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On Parameter Spaces for Artin Level Algebras

J. V. CHIPALKATTI & A.V. GERAMITA

Let R = k[x1, ..., x,] denote a polynomial ring and lét N — N be a numeri-

cal function. Consider the set of all graded Artin level quotients R/I having

Hilbert function/. This set (if nonempty) is naturally in bijection with the closed

points of a quasiprojective schemié( ). The object of this note is to prove some

specific geometric properties of these schemes, especially for2. The case

of Gorenstein Hilbert functions (i.e., where has type 1) has been extensively

studied, and several qualitative and quantitative results are known (see [17]). Our

results should be seen as generalizing some of them to the non-Gorenstein case.
After establishing notation, we summarize the results in the next section. See

[12; 17] as general references for most of the constructions used here.

1. Notation and Preliminaries

The base field will be algebraically closed and of characteristic O (but see Re-
mark 4.11). LetV be ann-dimensionak-vector space, and let

R=Esymv+ s=¢psymv.
i>0 i>0
Let{xs,...,x,} and{yy, ..., y,} be dual bases df * andV (respectively), lead-
ing to identificationsR = k[xy, ..., x,]andS = k[y1, ..., y,]. There are internal
products (see [11, p. 476])

Sywv*e@Symv - Sym/V, u®F —>u-F,

makingsS into a gradedR-module. This action may be seen as partial differentia-
tion; if u(x) eR andF(z) € §, then

u - F = u(a/Byl, ey 3/3)’;1)F

If I € R is a homogeneous ideal, thén' is the R-submodule ofS defined as
{FeS:u-F=0forallueI}. This module (called Macaulay's inverse system
for 1) inherits a grading frons, so7 ! = ;(1);. Reciprocally, ifM C Sis a
graded submodule, then af) = {u : u - F = 0 for all F € M} is a homoge-
neous ideal inR. In classical terminology, ifi - F = 0 and de@g < degF, then

u and F are said to bapolarto each other.

Received December 14, 2001. Revision received March 19, 2002.

187



188 J. V. CHIPALKATTI & A. V. GERAMITA

For anyi, we have the Hilbert functioB (R/I, i) = dim;(R/I); = dim;(I7Y);.
The following theorem is fundamental.
THeorREM 1.1 (Macaulay—Matlis duality). We have a bijective correspondence
{homogeneous ideals < R} = {gradedR-submodules of};
I — 1Y  annM) < M.

Moreover,I ! is a finitely generate®-module if and only iR /1 is Artin.

Let R/I = A be Artin with graded decomposition

A=k®A® - ®As, Ag#0, A;=0fori >d.

Recall that
soclgA) = {u € A : ux; = 0 for everyi}.

ThenA, C soclgA), and A is said to bdevelif equality holds. This is true iff
I71is generated as aR-module by exactly := dim A, elements inS,;. When
A is level, the number is called thetypeof A, and it coincides with its Cohen—
Macaulay type. Thud is Gorenstein ift = 1. The numbe# is thesocle degree
of A. Altogether we have a bijection

{A: A= R/I Artin level of typer and socle degred} = G(t, Sy);
A— (IY,;,  R/annA) < A.

HereG(z, S;) denotes the Grassmanniarredimensional vector subspacesSpf
Notice the canonical isomorphism

G(t, Sy) ~ GdimR, —t, Ry) Q)
taking A to 1,. We sometimes write\; for (171); andA for A, = (I™Y),.

REMARK 1.2. The algebra is level iff A, generates ! as anR-module—that
is, iff the internal product map

ot Ry @ Ay — A
is surjective for ali < d. This is so iff the dual map
Bit (R/D)i — Sq—i ® (R/1)a

is injective for alli. This map can be written as

ﬂi:u—>ZzM®u)_cM, (2)
M

the sum quantified over all monomial¥ of degreed — i.

As a consequence, /I is level then the graded piedg determined by the
following recipe: I, = {u € R; : u- Ry_; C I;}fori < d, andl; = R; for
i > d. Inthe terminology of [12] (a related terminology was originally introduced
by A. larrobino),! is theancestor ideabf the vector spacé;.
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REMARK 1.3.  We can detect wheth&r/I is level from the last syzygy module in
its minimal resolution. Indeed, let

0—-P, —---—Pp—R/I >0 @)
(wherePy = R) be the graded minimal free resolution®f1, and let
0— R(-n) - R(-n+1" — ---AN(R(-D)") - --- > R —>k—0 (11

be the Koszul resolution of. We will calculate the grade&-module N =
TorR(R/I, k) in two ways. If we tensott) with k, then all differentials are zero
and henceV = P, ® k. When we tensottt) with R/I, the kernel in the left-
most place iV = soclgA)(—n). HenceA is level of socle degreé and typer
iff socle(A) ~ k(—d)!, iff P, ~ R(—d — n)".

HenceforthA = R/I always denotes a level algebra of typend socle degre#,
loosely said to be of typé&, d). Let B € S; ® O denote the tautological bun-
dle onG(z, Sy); thus its fiber over a poink € G is the subspaca. The internal
products give vector bundle maps

0i:Ri_i®B— Si®0;, 1<i<d. 3)
Dually, there are maps
(p;k: R, ® Og — S4_; ® B.

Now B* is the universal quotient bundle 6f(dim R; — ¢, dim R,;) via (1), so its
fiber over the point, is the subspacg,/1,.

1.1. Definition of Level Subschemes
We fix (¢, d) and letG = G (¢, S;). The Hilbert function ofA is given by
H(A,i) = dim(R;/I;) = dimA;.

This motivates the following definition.

For integers andr, let L(i, r) be the closed subscheme Gfdefined by the
condition {rank(¢;) < r}. (Locally it is defined by the vanishing af + 1)-
minors of the matrix representing;.) Let £°(i, r) be the locally closed sub-
schemel (i, r) \ L@, r —1). Thus A represents a closed point 6fi, ) (resp.
Le°(i,r)) wheneverH(A, i) <r (resp.H(A,i) =r).

Leth = (ho, h1, ho, ...) be a sequence of nonnegative integers suchithat
1, hy =t,andh; = 0fori > d. (Itis a useful convention that; = 0 fori < 0.)
Define scheme-theoretic intersections

d—1 d—1
Ly =(LG ), LB =[)LG, h).
i=1 i=1

These are, respectively, closed and locally closed subschen@g,of,;). Via

the identification in (1), we will occasionally think of them as subschemes of
G(dimR,; —t, Ry). The pointA = R/I liesin L(h) (resp.L°(h)) iff dim; A; <

h; (resp. dim A; = h;) for all i.
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Of course either of the schemes may be empty, and it is in general an open
problem to characterize thogdor which they are not. For = 2, such a charac-
terization is given in Theorem 3.1. ff°(4) is nonempty then we will say thatis
alevel Hilbert function.

1.2. The Structure of (h) fort =1, n =2

The structure of the parameter spaces for Gorenstein quotieRts-0f[ x;, x,] is
rather well understood and provides a useful paradigm for our study of Artin level
guotients ofR having type> 1. An outline of this story is given below; see [12]
for details.
It is easy to show that = R/I is a graded Gorenstein Artin algebra iffis
a complete intersection. Thus= (u3, u»), whereu,, u, are homogeneous and
degu; = a < b = degu,. In this casel = a + b — 2, and the Hilbert function of
Alis
i+1 for 0<i<a-1,
H(i)=1 a fora<i<b-1
a+b—(+1 for b<i<d,

in particular, it is centrally symmetric. We will denote this function/y It fol-
lows that, for socle degre# there are precisely

' (d+2)/2 ifdiseven,
_{(d+1)/2 if d is odd,

possible Hilbert functions for Gorenstein Artin quotientsofThe collection{ 4, }
is totally ordered, that is,(j) < h,y1(j) forall0 < j <dandl<a < ¢. For
brevity, let£, denote the schemé(h,) C PS,.

In fact, £¢ is the locus opower sum®f lengtha; that is,

L, ={FePS;: F=L{+---+ L% forsomeL; in S},

with £, its Zariski closure. Thug; can be identified with the rational normal
curve inPS,, and L, is the union of (possibly degenerate) seaant- 1)-planes
to £1. In particular, dim, = 2a — 1

Letz; = xf-fxg; then Sym R, = k[zo, ..., z4] is the coordinate ring oPS,.
Consider the Hankel matrix

Z0 Z1 't Zd-a

71 22 e Zd—a+1
C, = ,

Za Ze41 vt 2d

and letp, denote the ideal of its maximal minors. Then it is a theorem of Gru-
son and Peskine (see [14]) that is perfect, prime, and equal to the ideal®f
ink[zo, ..., zq4]. Now the Eagon—Northcott theorem implies tiiat C PS, is an
arithmetically Cohen—Macaulay variety.
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1.3. Summary of Results

In the next section, we derive an expression for the tangent space to a point of
L°(h). This is a direct generalization 417, Thm. 3.9] to the non-Gorenstein
case. For Sections 3 and 4, we assume 2. In Section 3, we give a geomet-

ric description of a point of° (%) in terms of secant planes to the rational normal
curve, which generalizes the one just givensfer 1. We relate this description to
Waring'’s problem for systems of algebraic forms and solve the problem#$o.

In the last section we prove a projective normality theorem for a class of schemes
L(i, r) using spectral sequence techniques. The results in the following three sec-
tions are largely independent of each other, so they may be read separately.

We thank the referee for several helpful suggestions, and specifically for con-
tributing Corollary 3.3. We owe the result of Theorem 3.1 to G. Valla. We also
acknowledge the help of John Stembridge’s Maple package “SF” for some calcu-
lations in Section 3.4.

2. Tangent Spaces to Level Subschemes

Let R = k[x1,...,x,] and letA = R/I be an Artin level quotient of typé, d).
Given a degree-0 morphistn: I — R/I of gradedR-modules, we have induced
maps ofk-vector spaceg; : I, — (R/I);. We claim thaty, entirely determines
Y. Indeed, lety € I; andx™ be a monomial of degre¢ — i. Theny;(ux™) =
Yiw)x™. But thengi(yi(w)) = 3, y" ® Ya(ux™). Sincep; is injective, this
determines); (1) uniquely. Thus we have an inclusion

Homg(I, R/I)o = Hom (14, Ra/ls), ¥ — Ya. 4)
We also have a parallel inclusion

Homg(I7%, S/17Y 0 < Home(A, Sq/A). (5)

Recall that ifU is a vector space an® an m-dimensional subspace, then
the tangent space @(m, U) at W (denotedT, w) is canonically isomorphic to
Hom(W, U/W). Thus

TG, s, 0 = HOME(A, Sq/A), TGdimRry—1t,Re), 1, = HOM(Ig, Ry /14).

THEOREM 2.1. LetA = R/I be as before with Hilbert functiol and inclusions

(4) and (5).

(A) RegardingL°(h) as a subscheme @f(z, S;), we have a canonical isomor-
phism

Tromy,a = Homg(I™, S/17Y0 = Homg (I 7%, (1%) Y1 Yo.

(B) RegardingC°(h) as a subscheme 6f(dim R, —¢, R;), we have a canonical
isomorphism

Tromy, 1, = HOMg(I, R/1)o = Homg(I/1%, R/1)o.
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Proof. We begin by recalling the relevant result about the tangent space to a generic
determinantal variety (see [1, Chap. 2]).

Let M = M(p, q) denote the space of gl x ¢ matrices ovelC or (equiva-
lently) the space of vector space m&ps — C4. SinceM is an affine space, it
follows for anyX € M that the tangent spadg,, x can be canonically identified
with M. Fix an integerr < min{p, ¢} and letM, be the subvariety of matrices
with rank< r. If X € M, \ M,_1, thenX is a smooth point oM, and

Ty, x ={Y e M :Y(kerX) C imageX}.

Now if A € L°(i, r), theng; is represented in a neighborhobdc Gz, S,) of
A by a matrix of size(d —i + 1) x (i +1), whose entries are regular functions
onU. Writing M = M(t(d —i +1),i + 1), these functions define a morphism
f: U — M. Thus the following is a fiber square:

unce@i,ry — U

T

i

Hence
Tﬁo(l"r)’A = {l’ € TU,A = Hom(A, Sd/A) . df(‘f) (S Tth(A)}.

(Heredf denotes the induced map on tangent spaces.)

This expression may be translated into the statementihat,, » consists of
all r € Homy (A, S;/A) such that the broken arrow in the following diagram is
zero:

kera; — Ri-i®A id&) Ri_i ® Sq/A

—

—
-
-
-
- n
-
-
-

-

* Si/A; .

The mapu comes from the internal product in an obvious way. This implies
thatt € Tz, ), a iff the compositeu o (id @ ) factors through image; = A;.
Lett;: A; — S;/A; denote the induced map. Now

Trom,a = m Trog,n,ns
i
hencer € Tz-(p),  iff it defines a sequence;) as just described that glues to give
anR-module map —t — §/I-% This proves (A).
For (B), a parallel argument leads to this: an elenagatHom, (1, R;/1;) be-
longs toT - ), 1, iff, in the following diagram, the broken arrow can be filled in:
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w®id
1i®Sai 225 Ry/ly ® Sa_;

Here both vertical maps are given by formula (2); in particular, they are injec-
tive. Hence the broken arrow is unique if it exists, which we then denote; by
Thusw € Tz-), 1, iff it defines a sequencey;) as before that glues to give an
R-module mapy — R/I. This proves the theorem. O

REMARK 2.2. The scheme GradAlg) (defined by Kleppe [18]) parametrizes
graded quotients aR (level or not) with Hilbert functiom:. Its tangent space at

the pointR/I is also canonically isomorphic to Haih R/I)o. See Remarks 3.10

and 4.3 in [17] for a more detailed comparison of these two spaces (in the Goren-
stein case).

3. Level Algebras in Codimension 2

In this section (and the next) we consider quotient® ef k[ xq, x2].

3.1. Preliminaries
Let A = R/I be an Artin level algebra with Hilbert functioH, typer, and socle
degreed. By Remark 1.3, we have a resolution
d+1
O—>Rf(—d—2)—>@R“(—£)—>R—>R/l—>0. (6)
(=1
Heree, is the number of minimal generators bin degreef, and) e, =1 + 1.
Hence

HA,i)=(+D—) eli—t+1 foralli<d+1 7
=1

With a little manipulation, this implies

eiia=2H(A,i)—H(A,i —1) —H(A,i+1) for0<i<d. (8)
Hence the sequence ) can be recovered from the Hilbert function. Applying the
functor Homk (-, R/I) to the resolution of, we have an exact sequence

d+1

0 — Hom(I, R/I) — E(R/D)*(£) — (R/1)'(d +2)
=1
and so .,
dim; Homg (I, R/1)o = ZegH(A, 0). (9)

(=1
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The next result characterizes the level Hilbert functions of typé) in codi-
mension 2. It is due to G. Valla, who had kindly communicated its proof to the
second author several years ago. A more general version (that covers codimension
two nonlevel algebras) is stated by A. larrobino in [16, Thm. 4.6A].

TueoreM 3.1 (larrobino,Valla). Leth = (ho, h1, ...) be a sequence of nonneg-
ative integers satisfyinggo = 1, hy = t, andh; = 0 fori > d. ThenL°(h) is
nonempty if and only if

2h; > hi_1+h;yq forall 0<i <d.

(By conventionj; = 0 fori < 0.)

Proof. The “only if” part follows from (8). Assume thdt satisfies the hypothe-
ses. Then we inductively deduse < i + 1. Definee; = 2h; 1 — (h;_» + h;) for
1<i <d+1lande; = 0 elsewhere. TheEj’:fe,- =hy +ho=1t+1 Definea
sequence of integers

q:q1=g2 =< =qi1

such that, for 1< i < d + 1, the integeri occurse; times. An easy calculation
showsthad g, =Y i ¢ =1(d + 2).

Let M be ther x (r + 1) matrix whose only nonzero entries avg ; = xf*z_q“
andM; ;41 = xﬁ*z’q"“ forl < i <t, and let/ be the ideal of its maximal minors.
Sincel is (x1, x2)-primary, it has depth 2. The+ 1 maximal minors of\f are
nonzero, and they have degregs.. ., ¢,+1. By the Hilbert-Burch theorenR /I
has a resolution with Betti numbers as in (6). Then, by Remark 1.3, the paint

R/I liesin L°(h). O
ExampLE 3.2. Let(r,d) = (3,7) andh = (1, 2,3,4,5,5,4,3,0). Thenes =
es =1, eg =2, andg = (5,6, 8, 8). Hence

xf x3 0 0

M=|0 x} x O

0 0 X1 X2
andl = (x3, x{x2, xIxz, x8).
We owe the following observation to the referee.

CoroLLary 3.3. The level Hilbert functions of type(s, d) are in bijection with
partitions ofd — ¢ 4+ 1 with no part exceeding+ 1.

Proof. Given i, definew; = h; — hjxp+1for0O < i <d—1 Thenu =
(a1, ..., 41, o) IS @ partition as described in the corollary. Conversely, given
such a partition, we append zeros to make its length equihtal then determine

h; recursively. O

ReMark 3.4. If 4 is a level Hilbert function, therf° (%) is an irreducible and
smooth variety. Indeed, the scheme Gradalgis irreducible and smooth by a
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result of larrobino [15, Thm. 2.9], an@° (k) € GradAlg(4) is a dense open sub-
set. Hence, from (9),

d d
dimCo(h) = ) " eihi = ) hi(2hios— hi = hi—2). (10)
i=1 i=1
For instance, we have digf (k) = 9 in Example 3.2.

3.2. Geometric Description of Points £ (&)

We start with an example to illustrate the description we have in mind. We need
the following classical lemma (s€¢E7, pp. 23-25; 19]).

LemMma 3.5 (Jordan). Letu € R,, be a form factoring as

H(aixl—i—b,-xz)“", so that Z,u,- =m.

1

If n > m, then(u);;* (the subspace of forms i), that are apolar ta:) equals
Z Sui—1(biyr — ajy)" Mt = {Z filbiyi—aiy2)" Mt fi e Su,-fl}-

In particular, this is anm-dimensional vector space.

ExaMpPLE 3.6. Let(z, d) = (2, 6) and consider the level Hilbert function
h=(123,44320).

ThenA e £°(h) defines a linePA in P® (= PSg). We identify the subsefs =
{[L®] € PSs : L € S1} as the rational normal sextic PSe.

By formula (8),/ = ann(A) has one minimal generator each in degreés Z.
Let us € R4 be the first generator, factoring ag = ]'[f‘zl(a,-xl + b;x,). For
simplicity, assume thataf, b1], ..., [aa, bs] are distinct points irPL. Then, by
Jordan’s lemma, the subspza((z¢e¢)g1 C Sg is the span ofb; y; — a;y»)8 for 1 <
i < 4. LetIl4 denote the projectivizatioﬁ(u4)gl, which is the secant 3-plane
to Cs spanned by the four points;[ —a;]. Consider generators;, u7 and define
I1s, IT7 analogously. (Of coursé]; = PSs.) Now

(I™Y6 = ((ua, us, u7) ™ = PA = 4N 5N I

Thus (the line corresponding to) every elemant £°(h) is representable as an
intersection of secant planes to the rational normal curve, in a way that depends
only on the combinatorics df. If (say) u4 has multiple roots, thefl 4 is tangent

to the curve at one or more points and so must be counted as a degenerate secant
plane.

DerFINITION 3.7.  LetCy = {[L?] : L € S1} be the rational normal curve mRS,.
A linear subspacél C PS,; of (projective) dimension will be called asecant
s-plane toC, if the scheme-theoretic intersecti@ly N IT has length> s + 1
(Then the length must equak- 1, essentially by Jordan’s lemma.)
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Now, for an arbitrary level algebra in codimension 2, we have the following
description.

ProrosiTiON 3.8. Leth be a level Hilbert function and € £°(4). Define a se-
quencey as in the proof of Theorem 3.1. Then there exist seeant 1)-planes
I, such that

PA=T,N--NTI 11)

qr+1°

Proof. The essential point already occurs in Example 3.6.¢L¢ one of they;
andu € I, a generator. Write

U= H(aixl + bixp)Hi.

Let ®; be the osculating; — 1)-plane toC, at the point(b;y; — a;y2)?.
(This is the point itself ifu; = 1) Algebraically, ®; is the projectivization
P(Su—1(biy1— a;yz)d=rith),

Let IT, be the linear span of all thé;. Then dimIl, = g — 1 and by Jordan’s
lemma,I1, is the locus of formgF € S, that are apolar ta. Construct such a
planell,, for eachy;. Aform F lies in A iff it is apolar to each generator &f iff
it belongs to) I1,,. The proposition is proved. O

REMARK 3.9. Theargumentdepends heavily onthe factthatany zero-dimensional
subscheme of; is in linearly general position. This property characterizes ratio-
nal normal curves (see [13, p. 270]).

The preceding proposition admits a converse. Consider the following example.

ExaMpLE 3.10. LetPA C PSy; (= PY) be a line appearing as an intersection
PA =TIgN H/g N Iy,

where eaclil, is a secanfg —1)-plane toCy;. Note that the planes intersect prop-
erly (i.e., in the expected codimension). We claim thatelongs taZ° (%) for

h=1234567876420

Let Wg C S1; be the subspace such tHag = PWsg, .... Assumellg intersects
Cy at points(b; y1 — a; y2)* with respective multiplicitieg.; (so thaty" u; = 8).
Letug € Rg be the elemenf](a; x1 + b; x2)*i; then aniiWg) is the principal ideal
(ug). Define elementsg, uio similarly. Now

I =annA) = annWg) + anr(Wg’) + annWyg) = (us, ué, u10).

Since (by constructiong /I is alevel algebra of type two, it follows thahas three
minimal generators. Hence their degrees must&@&, 10) and then the Hilbert
function of R/I is determined by formula (8). This completes the argument.

ProrosiTioN 3.11. LetPA C PS; be a(r — 1)-dimensional subspace that is ex-
pressible as an intersection
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PA=T,N---NT

qr+1°
where

(i) 1, is a secantg; — 1)-plane toC,; and

(ii) the intersection is proper—that is,

> codim(Il,,, PY) = codim(PA, P‘) =d — 1 + 1

ThenR/ann(A) € L°(h), wherehg = landh; = 2h; 1 — h;_o—e¢; forl<i <
d. Thee; are defined by arranging thg as in Theorem 3.1.

Proof. The proof is left to the reader. O

Propositions 3.8 and 3.11 are natural generalizations of the descriptidikpfn
the Gorenstein case.

ExampLE 3.12. The minimal Hilbert function of typ&,d) ish = (1,2, ...,
t—211¢,...,t,0), and thenl°(h) = L(h) is the variety of secart — 1)-planes to
C,. Abstractly, £ (h) ~ Symf P! ~ P’. See [2] for a description of the minimal
level Hilbert function whem > 2.

The maximal functionig; = min{i +1, (d —i + Dt} forl<i <d. Ifwe let

td+1)
S0 = s
0 t+1
thenh,, < so + 1 Hence everyA € G (¢, S,;) has an apolar form of degrees,.

Using this formulation, the so-called Waring’s problem can be solved completely
for binary forms.

3.3. Waring's Problem for Several Binary Forms

We will start with an informal account. Given binary formg, ..., F, of degree
d, we would like to find linear form<.4, ..., L, such that

Fi=cald+ - +c; L9 (12)

for somec;; € k. This is always possible far = d + 1; indeed, if we choose
Ly, ..., Lyy1 generally then thé? spanS,.

The “simultaneous” Waring'’s problem (in one of its versions) is to find the
smallests that suffices for ayeneralchoice of F;. (See Bronowski [3] for a dis-
cussion ofn-ary forms.) Here we consider a more general version: we &rd
consider the locu& of forms {Fy, ..., F;} that admit such a representation. In
practice, we allow not only representations as here but also generalized additive
decompositions (GADSs) in the sense[dT, Def. 1.30].

DeriNITION 3.13. A finite collectionL = {L;} € S\ {0} of linear forms will be
calledadmissibléf any two L;, L; are nonproportional.

DeriniTiION 3.14. LetL be an admissible collection as just defined and let
F € S;. A GAD for F with respect ta. is a collection{ p;} of forms such that
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F = Zip,»L?"’” with o; = degp; < d. (We set deg 0= —1 by convention.)
The integer, = Y, («; + 1) is called thdengthof the GAD.

If all «; = 0, then this reduces to expression (12). Given sequeaneesL such
that—1 < «; < d, define a subspace

W(a,L) =) S L™ C Sy

(By convention,S_; = 0.) Write L; = b;y1 — a;y»; then, by hypothesisq|, b;]
represent distinct points ¢,

LemmMma 3.15 [17,Sec. 1.3]. With notation as above

(@) A form lies inW(e, L) iff it is apolar to [ T,(a; x1 + b;x2)**L In particular,
dimW(a, L) = 3 (e; + D).

(b) Let®; ,, be the osculating;-plane(empty, by convention, if; = —1) to Cy
at the pointLjf € C4. Then the linear span of a{l®; ,, }; is the projectiviza-
tion PW(q, L).

This is merely a rephrasing of Jordan’s lemma. Thus the subsp@ges.) ex-
actly correspond to seca(, — 1)-planes toC,. Now let (d, ¢) be as before and
fix an integers such thad +1 > s > ¢. Define

2, ={AeG(,S,) : PA lies on some secariy — 1)-plane ofC,}. 13)

Algebraically, A € X, iff there exists an admissible collectién;} such that each
F € A has a GAD of lengths s with respecttdL;}. There is no loss of generality
in assuming thatL;} has cardinality.

Now Waring’s problem can be interpreted as one of calculatingXimEvi-
dently, it is bounded by dir&(z, S;) = t(d — r +1). Let U; € Sym*(PS;) be

the open subset of admissible collectidns- {L4, ..., L}, and consider the in-
cidence correspondence

¥, = {(A,L) € G(1, S;) x U, : each element ofz
admits a GAD of lengthe s w.r.t. L}.

ThenZX; is the image of the projectiom : 2, = G(t, Sq).

LEMMA§.16. Each fibre of the projection,: £, — U, is of dimension(s — 1),
sodimX; =5 + (s —1).

Proof. EachA e nz‘l(L) is a subspace of the (finite) union

U W D),

Lu<s

hence it is a subspace of one of tie Now use the fact that dirg (+, W) equals
t(dimW — ). O
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Thus we have a naive estimate,

dmX; <min{s +t(s —1), t(d —t +1)}. 14

N1 N2

THEOREM 3.17. In (14),we have an equality.

Proof. AssumeN; < N,. We will exhibit a level Hilbert functiork of type(z, d)

such that, = s and dim£°(k) = Ny. Then, by construction, for eache £°(h)

there exists a nonzero form iR, that is apolarA. This form defines a secant

(s — D-plane containind?’A. HenceL°(h) C X, which forces dink; = N;.
Letm be the unique integer such that +1)t > s > mt. ThenN; < N, forces

s < d — m. Define a sequendeby

i+1 for 0<i<s—1,

A s fors<i<d-m,
o d—i+Dt ford—m+1<i<d,

0 fori > d.
It is an immediate verification thatis level. Now

€s = :L €d—m+1=S —mt, eq_pmy2=mt+1t—s,

ande; = 0 elsewhere, hence digf (k) = N;.
For example, fokr, d, s) = (3,11, 7) we have

h=1234567777630

If N» > Ny, thens > sg (defined as in Example 3.12). But since every lies
on an(sp — 1)-secantX,, = G (¢, S;) and we are done. O

The theorem implies that, givegeneralbinary formsFy, ..., F;, a reduction to
the expression (12) is always possible provided we have a sufficient number of
constants implicitly available on the right-hand side of (12). This is no longer so
for n > 3, and the corresponding reduction problem is open. See [4] for one ap-
proach, where Theorem 3.17 is proved using a different method.

A lengths subscheme of, is called a polas-hedron ofA if A lies on the cor-
respondings — 1)-secant plane. We have shown that the variety of peledra
of A is the projective spad@(R,/ann(A),). Forn > 3, the geometry of this va-
riety is rather more mysterious—see [7; 22].

3.4. An Analogue of the Catalecticant

An interesting special case occurs whén= N, — 1, thatis, whenxz, is a hyper-
surface inG (¢, S4). This is possible iff
d+2

t+D)|d+2 and s=d+1— ——.
t+DH1d+2 s + 1
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Then I, is set-theoretically equal t6(s,s) = {rank(B ® R;_; — S;) < s}.
Now L (s, s) is the zero scheme of a global section of the line bundle

ANTYB*® Sy_s) = Ogd — s + ).

Hence the fundamental clas&(s, s)] equals(d — s + 1)c1(B*) € H(G, Z).
The preceding rank condition can be written as a determinant. For instance, let
t=2,d =7 ands =5, and let

7 7
b= Zaiyg_[)’ia Fp = Zb;yé"yi
i=0 i=0

be linearly independent forms. Then the pefail = P(spanF;, F»)) lieson a
secant 4-plane t@’ iff

ap a3 dz daiz d4g das
ay dz aiz daag ds dg
ap d3 d4 ds5 de a4y
bo by by bz by bs
b1 by bz by bs bg
b, bz by bs bg by
This is the analogue of the catalecticant for systems of binary forms.

ExampLE 3.18. Even ifx; is not a hypersurface, such determinantal conditions
can always be written down. For example,fdet 2, d = 5, and dimG (2, S5) =
8. The possible level Hilbert functions are

1:1222220
h2:1233320
h3:1234320
ha:1234420

with dim £°(h) = 2, 5, 6, 8 respectively. NowkE, = L(43), which is set-theoret-
ically equal to any of the scheméXi, 2), i = 2, 3, 4 (as defined in Sectiohl).
Similarly X3 = L(h,), which is set-theoretically (3, 3). It is clear that we can
write the condition forA € G to lie in ¥, (or X3) as the vanishing of certain
minors. Indeed, in general this can be done in more than one way.

We can calculate the classes of these schemé&gsnS,) by the Porteous for-
mula. We explain this briefly; see [10, Sec. 14.4] for the details.

Let E 5> F be a morphism of vector bundles on a smooth projective variety.
Assume thatF and F have ranks and f respectively and that the locus. =
{ranka < r} is of pure codimensioe — r)(f — r) in the ambient variety. Then
the fundamental class &f. (which we denote byX,]) equals thée —r) x (e —r)
determinant whosé, j)th entry equals théf — » + j — i)th Chern class of the
virtual bundleF — E. By the Whitney product formula, the total Chern class
c(F — E) =c,(F)/c,(E).
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We will follow the conventions of [10, Sec. 14.7] for Schubert calculus. Thus
theith Chern class of the tautological bundiés (—1)/{1, ..., 1}, where 1 occurs
i times. ForG (2, Ss), we havec,(B) = 1— {1} + {1, 1}. A straightforward calcu-
lation (using the Maple package “SF”) shows that

[£(2,2)] =[L(4,2)] =10{3, 3} + 6{4, 2}.

The formula does not apply t6(3, 2), since it fails to satisfy the codimension
hypothesis. By a similar calculatiof,(3, 3) = 8{2, 1}.

For anyls € L(h1), a map in Hom (I, R/I) is entirely determined by the
image of the unique generatorin Now the proof of Theorem 2.1 shows that the
spacel’(2,2), 1; Must be 2-dimensional, which implied(2, 2) = L(k1). By the
Littlewood—Richardson rule,

[£(h1)] - {11} =10{4, 4};

that is, a general hyperplageC PSs contains ten secant lines of the rational nor-
mal quinticCs. Of course, these are the pairwise joins of the five pdihts Cs.
Similarly,

[£(hD] - {2,0} = 6{4, 4};

that is, there are six secant lines@g touching a general 2-plank. This can be
seen differently: the projection fromr mapsCs onto a rational nodal quintic in
P2, and the six secants give rise to the six nodes of the image.

4. Free Resolutions of Level Subschemes

We continue to assume= 2. Since the schem£&(i, r) is a degeneracy locus in
the sense of [1, Chap. 2], we can describe its minimal resolution following Las-
coux [20] provided it has the “correct” codimensionditz, Sy).

This granted, in the presence of an additional numerical hypothesis (to be ex-
plained shortly) we can deduce that it is arithmetically Cohen—Macaulay in the
Plucker embedding. In particular, we obtain another proof of the known fact that
L(i, r) is always ACM in the Gorenstein case. In the sequel, we need the Borel-
Weil-Bott theorem for calculating the cohomology of homogeneous vector bun-
dles on Grassmannians. We refer to [5] for an explanation of the combinatorics
involved, but see also [21, p. 687].

Recall the definition ofZ (i, r) given in Sectiori.1. To avoid trialities, we as-
sumer < i + 1throughout the section. From [1, Chap. 2] we have the following
estimate: ifc is the codimension of any component®fi, r) in G(z, S,), then

c < (rank(B® R,_;) — r)(rankS; — r)
=@td—i+D)—-rGE+1-r). (15)
Consider the following conditions:

(C1) the schemé (i, r) is equidimensional and equality holds in (15) for each
component;
Cr—d-i)i—r)=>t.
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We will impose conditions (C1) and (C2) on the détad, i, r). The next result
shows the rationale behind (C2) as well as its scope of validity.

LemMA 4.1. The condition(C2) holds iff there is a level algebra of type(z, d)
suchthatH(A,i —1) =iandH(A,i) <r.

Proof. Given the existence oA, we have
d-1
r—t=H(A,i)— H(A,d) = ZH(A,j) —HA,j+1)
j=i
>d—-i)(HA,i—=1) —H(A, i) =2 d -0 —r),
where the first inequality follows from Theorem 3.1. Conversely, assume (C2) and
define

j+1 for0<j=<i-1
hj = { min{r — (j —i)(i —r),t(d — j+1} fori<j<d,
0 for j >d.

Thenh satisfies the hypotheses of Theorem 3.1, hence it is the Hilbert function of
a level algebrad. Evidently,h; 1 =i andh; < r. O

Now assume thaf = L(i, r) satisfies (C1) (but not necessarily (C2)) andlet
codimL. Then, by the central result of [20], we have a locally free resolution:

0> &E¢— ... » &P — gt
- .= 5 0, -0 for —c<p<O; (16)
where€® = O and
= P SuBOR)©HGC 5205 (17)
v(M)—|Al=p

This is to be read as followss’ denotes the Grassmanniéfir, S;), and Qg its
universal quotient bundle. Thedenote partitions arl, the corresponding Schur
functors (where we follow the indexing conventions of [11, Chap. 6]).

Given a partitiork, the Borel-Weil-Bott theorem implies that the bur@jeD 7;,
(resident onG’) has nonzero cohomology in at most one dimension. This num-
ber (if it exists) is labeled ()’). The direct sum is quantified over allsuch that
v()\') is defined. Since has at most(d — i + 1) rows andi — r + 1 columns, the
sum is finite.

ExampLE 4.2. Let(r,d,i,r) = (2,7,5,4) and consider the level Hilbert
functions

h1:123454320
1123444420
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ThenL = L(5, 4) is a union of two componeni&(4,), L(h2), each of codimen-
sion 4. Hence (C1) is satisfied and we have a resolution

0-E&*— ... 515 Ogasy — O — 0,
where

ET=N(BRR2) ® Ss,

E7% = N(B® R2) ® Seun(Ss) ® Saun(B ® Ry).
%= (B@R2) ® A(B®Ry) ® A°Ss,

4 =[A(B® R)]%2.

The ranks of€°, ..., £~% are 136, 70, 36, 1, henceL is a Gorenstein scheme.
This resolution is equivariant with respect to the action of 8h the embedding
LCG.

The termS,(B ® R,_;) decomposes as a direct sum

P S, B& S Ra-), (18)

Ps i
quantified over all partitions, . of |A|. The coefficient£”; ,, come from the Kro-
necker product of characters of the symmetric group. We explain this briefly; see
[11, p. 61] for details. Also see [6] for a tabulation®f,,, for small values ofA|.

Let A, p, u be partitions of an integer, and letR,, R,, R,, denote the cor-
responding irreducible representations of the symmetric group latters (in
characteristic 0). Thea; ,, is the number of trivial representations in the tensor
productR; ® R, ® R,. In particular, this number is symmetric in the three parti-
tions involved. The main combinatorial result that we need is a direct corollary of
[8, Thm. 1.6].

TueoreM 4.3 (Dvir). With notation as before, assurgg,, # 0. Then

p1 (the largest part inp) < (number of parts in) - (number of parts inu).

Now we come to the main theorem of this section. Recall that a closed sub-
schemeX < PV is said to berojectively normaif the mapH °%(PY, Op(m)) —
HO(X, Ox(m)) is surjective fom > 0.

We will regardL (i, r) as a closed subschemelﬁf/\t Sd) via the Plicker em-
bedding ofG (¢, S,).

THEOREM 4.4. Assume that the data, d, i, r) satisfy(CL).

(a) If (C2)holds, thenl(i, r) is projectively normal.
(b) Moreover, if either = 1 or (C2)is a strict inequality, therC (i, r) is arith-
metically Cohen—Macaulay.

Proof. We will use the following criterion (see [9, p. 467]): An equidimensional
closed subschem& < PV (of dim > 0) is arithmetically Cohen—Macaulay
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(ACM) iff it is projectively normal andd/( X, Ox (m)) = O for allm € Z and 0<
j <dimX.
Since the Grassmannian is projectively normal in the Plicker embedding (see
e.g. [1]), part (a) will follow if the mapH °(Og (m)) — HO(O.(m)) is shown to
be surjective fom > 0.
Form € Z, we have a hypercohomology spectral sequence coming from the

resolution (16):
EPY = HUG(t, Sa), EP(m)), dP9 — artra—ri, 19)
ERT = HPM(Of(m)).

The terms live in the second quadrant, specifically in the range
—c<p=<0 0=<g=td-t+1.

Now the theorem will follow from the next lemma.

LEMMA 4.5.

(1) Assume thafC2)holds. Thent]"? = 0 for m > 0 andq # O.
(2) Assume that either= 1or (C2)is strict. Thent}"? = 0 form < Oandq #
dimG(, Sy).

Let us show that the lemma implies the theorem. First assume0 and (C2)
holds. Then the only nonzero term on the diaggnat ¢ = Oisatp =g = 0.
HenceE2° = HYO,(m))isaquotientof>® = H(O (m)), which proves (a).
Now assumen arbitrary and that either (C2) is strict or= 1. Let (p, q) be
such that O< p +¢ < dim£. ThenE}? = 0, which impliesH/(O,(m)) = 0
for j # 0,dim L. This proves (b). O

Proof of Lemma 4.5Let p, ¢ be such that!"? # 0. By hypothesis£” has a
summand

A=S,B®S,Rqi ® H'*(G', Sy QL)
such thatH 1(G (¢, S4), A(m)) # 0. Now:

(i) SuR4—; # 0implies thatu has at most — i + 1 rows;
(i) Sy Q¢ # 0implies that’ has at most — r + 1 rows—that isA has at most
i —r + 1columns.

But then, by Dvir’s theorem(; ,,, # 0 impliesp; < (d —i +D({@ —r +1). The

next step is to use the Borel-Weil-Bott theoremSgi8 ® O (m). Let y be the

sequencém, ..., m; p1, ..., pr). SinceH (S, B® Og(m)) # 0, we havey =1,
N’

d—t+1
(in the notation of [5]). But now

pr=d—-i+Dli-r+)=d-1+1
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so it is immediate that, = 0 if m > 0. If m < O, thenl,, can only be a multiple
ofd —t+ 1 If t =1 then necessarily, =d +1=dimG. If r > 1, thenl, <
dimG is possible only ifp; = d — ¢ 4+ 1, that is, only if (C2) is an equality. The
lemma is proved, and the proof of the main theorem is complete. O

ExampLE 4.6. (1) The datar, d,i,r) = (3,16,13 11) satisfy (C1) and strict
(C2). Set-theoretically (13,11) = L(h) for

h=12..111213119630

Thus£(13,11) C P(\’ S16) is ACM.
(2) Similarly the datar, d, i, r) = (5, 32, 28, 24) satisfy (C1) and strict (C2).
In this caseL (28, 24) = L(h) for

h=12..2728242015105.0

ExampLE 4.7. Choose an integarsuch thatt < s < t((f:l?' It then follows

that the datdt, d, s, s) satisfy both (C1) and (C2); in fact, (C2) is strict unless
s = t. Set-theoreticallyL (s, s) = L(h), whereh is defined as in the proof of
Theorem 3L7.

If + = 1, then this is the functiork, defined in Section 1.2. By the Gruson-—
Peskine theorem, we then know théts, s) = L(h,) as schemes. We do not
know if this remains true for > 1.

ExampLE 4.8. Letr = 2 and choose integeisd such thatt > 5 and 3 =
2d +1 Then(2,d,i,i — 1) satisfy (C1) and (C2), with the latter being strict iff
i > 5. (We recover Example 4.2 for= 5.) In this caseL(i,i — 1) is reducible
with two components of dimension 3- 7 (i.e., codimension 4) each.

For instance, leti, d) = (9, 13); thenL£(9, 8) = L(h1) U L(h2), where

h1=12...789876420
h,=12..788886420
ExampLE 4.9. The datdr, d, i, r) = (3,14, 11, 9) satisfy (C2) but not (C1). In-
deed,£(11,9) = L(h1) U L(h2) U L(h3), where
hh=12..891011975390
h,=12..89 9 999630
h3=12..89101098630

The component£ (k1) andL(h2) have the expected dimension 27, (ths) is
28-dimensional.

REMARK 4.10. By Lemma4.l1, itis easy to produce examples where (C2) holds.
In contrast, (C1) is rather restrictive. (Although for small valuegof) it is sat-
isfied more often than not.) It would be worthwhile to characterize all sequences
h such thatZ (k) is ACM (or projectively normal), but it is unlikely that the tech-
nigue used here can be pushed any further.
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REMARk 4.11.  Some of the results proved here can be extended to-chavith
appropriate care. Replacisgoy the divided power algebra (sg&, Apx. A)), all
results until the beginning of Section 3.2 remain valid in arbitrary characteristic.
(The reference to partial differentiation should be ignored.)

All results in Sections 3.2—3.4 are valid for chard. In Section 4 we need to
assume chag 0, since (inter alia) Lascoux’s result and the Borel-Weil-Bott the-
orem fail to hold in positive characteristic.
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