic corresponds to a conical limit point.What
can be said in general about the limit pointξ if the functionϕ(t) is known?

In Theorem 4.1 we have the following result connectingϕ with the limit sets
L(α). Suppose thatξ is on the unit sphere. Thenξ ∈L(α), for 1

2 < α ≤ 1, if and
only if

lim inf
t→∞ (α(ϕ(t)+ t)− t) <∞.

1.2. A Potential Theoretic Connection

By studying different limit setsL(α), we take into consideration the kind of ap-
proach with respect to the rate of tangency of orbit points clustering toward a limit
point on the boundary.

In [13] the author studied an alternative measure of the orbit that was linked to
potential theory. This was done by asking if the “fattened” orbit (i.e., the archipel-
ago; see Section 8) is “thin”, in various meanings, when viewed from the boundary
point in question.

In Proposition 9.2 we give a result connecting the functionϕ(t) and its related
point ξ on the unit sphere with the thinness of the archipelago of0 in the follow-
ing sense. The archipelago is notβ-thin atξ (see Definition 9.1) if∑

i

e−(n−β)ϕi = ∞,

whereϕi is theith (generalized) local minimum ofϕ(t).
From various results in [13, p. 310], one sees that the conical limit set and the set

on the boundary where the archipelago is not minimally thin (see Definition 8.1)
are quite close. The question has been raised of whether they do in fact coincide
there; that question is now settled by an example (see Section 10) of a Fuchsian
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group with a limit point outside the conical limit set but where the archipelago is
not minimally thin.

In Remarks 8.2, 8.4, and 10.1 we give an intuitive probabilistic motivation for
why the counterexample works by implicating recurrence of a special stochastic
process on the Riemann surface depicted in Figure 6.

2. The Setup

Let B be the unit ball inRn (or the unit disk ifn = 2) and let0 be a discrete
group of Möbius transformations that preservesB. We will denote the elements
in 0 by γi. Let S = B/0 be the (Riemann) quotient manifold obtained fromB by
identification of0-equivalent points. (Ifn ≤ 3 thenS is a manifold. For higher
dimensions it may be an orbifold rather than a manifold, but we will adopt the
notion from [1, p. 79] and callS a quotient manifold nevertheless.)

Furthermore, letx0 be the base point onS corresponding to the origin inB, and
let g(t) be a parameterized geodesic onS such thatg(0) = x0 and such that the
arc length ofg(t) for t from 0 toτ is τ. Let ϕ(t) be the distanced(g(t), x0) on
the manifold. Thus we have thatϕ(t) ≤ t. The geodesic fromx0 is viewed inB
as a straight line from the origin to a boundary pointξ and thus corresponds to a
geodesic,g(t), onS.

We can think ofS as the result of taking the Dirichlet domain inB around 0 and
gluing together corresponding sides according to the generators of0. The “seams”
onS will then correspond to the set onS where the graph ofϕ “has a corner”—that
is, there are at least two different geodesics fromx0 to a seam point; see Figure 1.

Figure 1 Example of a graph ofϕ

We will now give some definitions taken from [13] and [14].

Definition 2.1 [14, p. 5]. Leta ∈B andk, α > 0. We define

I(a : k, α) =
{
x ∈ ∂B :

∣∣∣∣x − a

|a|
∣∣∣∣ < k(1− |a|)α

}
.
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Definition 2.2 [14, p. 23]. Letγi be the elements of the discrete group0 and
let z be the base point of the orbit. Then

L(z : k, α) =
∞⋂
m=1

∞⋃
i>m

I(γi(z) : k, α).

In the next definition we take the base point to be the origin.

Definition 2.3 [13, Def. 3.14]. Denote theα-limit set by

L(α) =
⋃
k>0

L(0 : k, α).

Remark 2.4. The special case whenα = 1 gives us the conical limit set (also
called the nontangential limit set); that is,L(1) = 3c. See for example [13, Lemma
3.13] for a more detailed comparison.

In [13, Def. 5.2], a subset of the limit setL(α) was introduced by taking the inter-
section instead of the union in the following manner.

Definition 2.5. We define thestrongα-limit set to be

Ls(α) =
⋂
k>0

L(0 : k, α).

For any strictly positiveα, we have

∂B ⊃ L(α) ⊃ Ls(α) ⊃ L(α + ε) for all ε > 0.

It is well known that the conical limit setL(1) is independent of the choice of
base point (see e.g. [10, p. 29]). We will show that the same holds whenα ∈ (0,1),
telling us that our restriction in Definitions 2.3 and 2.5 to fix the base point to the
origin is not that essential.

Lemma 2.6. For any pointz in B,⋃
k>0

L(z : k, α) =
⋃
k>0

L(0 : k, α)

if α ≤ 1. That is,L(α) is independent of the base point of the orbit ifα ≤ 1.
Similarly,Ls(α) is independent of the base point of the orbit ifα < 1.

Proof. Given anα ≤ 1 and az∈B, supposex ∈⋃k>0 L(z : k, α); thenx ∈L(z :
k, α) for somek > 0. We want to show that there is aK such thatx ∈L(0 :K,α),
whereK is dependent onα, z, andk.

Denote byδ the hyperbolic distance from 0 toz, δ = d(0, z). Since a Möbius
mapping acts as an isometry, it follows thatδ = d(γi(0), γi(z)).

Sincex ∈L(z : k, α), we havex ∈ I(γi(z), k, α) for infinitely many indicesi.
Call that set of indicesJ. Let ε < 1/2eδ and defineJε to be the (infinite) subset
of J such that

Jε = {i ∈ J | 1− |γi(z)| < ε}.
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Thus, if i ∈ Jε then ∣∣∣∣x − γi(z)

|γi(z)|
∣∣∣∣ < kεα. (1)

We know thatγi(0) lies on the hyperbolic sphere

C = {ζ ∈B | d(ζ, γi(z)) = δ}.
Let us now make an Euclidean estimate of how farγi(0) can be fromγi(z) by
computing the two extremal distances toC from γi(z). Let a be the distance from
γi(z) to ν, the point closest to the origin inC, and letb be the distance to the point
β furthest away from the origin inC. See Figure 2.

Figure 2 γi(0) lies on the hyperbolic sphereC centered aty = γi(z) with ν, β,
andy lying in the unit ball on the ray from the origin throughy, whereν is the point
on the sphere that is closest to the origin andβ is the point farthest away;a is the
Euclidean distance fromy to ν, and similarlyb is |β − y|

We have that

δ = d(γi(z), ν) = d(0, γi(z))− d(0, ν) = log

(
(1− |ν|)

1− |γi(z)|
1+ |γi(z)|
(1+ |ν|)

)
and thus may derive the following rough estimate:

1
2e

δ(1− |γi(z)|) < 1− |ν| < 2eδ(1− |γi(z)|).
We can then estimatea as
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a = |γi(z)| − |ν| = (1− |ν|)− (1− |γi(z)|)
< 2eδ(1− |γi(z)|)− (1− |γi(z)|) < ε(2eδ −1). (2)

Similarly, for b we have

b = |β| − |γi(z)| < (1− |γi(z)|)− 1

2eδ
(1− |γi(z)|) < ε

(
1− 1

2eδ

)
. (3)

Definingθ to be arctan(a/|γi(z)|), we estimate∣∣∣∣x − γi(0)

|γi(0)|
∣∣∣∣ < ∣∣∣∣x − γi(z)

|γi(z)|
∣∣∣∣+ θ.

But from (2) and since we have chosenε < 1/2eδ, we can estimateθ as follows:

θ = arctan
a

|γi(z)| ≤
a

|γi(z)| <
a

1− ε <
ε(2eδ −1)

1− ε < ε2eδ.

Using inequality (1), it follows that∣∣∣∣x − γi(0)

|γi(0)|
∣∣∣∣ < kεα + ε2eδ for i ∈ Jε. (4)

Now (3) yields

1− |γi(0)| > ε − b > ε − ε
(

1− 1

2eδ

)
= ε

2eδ
. (5)

We aim to find aK such thatx ∈L(0 :K,α), that is,

K >

∣∣∣∣x − γi(0)

|γi(0)|
∣∣∣∣(1− |γi(0)|)−α. (6)

Let us therefore study the right-hand side of this expression. From (4) and (5) we
obtain ∣∣∣∣x − γi(0)

|γi(0)|
∣∣∣∣(1− |γi(0)|)−α < (kεα + ε2eδ)

(
ε

2eδ

)−α
= (2eδ)α(k + 2eδε1−α). (7)

Sinceα ≤ 1 we have thatε1−α ≤ 1. Hence, by pickingK = (2eδ)α(k + 2eδ),
inequality (6) will be satisfied and sox ∈ L(0 : K,α). This proves thatL(α) is
independent of the base point of the orbit ifα ≤ 1, which ends the first part of the
proof.

To prove the statement about the strongα-limit set, let us suppose that

x ∈
⋂
k>0

L(z : k, α), α < 1. (8)

We aim to show thatx ∈⋂k>0 L(0 : k, α). It is therefore enough to show thatx ∈
L(0 : κ, α) for any givenκ > 0.

Note from (8) thatx ∈L(z, k, α) holds trivially with the special choice ofk =
κ/2α+1eαδ, where (as before)δ = d(0, z). Thus,x ∈ I(γi(z) : k, α) for infinitely
many indicesi. Let us denote this set of indices byJ. Now pick
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ε =
(
k

2eδ

)1/(1−α)
.

Since
L(0 : c1, α) ⊂ L(0 : c2, α) if c1 < c2,

we can without loss of generality assume thatκ < 2(2eδ)2α. That gives us that
k < (2eδ)α andε < 1/2eδ, so we can use the estimate in (7). Leti ∈ Jε; then∣∣∣∣x − γi(0)

|γi(0)|
∣∣∣∣(1− |γi(0)|)−α < (2eδ)α(k + 2eδε1−α) = 2k(2eδ)α = κ.

Thus as in (6) we have that, for everyi ∈ Jε (which are infinitely many),x ∈
I(γi(0) : κ, α). Hencex ∈L(0 : κ, α), which ends the proof.

Remark 2.7. It is easy to see thatLs(1) is not independent of the base point. For
example, let0 be a Fuchsian group generated by a single hyperbolic generator in
the unit ball. Then the limit set consists only of the two fixed points that are in
3c; however, the points are inLs(1) if and only if the base point is taken to be the
origin.

3. The Case 0< α ≤ 1
2

Supposeξ is a parabolic fixed point that can be reached from the origin along a ray
inside the Dirichlet domain. The geodesic will then run straight out on a parabolic
cusp on the quotient manifold. Henceϕ(t) = t,which is the maximal escape rate.
That is,ϕ(t) ≤ 1 will always be true, even forξ /∈3.

Thus theϕ function will not be of any help for classifying points inL(α) when
0< α ≤ 1

2 . Let us quickly turn to the next case.

4. The Case1
2 ≤ α < 1

Theorem 4.1. Suppose thatξ is on the unit sphere. Then we have the following
two equivalences:

(i) ξ ∈L(α), for 1
2 < α ≤ 1, if and only if

lim inf
t→∞ (α(ϕ(t)+ t)− t) <∞;

(ii) ξ ∈Ls(α), for 1
2 ≤ α < 1, if and only if

lim inf
t→∞ (α(ϕ(t)+ t)− t) = −∞.

Corollary 4.2. Let 1
2 < α < 1. Then:

ξ ∈L(α) H⇒ lim inf
t→∞

ϕ(t)

t
≤ 1− α

α
;

lim inf
t→∞

ϕ(t)

t
<

1− α
α
H⇒ ξ ∈Ls(α).
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Before we plunge into the proofs, let us turn our attention to an auxiliary sequence
related to the functionϕ.

4.1. The Sequence of Generalized Local Minima forϕ(t)

Let the sequence{ϕ(ti)} be the sequence ofgeneralizedlocal minima for the func-
tion ϕ in the following sense. Let us follow the geodesic mapped to the unit ball,
where it will be the ray from the origin to the boundary pointξ, and letDi be the
ith fundamental domain that we visit on our way from 0 toξ. Observe thatDi is a
copy of the Dirichlet domain around the origin mapped byγi. Let nowϕi be the
(hyperbolic) distance to the ray from the single orbit pointγi(0) in Di, and letti
be the distance from the origin to the point on the ray that is closest toγi(0); see
Figure 3.

Figure 3 Depiction of case where the closest point (on the ray,(t, r(t)), towardξ)
to γi(0) lies outside the fundamental domainDi; compare toϕ3 in Figure 4

If the closest point on the ray lies insideDi thenϕi = ϕ(ti) will be a local min-
imum, since we travel with unit speed along the ray. However, in the case shown
schematically in Figure 3, we will get ageneralizedlocal minimum point outside
the graph ofϕ(t); see Figure 4.

Remark 4.3. Note that such generalized local minimaϕi will never be smaller
thanϕ(ti) because the closest orbit point isγi−1(0) for every point inDi−1.
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Figure 4 Example of theϕ(t) graph and the sequence of generalized local minima
atϕi = ϕ(ti); note thatϕ1 = ϕ(t1) andϕ2 = ϕ(t2) butϕ3 > ϕ(t3)

We will repeatedly use this auxiliary sequence{ti, ϕi} of generalized local minima.

Lemma 4.4. If

0< lim inf
t→∞

ϕ(t)

t
< 1,

then

lim inf
t→∞

ϕ(t)

t
= lim inf

i→∞
ϕi

ti
.

Proof. We can assume that{ϕi} is an infinite sequence. If not, then there exists an
integerI such thatϕI is the last generalized local minimum. That is, the ray from
the origin in the unit ball toward the pointξ would never leave the fundamental
domainDI . Let r(t) be the ray towardξ ∈ ∂B such thatd(r(t),0) = t. Let t > tI
and consider the hyperbolic triangle inDI with corners inr(t), r(tI ), andγI (0).
The side lengths aret − tI , ϕI , andϕ(t). Note that the angle atr(tI ) isπ/2. From
the triangle inequality we have that

t − tI ≤ ϕ(t) ≤ t − tI + ϕI .
Hence,

lim inf
t→∞

ϕ(t)

t
= 1,

which is not allowed. Thus we have that{ϕi} is an infinite sequence, and then

lim inf
i→∞

ϕi

ti

exists.
By Remark 4.3 we have immediately that

lim inf
t→∞

ϕ(t)

t
≤ lim inf

i→∞
ϕi

ti
. (9)
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Let us first assumeϕ(ti) = ϕi for all i; that is, we assume the generalized local
minima are true local minima forϕ(·). (At the very end of this proof we will treat
the general case.) In this situation we have that, for a giveni, there is aδi such
that ti + δi is a local minimum of the functionϕ(·)/ · . Note that the line from
the origin to the point(ti + δi, ϕ(ti + δi)) will be a tangent to the graph ofϕ. As
before, we examine a right-angled triangle with corners inr(ti + δi), r(ti), and
ϕi(0). The side lengths are thenδi, ϕi, andψi := ϕ(ti + δi).

We will use the hyperbolic version of Pythagoras’s theorem (cf. [4, p. 146]):

coshψi = coshδi coshϕi. (10)

From our previous assumption and (9), we have that

0< lim inf
t→∞

ϕ(t)

t
≤ lim inf

i→∞
ϕi

ti
.

Thusϕi →∞. Hence

coshϕi ≈ eϕi

2
if i is large.

Sinceψi > ϕi, we have the following approximation of (10) for large indexi:

eψi ≈ coshδie
ϕi .

Therefore,

lim inf
t→∞

ϕ(t)

t
= lim inf

i→∞
ψi

ti + δi = lim inf
i→∞

ϕi + log(coshδi)

ti + δi . (11)

Let us now separately study two cases.

Case 1: lim supi→∞ δi <∞. In this case we see from (11) that

lim inf
t→∞

ϕ(t)

t
= lim inf

i→∞
ϕi/ti + log(coshδi))/ti

1+ δi/ti = lim inf
i→∞

ϕi

ti
.

Case 2: lim supi→∞ δi = ∞. In this case there are infinitely many indicesi
such that

coshδi ≈ eδi

2
.

From (11) we have that

lim inf
t→∞

ϕ(t)

t
= lim inf

i→∞
ϕi + δi − log 2

ti + δi = lim inf
i→∞

ϕi/ti + δi/ti
1+ δi/ti . (12)

To simplify the notation, let

k = lim inf
i→∞

ϕi

ti
and f(x) = k + x

1+ x .
We have then that

lim inf
t→∞

ϕ(t)

t
≥ lim inf

i→∞ f

(
δi

ti

)
.

We note also that 0< k ≤ 1 and that

f ′(x) > 0 ⇐⇒ k < 1.
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If k = 1 thenf(x) ≡ 1 and thus

lim inf
t→∞

ϕ(t)

t
≥ 1,

which is not allowed. Hence we have thatk < 1, which yields

lim inf
t→∞

ϕ(t)

t
≥ lim inf

i→∞ f

(
δi

ti

)
≥ f(0) = k = lim inf

i→∞
ϕi

ti
.

We are now done under the assumption thatϕ(ti) = ϕi for all i.

Finally, let us treat the case whereϕ(ti) < ϕi, schematically depicted in Figure 4
for i = 3. We first concentrate on the graph consisting of the dotted-arc contin-
uation whent is such thatr(t) ∈ Di. In other words, we examine the quotients
d(r(t), γi(0))/t. As in the preceding arguments (starting at the point where we as-
sumedϕ(ti) = ϕi), we conclude that

lim inf
i→∞

ϕi

ti
= lim inf

i→∞ inf
t

d(r(t), γi(0))

t
.

On the other hand,

inf
t

d(r(t), γi(0))

t
≤ inf

r(t)∈Di
d(r(t), γi(0))

t
= inf

r(t)∈Di
ϕ(t)

t
.

Thus

lim inf
i→∞

ϕi

ti
≤ lim inf

i→∞ inf
r(t)∈Di

ϕ(t)

t
= lim inf

t→∞
ϕ(t)

t
.

We will also need the following variant of Lemma 4.4.

Lemma 4.5. Let 1
2 < α < 1. If lim inf t→∞ ϕ(t) = ∞ and if

lim inf
t→∞ (α(ϕ(t)+ t)− t) <∞,

then
lim inf
t→∞ (α(ϕ(t)+ t)− t) = lim inf

i→∞ (α(ϕi + ti)− ti).

Proof. Since the proof is completely analogous to the proof of Lemma 4.4, we
give only a short outline.

For simplicity we define8(t) := α(ϕ(t)+ t)− t. With the same triangle argu-
ment as before, we see that if{ϕi} is finite then

α(2t − tI )− t ≤ 8(t) ≤ α(2t − tI + ϕI )− t,
and sinceα > 1

2 we have that

lim inf
t→∞ 8(t) = ∞.

Hence we can safely assume that the sequence{ϕi} is infinite.
Next we assume that8(t) has a local minimum atti + δi . Similarly to (11), we

have

lim inf
t→∞ 8(t) = lim inf

i→∞ α(ϕi + log(coshδi)+ ti + δi)− ti − δi .
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Now we treat the two cases.

Case 1: lim supδi <∞. Then

lim inf
t→∞ 8(t) = lim inf

i→∞ α(ϕi + ti)− ti .
Case 2: lim supδi = ∞. Then

lim inf
t→∞ 8(t) = lim inf

i→∞ α(ϕi + ti)− ti + δi(2α −1) ≥ lim inf
i→∞ α(ϕi + ti)− ti,

sinceα > 1
2 .

4.2. Proof of Theorem 4.1

For part (i), note that we already know thatξ ∈ L(1) = 3c if and only if
lim inf t→∞ ϕ(t) < ∞. This takes care of the caseα = 1. From now on in the
proof, we will assume thatα < 1 and that lim inft→∞ ϕ(t) = ∞.

We have thatξ ∈L(α) if and only if there is ak > 0 such thatξ ∈L(0 : k, α).
This is equivalent to saying that, for infinitely manyγi in 0,∣∣∣∣ξ − γi

|γi |
∣∣∣∣ < k(1− |γi |)α.

This can be expressed using the notation in Figure 5 asRi < khαi or as

ri sin(θi) < k(ri cos(θi))
α (13)

for infinitely manyi.
We note from Figure 5 thatϕi is small if and only if the angleθi is small. There-

fore ξ ∈ Ls(α) if and only if (13) holds for infinitely many such local minimum
points in{ti}.

Let us now give estimates for the components in (13). From a standard calcula-
tion we have that

ti = log

(
2− ri
ri

)
.

Sinceri � 1, we have the estimate

ri ≈ 2 exp(−ti). (14)

See [4, p. 162] for the following relations betweenϕi and the angleθi in Fig-
ure 5:

sin(θi) = tanh(ϕi); (15)

cos(θi) = 1

cosh(ϕi)
; (16)

tan(θi) = sinh(ϕi). (17)

Since we assumed thatξ is not a conical limit point, we know that lim infi→∞ ϕi =
∞ and thus we can make two estimates of (15) and (16) as follows:

sin(θi) ≈ 1; (18)

cos(θi) ≈ 2

exp(ϕi)
. (19)
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Figure 5 Geometric relations betweenθi, ϕi, andti (the latter two shaded to in-
dicate they are the only hyperbolic distances in the figure) in the upper half-space,
whereϕi is the shortest hyperbolic distance from the orbit point to the vertical line
(i.e., the hyperbolic distance along the circular arc from the orbit point tor(ti) on
the vertical line); the hyperbolic distance fromr(ti) to the image of the origin in the
upper half plane isti

Using the estimates (14), (18), and (19) in condition (13), we obtain the relation

ξ ∈L(α) ⇐⇒ (2 exp(−ti))1−α < K(2 exp(−ϕi))α

for infinitely many indicesi and for some constantK. Let

C = log(K)+ (2α −1) log 2.

We can now write the preceding inequality as

−ti(1− α) < −αϕi + C.
Henceξ ∈L(α) if and only if there exists aC such that

α(ϕi + ti)− ti < C

for infinitely many indicesi. Thus

ξ ∈L(α) ⇐⇒ lim inf
i→∞ (α(ϕi + ti)− ti) <∞, (20)

which (thanks to Lemma 4.5) is equivalent to the statement

ξ ∈L(α) ⇐⇒ lim inf
t→∞ (α(ϕ(t)+ t)− t) <∞.

(Recall that we could make the assumption that lim inft→∞ ϕ(t) = ∞ after treat-
ing the caseα = 1 separately in the beginning; hence all the assumptions in
Lemma 4.5 are fulfilled.) We are done with the proof of the first statement.

In proving part (ii) of Theorem 4.1, we shall treat the caseα = 1
2 separately at

the end.
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We note thatξ ∈ Ls(α) if and only if ξ ∈ L(0 : k, α) for all k > 0. Using the
same arguments as before, we will in this case have the analogue to condition (13)
asξ ∈Ls(α) if and only if

ri sin(θi) < k(ri cos(θi))
α (21)

for infinitely manyi and for allk > 0. Using (14), (18), and (19), we see that (21)
is equivalent to

−ti(1− α) < −αϕi − C
for infinitely many indicesi and for allC <∞. Thusξ ∈Ls(α) if and only if

lim inf
i→∞ (α(ϕi + ti)− ti) = −∞, (22)

which by Lemma 4.5 is equivalent to

ξ ∈L(α) ⇐⇒ lim inf
t→∞ (α(ϕ(t)+ t)− t) = −∞.

For the caseα = 1
2,we note that the assumptionα > 1

2 in Lemma 4.5 is used only
to make sure that we have an infinite sequence{ϕi}.

Suppose now thatα = 1
2 and thatξ ∈ Ls

(
1
2

)
. We will show that in this case

{ϕi} must be infinite. The idea of that argument is taken from the proof of [14,
Thm. 2.4.10], which states that a conical limit point cannot appear on the boundary
on a Dirichlet domain.

Let us study the unit ball tessellated by images of the Dirichlet domain around
the origin. We know that the ray toξ visits such a domain only once. Since the
number of local minima is finite, we conclude that there is a domain,Fi, where
the ray finally enters and then never leaves on its way toξ ; that is, there is aC
such thatcξ ∈Fi for everyc > C. Recall that every point in this open domainFi
has the property that it is closer to the orbit pointγi(0) in it than to any other or-
bit point. Let us for simplicity map the whole picture by the mappingγ−1

i , so that
F0 = γ−1

i (Fi) is a Dirichlet domain centered at the origin. Let us now study the
ray from the origin toξ0 = γ−1

i (ξ). We see that this ray is inF0 and parameterize
it by cξ0 for c ∈ (0,1). Let us now construct an open hyperbolic ball centered at
cξ0 with radiusd(cξ, γi(0)). That is, let

Bc = {z : d(z, cξ0) < d(cξ0,0)}.
We note thatBc does not contain any orbit points, and the same is true for the
union

B̂ =
⋃
c∈(0,1)

Bc.

We note thatB̂ is a horoball
(
with Euclidean radius12

)
that is tangent to the unit

ball atξ0.

Finally, let us mapB̂ back toγi(B̂), which is tangent toξ, has a radius greater
than or equal to(1− |γi(0)|)/2, and contains no orbit points. We conclude then
from Definition 2.5 thatξ /∈ Ls

(
1
2

)
. We thus conclude that the sequence{ϕi} is

infinite.
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Furthermore, sinceξ ∈Ls
(

1
2

)
we have

lim inf
i→∞ (ϕi − ti) = −∞ <∞

by the reasoning that led to equation (22), which is still valid. Because{ϕi} is in-
finite, we can now use the proof for Lemma 4.5 to obtain that

lim inf
t→∞ (ϕ(t)− t) = −∞.

On the other hand, assume that

lim inf
t→∞ (ϕ(t)− t) = −∞.

If {ϕi} is finite then, from the beginning of the proof of Lemma 4.5, we have(
sinceα = 1

2

)
that 1

2(ϕ(t) − t) = 8(t) ≥ − 1
2 tI , which contradicts our assump-

tion. Hence we conclude that{ϕi} is infinite. As before, we can use the proof of
Lemma 4.5 to see that

lim inf
i→∞ (ϕi − ti) = −∞,

which is equivalent toξ ∈Ls
(

1
2

)
.

4.3. Proof of Corollary 4.2

Supposeξ ∈L(α). Then, from Theorem 4.1(i), it follows that

lim inf
t→∞ (α(ϕ(t)+ t)− t) <∞.

Hence there is aK <∞ such that

lim inf
t→∞

(
ϕ(t)− 1− α

α
t

)
= K.

Thus

lim inf
t→∞

ϕ(t)

t
≤ 1− α

α
.

For the second implication, suppose that

a := lim inf
t→∞

ϕ(t)

t
<

1− α
α

.

By Lemma 4.4,a = ϕi/ti . Let δ := (1− α)/α − a.
We now have that for, everyε > 0, there is an infinite set of indicesJ = {j}

such that
ϕ(tj )

tj
− a < ε for all j ∈ J.

This will especially be valid for our choice ofε = δ/2 (note thatδ > 0 by our
previous assumption). Therefore,

ϕ(tj ) < tj(a + ε) for all j ∈ J
and so

ϕ(tj )− 1− α
α

tj < tj

(
a + ε − 1− α

α

)
= tj(ε − δ) = − δ

2
tj .
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We conclude, using Lemma 4.5, that

lim inf
t→∞ α(ϕ(t)+ t)− t) = −∞,

which by Theorem 4.1(ii) is equivalent toξ ∈Ls(α).
4.4. A Global Result

Using Theorem 4.1 together with a Borel–Cantelli type result from [14] yields a
global result for the limit setsLs(α) and their corresponding Poincaré series.

Corollary 4.6. Let γθ be a geodesic onB/0 starting at the reference point
x0 in theθ direction, whereθ is on the unit sphere, and letϕθ be theϕ distance
function forγθ . Let |·| be the(n− 1)-dimensional Lebesgue measure on the unit
sphere, and let12 < α ≤ 1. If∣∣∣{θ : lim inf

t→∞ (α(ϕθ (t)+ t)− t) <∞
}∣∣∣ > 0

then the Poincaré type series∑
γi∈0

(1− |γi(0)|)(n−1)α = ∞.

Proof. If lim inf t→∞(α(ϕθ (t) + t) − t) < ∞ then by Theorem 4.1 we have that,
whenγθ is transformed into the unit ball, it ends at a point inL(α). Hence if∣∣∣{θ : lim inf

t→∞ (α(ϕθ (t)+ t)− t) <∞
}∣∣∣ > 0

then|L(α)| > 0. Now [14, Thm. 2.1.1] tells us that if|L(α)| > 0 then∑
γi∈0

(1− |γi(0)|)(n−1)α = ∞.

Remark 4.7. Compare this corollary with the forthcoming [5, Lemma 2]. From
the definition of3α in [5] and Corollary 4.2 here, it follows that3\3α = L

(
1

1+α
)
.

5. A Ladder-like Example

We now study a Riemann surface that looks like a ladder or a “one-dimensional
jungle gym”. Our surface is an infinitely long body with evenly distributed “holes”;
see Figure 6.

Figure 6 A one-dimensional jungle gym
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For simplicity let us assume that the distance between the centers of two con-
secutive holes is 1, and denote the shortest curve circumscribing holej by cj .
Furthermore, letc be a geodesic fromx0 not intersecting anycj and such that
ϕ(t) = t alongc. We will also assume that the shortest closed arc crossing both
cj andc has length 1.

We will study a geodesicg(t) started inx0 and winding through the holes in
a consecutive way. That is, the geodesic will alternate between crossing acj and
c, and if g(s) ∈ cj theng(t) /∈ ck for t > s andk < j. Let N(j) be the number
of intersections ofg(t) with cj . Note thatg(t), and hence the corresponding limit
point ξ ∈ ∂B, will be completely determined by the sequence{N(j)}∞j=1.

This jungle-gym construction, together with Corollary 4.2, will be used to give
simple examples ofξ ∈L(α) \ L(α ′) where1

2 < α < α ′ < 1.

Corollary 5.1. Let 0 be given by the jungle-gym construction just described
andξ by the geodesic makingN(j) turns in holej twisting out in a consecutive
way. Assume thatN(j) ≥ 1 and that the limit average of the number of turns is
bounded, that is,

N̄ := lim sup
i→∞

1

i

i∑
j=1

N(j) <∞.

Then

ξ ∈Ls
(

N̄

N̄ + 1

) ∖
L
(
N̄ + 1

N̄ + 2

)
.

Proof. We have thatξ /∈L(1) because the geodesic does not return at all.
Now we estimate the local minimum ofϕ(t) about where the geodesic has made

N(i) turns in holei. Let us denote that “ending” local minimum byϕie = ϕ(tie ).
Using the “little ordo”o(·) function immediately yields the estimate

ie − o(ie) < ϕie < ie + o(ie).
We will use the following estimate:

ie +
i∑

j=1

(N(j)−1)− o(ie) < tie < ie +
i∑

j=1

N(j)+ o(ie).

We see from the construction that

lim inf
i→∞

ϕi

ti
= lim inf

i→∞
ϕie

tie
.

Hence the previous estimates give

lim inf
i→∞

1

1+ 1
i

∑ i
j=1N(j)

< lim inf
i→∞

ϕi

ti
< lim inf

i→∞
1

1
i

∑ i
j=1N(j)

.

Thus we see that
1

1+ N̄ < lim inf
i→∞

ϕi

ti
<

1

N̄
.
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Now, if x = (1− α)/α thenα = 1/(x + 1). We can then use Corollary 4.2 and
Lemma 4.4 to conclude that

ξ ∈Ls
(

N̄

N̄ +1

) ∖
L
(
N̄ +1

N̄ + 2

)
,

which is the desired expression.

6. The Caseα =1

It is well known that if the geodesicg(t) returns infinitely often to a compact neigh-
borhood ofx0 then the limit pointξ is in the nontangentially limit set3c. Let us
try to be a little more precise about this.

Proposition 6.1. Let the setL(· : ·, ·) be as in Definition 2.2. Then

ξ ∈L(0 : sinh(K),1) ⇐⇒ lim inf
t→∞ ϕ(t) < K.

Furthermore,
ξ ∈Ls(1) ⇐⇒ lim inf

t→∞ ϕ(t) = 0.

Proof. Suppose thatξ ∈L(0 : sinh(K),1). Using the notation from Figure 5, we
know that there are infinitely many orbit pointsγi(0) such thatRi < sinh(K)hi.
We can reformulate this as: there are infinitely manyγi(0) such that

tan(θi) < sinh(K).

Using equation (17) gives us that, for infinitely many indicesi, sinh(ϕi) < sinh(K)
and thusϕi < K for infinitely manyi. Hence

ξ ∈L(0 : sinh(K),1) ⇐⇒ lim inf
i→∞ ϕi < K,

which by Lemma 6.2 yields the first equivalence:

ξ ∈L(0 : sinh(K),1) ⇐⇒ lim inf
t→∞ ϕ(t) < K.

(Note that we can use Lemma 6.2 because we can safely assume that{ϕi} is
infinite.)

For the second statement, we argue as before and conclude thatξ ∈Ls(1) if and
only if, for everyK > 0, there are infinitely many indicesi such thatϕi < K.

Hence, using Lemma 6.2, we obtain

ξ ∈Ls(1) ⇐⇒ lim inf
t→∞ ϕ(t) = 0.

Lemma 6.2. If the sequence{ϕi} is infinite then

lim inf
i→∞ ϕi = lim inf

t→∞ ϕ(t).

Proof. We have from Remark 4.3 that

lim inf
i→∞ ϕi ≥ lim inf

i→∞ ϕ(ti) ≥ lim inf
t→∞ ϕ(t).



Geodesics on Quotient Manifolds and Their Corresponding Limit Points297

On the other hand, we can use an argument similar to that used in (the latter part
of ) the proof of Lemma 4.4 to obtain the following inequality:

ϕi = inf
t
d(r(t), γi(0)) ≤ inf

r(t)∈Di
d(r(t), γi(0)) = inf

r(t)∈Di
ϕ(t).

Therefore,
lim inf
i→∞ ϕi ≤ lim inf

i→∞ inf
r(t)∈Di

ϕ(t) = lim inf
t→∞ ϕ(t).

7. The Caseα >1

Whenξ ∈L(α) for α > 1, we have immediately thatξ ∈3c and hence that there
exists a bounded subsequence of{ϕi}. But we can say more than this.

Proposition 7.1. Suppose thatα > 1. Then we have the following two equiva-
lences:

(i) ξ ∈L(α) if and only if there exists aK <∞ such that

lim inf
t→∞ ϕ(t)e(α−1)t < K;

(ii) ξ ∈Ls(α) if and only if

lim inf
t→∞ ϕ(t)e(α−1)t = 0.

Proof. We have thatξ ∈ L(α) if and only if there is ak < ∞ such thatξ is in
infinitely manyL(0 : k, α). With the notation from Figure 5, this translates into
Ri < khαi for infinitely manyi, or

ri sin(θi) < k(ri cos(θi))
α for infinitely manyi.

Now, using (14), (15), and (16) yields thatξ ∈ L(α) if and only if there exists ak
such that, for infinitely manyi,

2e−ti tanh(ϕi) < k

(
2e−ti

1

cosh(ϕi)

)α
. (23)

We know thatα > 1, so it follows that every cone with vertex atξ has infinitely
many orbit points inside even if the opening angle is very small. Thus we have

lim inf
i→∞ θi → 0

and hence, using equation (15),

0= lim inf
i→∞ sin(θi) = lim inf

i→∞ tanh(ϕi).

Therefore,
lim inf
i→∞ ϕi = 0.

Using this fact in (23) gives us the following asymptotic relation:ξ ∈L(α) if and
only if there is ak such that

lim inf
i→∞ ϕi < k2α−1e−ti(α−1).
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We conclude thatξ ∈L(α) if and only if there is aK <∞ such that

lim inf
i→∞ ϕie

ti(α−1) < K. (24)

We will now show that inequality (24) is equivalent to

lim inf
t→∞ ϕ(t)e t(α−1) < K ′ (25)

for someK ′.
In order to simplify the notation, let

f(t) = ϕ(t)e t(α−1), gi(t) = d(r(t), γi(0)), fi(t) = gi(t)e t(α−1).

Note that
fi(t) = f(t) when r(t)∈Di (26)

and thatgi(ti) = ϕi is a local minimum forgi.
On the other hand,fi has a local minimum not atti but rather atti− δi for some

positiveδi . Hence, after differentiation, we get that

g ′i(ti − δi) = −(α −1)gi(ti − δi). (27)

So again the Pythagorean theorem is used to obtain

cosh(gi(ti − δi)) = cosh(δi) cosh(ϕi),

and by differentiation with respect toδi we have

−sinh(gi(ti − δi))g ′i(ti − δi) = sinh(δi) cosh(ϕi). (28)

Combining (27) and (28) then yields

sinh(gi(ti − δi))gi(ti − δi)(α −1) = sinh(δi) cosh(ϕi). (29)

From (28) we see thatd
dx
g(ti − x) decreases from 0 to−cosh(ϕi) asx goes

from 0 to∞. Thus,
−gi ′(ti − δi) ≤ cosh(ϕi). (30)

This estimate, together with (27), gives us that

gi(ti − δi) ≤ cosh(ϕi)

α −1
. (31)

By (28) we see that

δi ≤ sinh(δi) = −sinh(gi(ti − δi))g ′i(ti − δi)
cosh(ϕi)

≤ sinh(gi(ti − δi));
using (31), we obtain

δi ≤ sinh

(
cosh(ϕi)

α −1

)
. (32)

Since

fi(ti − δi) = gi(ti − δi)e(ti−δi )(α−1) = gi(ti − δi)
ϕi

fi(ti)e
−δi(α−1),

we have the following estimate for the functionfi :

fi(ti − δi) ≤ fi(ti)e−δi(α−1). (33)
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We now have that
lim inf
t→∞ f(t) ≤ lim inf

i→∞ fi(ti),

and the following inverse inequality will be used to prove the equivalence of (24)
and (25):

lim inf
t→∞ f(t) = lim inf

i→∞ inf
r(t)∈Di

f(t) = (26) = lim inf
i→∞ inf

r(t)∈Di
fi(t)

≥ lim inf
i→∞ fi(ti − δi) ≥ (33) ≥ lim inf

i→∞ fi(ti)exp(−δi(α −1))

≥ (32) ≥ lim inf
i→∞ fi(ti)exp

(
−sinh

(
cosh(ϕi)

α −1

)
(α −1)

)
≥
(

lim inf
i→∞ fi(ti)

)
exp

(
−sinh

(
cosh(lim inf i→∞ ϕi)

α −1

)
(α −1)

)
.

We can assume that lim infi→∞ ϕi = 0 since otherwise it would follow, by Propo-
sition 6.1 and Lemma 6.2, that

ξ /∈Ls(1) ⊃ L(α) for all α > 1.

Hence

lim inf
t→∞ f(t) ≥ lim inf

i→∞ fi(ti)exp

(
−sinh

(
1

α −1

)
(α −1)

)
and so, if

K ′ = K exp

(
−sinh

(
1

α −1

)
(α −1)

)
,

then (24) and (25) are equivalent. This concludes our proof of part (i).
To prove part (ii) we need only observe thatξ ∈ L(α) if and only if, for every

k > 0, ξ is in infinitely manyL(0 : k, α). Following the same arguments as be-
fore, we obtain thatξ ∈L(α) if and only if

lim inf
i→∞ ϕie

ti(α−1) = 0,

where this expression is equivalent, by our previous reasoning (withK = 0), to

lim inf
t→∞ ϕ(t)e t(α−1) = 0.

Point- and Line-Transitive Sets

Note from Remark 2.7 that the results in Proposition 7.1 depend on the choice of
base pointx0 ∈ B/0. We now allow the base point to vary, lettingϕa(t) be as
ϕ(t) above except that we replacex0, the image of the origin, byxa, the image of
a ∈B. Then it is easy to see, using Figure 5 and the definitions in [14, pp. 26,27],
thatξ is a point transitive limit point(ξ ∈ Tp) if and only if

lim inf
t→∞ ϕa(t) = 0 for all a ∈B

and thatξ is a line transitive limit point(Tl) if and only if

lim inf
t→∞ (ϕa(t)+ ϕb(t)) = 0 for all pairs a, b ∈B.
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Remark 7.2. We have trivially thatTl ⊂ Tp. Furthermore,Tl 6= ∅ if 0 is of the
first kind, andTp = ∅ if 0 is of the second kind (see e.g. [14, Thms. 2.2.2, 2.3.3]).

8. A Question about the Archipelago of0

Thearchipelagoof a discrete group0 is defined in [13, p. 300]. LetBj := {z∈B |
d(z, γj(0)) < r0, γj ∈0 \{I }}. Since0 is discrete, it is possible to find anr0 > 0
such that the ballsBj do not intersect each other. Let us fix such anr0 and let
E :=⋃j Bj . That is,E is the “fattened” orbit of0, and we call it thearchipelago
of 0.

Minimal Thinness

For the convenience of the reader, let us here include a short background and a
definition of minimal thinness (essentially taken from [13, Sec. 4]).

We denote the class of nonnegative superharmonic functions in the unit ball by
SH(B) and the Poisson kernel atτ ∈ ∂B, (1− |z|2)/|z − τ |n, by Pτ . The Pois-
son kernel is a harmonic function. It is minimal in the sense that, ifh is a positive
harmonic function such thath(z) ≤ Pτ(z) for all z ∈B, thenh(z) ≡ 0 orh(z) =
cPτ(z) for a constantc.

Let us now make a variant of this. Letu ∈ SH(B) be such thatu(z) ≥ Pτ(z)
holds on a subsetE of the unit ball. How strong is this condition? Can there be
such a functionu and a pointz in B \ E such thatu(z) < Pτ(z)? The answer
depends on how “big”E is close to the poleτ. The concept ofminimal thinness
was introduced when studying similar questions in [12]. Let us now turn to the
definition.

Thereduced functionof h with respect to a subsetE of B is defined as

REh (w) = inf{u(w) : u∈SH(B) andu ≥ h onE}.
We can make this function lower semicontinuous by regularizing it—that is, ob-
taining theregularized reduced function̂REh (z) = lim infw→z REh (w).

Definition 8.1. A setE is minimally thinatτ ∈ ∂B if there is az in the unit ball
such thatR̂EPτ (z) < Pτ(z).

Remark 8.2. There is an interesting probabilistic interpretation of minimal thin-
ness; see for example [3, p. 102] or [8, (b1), p. 208] combined with [8, (7.3sm),
p. 686]. LetBt be a Brownian motion in the unit ballB that is conditioned by the
Doob’sh-condition, whereh is the Poisson kernel with pole atξ. This process
will then be conditioned to exitB at ξ ∈ ∂B. Hence,E is minimally thin atξ if
and only if there exists a pointx ∈B such that

Prx [Bt avoidsE ] > 0.

Let us now combine the discrete group and the concept of minimal thinness, with
help from the following set.
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Definition 8.3 [13, Def. 5.1]. We define the setN to be

N = {x ∈ ∂B : the archipelago is not minimally thin atx}.
Remark 8.4. Using the probabilistic interpretation of minimal thinness in Re-
mark 8.2, we can view the setN in the following heuristic way. The Brownian
motion inB is conditioned using the Poisson kernel and so we see that, at each
point x ∈ B, there is a drift perpendicular to the level sets of the Poisson kernel
with pole in ξ. Since these level sets are horospheres, it follows that the drifts
are directed along hyperbolic geodesics fromx towardξ. Lifting this conditioned
process in the unit ball to the quotient-manifold results in a stochastic process that
is conditioned to “eventually follow” the geodesicg(t) on the manifold. This is a
recurrent process if and only ifξ ∈N.

By [13, Secs. 5, 6],
3c ⊂ N ⊂ Ls(α)

whenα < 1. We also haveLs(1) ⊆ L(1) = 3c. Furthermore,N and3c have the
same Hausdorff dimension and, in the case where0 is geometrically finite,N =
3c (see [13, Thm. 5.4, Cor. 6.1]).

The following question was raised in [13, Sec. 5, p. 310]:Is in fact N = 3c?
We will answer this question negatively in Section 10.

9. A Generalized Version of Minimal Thinness

We now give a relationship between minimal thinness and the functionϕ(t). The
result holds for a generalization of minimal thinness given in the next definition.

Definition 9.1. The setE is β-thin aty if there is a measureµ such that

lim inf
x→y, x∈E kβ ∗ µ(x) > kβ ∗ µ(y),

wherekβ(x) is the Riesz kernel|x|β−n.
Note that we here usedβ instead ofα as the parameter so as to avoid confusion.
To find out more about this type of thinness, see for example [2, pp. 155–158].
We have that 0-thinness is the same as minimal thinness (cf. [2, Cors. 7.4.3(iv),
7.4.7(iv)]).

Let E be the archipelago of0. What can be said about theβ-thinness ofE if
the sequence{ϕi} is known? We have immediately that, if there is a bounded sub-
sequence of{ϕi}, thenξ ∈3c (and thus, by [13, Prop. 4.14],ξ ∈N), which then
would imply thatE is notβ-thin atξ for anyβ ≥ 0 (cf. again [2, Cor. 7.4.3(iv)]).
The following result gives a more precise statement.

Proposition 9.2. Let {ϕi} andξ be as before and letβ ∈ [0,1). Then the archi-
pelago of0 is notβ-thin at ξ if∑

i

e−(n−β)ϕi = ∞.
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Proof. Let E be the archipelago of0, and let{Qk} be a Whitney decomposition
of the unit ball. Using the estimates in [13, Lemma 4.11; 2, Cor. 7.4.3, p. 155], we
obtain thatE is β-thin atξ if and only if⋃

Qk∩E 6=∅
Qk is β-thin atξ.

By [2, Cor. 7.4.3(iv)] it then follows thatE is β-thin atξ if and only if∑
Qk∩E 6=∅

(
diam(Qk)

dist(Qk, ξ)

)n−β
<∞.

Thus, by Lemma 4.11 in [13] and (7) and (8) in its proof, we have∑
Qk∩E 6=∅

(
diam(Qk)

dist(Qk, ξ)

)n−β
≥ C

∑
{γj∈0}

( |1− |γj(0)|
|ξ − γj(0)|

)n−β
≥ C

∑
{ϕi}

(
hi

Ri

)n−β
,

with the notation from Figure 5. Since

hi

Ri
= cos(θi) = 1

cosh(ϕi)
,

we conclude thatE is notβ-thin atξ if∑
i

e−(n−β)ϕi = ∞.

Corollary 9.3. If
∑

i e
−nϕi = ∞ thenξ ∈N.

The corollary follows immediately from the preceding proposition because 0-
thinness is minimal thinness. We will use Corollary 9.3 to give a concrete example
in Section 10 of a Fuchsian group with a limit pointξ ∈N \3c.

Rarefiedness

Beside minimal thinness, let us study another potential theoretic set measure called
rarefiedness.To give a definition of rarefiedness, we recall that theRiesz massof
a positive superharmonic functionu is a measureµ such that, by the Riesz rep-
resentation theorem,u(x) = Gµ + h, whereGµ is the Green potential of the
measureµ andh is a harmonic function.

Definition 9.4 (cf. [2, Def. 12.4, p. 74). A subsetE of the unit ballB is rar-
efiedat ξ ∈ ∂B if there exists a positive functionu in the upper half-spaceH =
{x = (x1, . . . , xn); 0< xn} with no Riesz mass at infinity such that

u(x) ≥ |x|, x ∈E ′,
whereE ′ is the image ofE under the Möbius mapping that mapsB to H andξ
to∞.
What can we say about rarefiedness of the archipelago atξ if we know ϕ(t)?
“Nothing in general” is the negative answer, as seen in the following example.
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Consider a Fuchsian group0 with a parabolic element for whichξ is a fixed point.
The corresponding geodesic on the Riemann surface will be going out on a para-
bolic cusp with maximal rate (i.e.,ϕ(t) = t), and we cannot tell just by looking
at ϕ(t) that we are heading toward a limit point at all. On the other hand, [13,
Lemma 6.3] tells us that the archipelago of0 is not rarefied atξ.

10. A Counterexample

Again we use the jungle-gym construction of Section 5. Recall that given a start-
ing pointx0 we can completely determine the geodesic, and thus the related limit
point ξ on the unit sphere for the underlying discrete group0, by the number of
turnsN(j) that the geodesic makes in each hole. Because we suppose that the
holes are visited in strict order, going to the “right” for example as in Figure 6, it
follows thatϕj is increasing. We will show that ifN(j), the number of turns in
thej th hole, is chosen to be the upper integer part of exp(2j)/j thenξ will be in
N but not in3c.

Note that in this setupϕj ≈ j and thusϕj → ∞, henceξ /∈3c. From Corol-
lary 9.3 it is sufficient to show that, with the choice ofN(j)as before,

∑
{ϕi} e

−2ϕi =
∞ and ∑

{ϕi}
e−2ϕi ≥

∑
{holej}

N(j)e−2ϕj ≈
∑
{holej}

N(j)e−2j

≥
∑
{holej}

e2j

j
e−2j =

∑
{holej}

1

j
= ∞.

Hence we conclude that3c 6= N.

Remark 10.1. Recalling the conditioned stochastic process described in the heu-
ristic Remark 8.4, we can argue that, by making more and more turns, the resulting
outward drift on the jungle gym itself will be relatively small—so small that the
process will be recurrent.
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