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0. Introduction

It is a result of classical function theory (see [FiF; Les; Mas; PeL; S]) that if
f: U — U isaconformal self-mapping of a plane domain that fixes three distinct
points thenf(¢) = ¢. The purpose of the present paper is to put this result into a
geometrically natural context and to extend it to higher-dimensional domains and
manifolds. For an examination of fixed point questions from a slightly different
point of view, we refer the reader to the work of Vigué (see e.g. [V1; V2]).

The third-named author thanks Robert Burckel for early discussions of this topic
and for basic references.

1. Spanning Cartan—Hadamard Subsets

In this section, we leM be a connected, complete Riemannian manifold.

1.1. Cut Pints and Cut Loci

Letx € M. A point y € M is called acut pointof x if there are two or more
length-minimizing geodesics fromto y in M. We also use the following basic
terminology and facts from Riemannian geometry. A geodgsia, b] - M

is called alength-minimizing geodesior, alternatively, aninimal geodesior a
minimal connectoy from x to y if y(a) = x, y(b) = y, and digx, y) = arc
length ofy. Any two points in a complete Riemannian manifold can be connected
by a minimizing geodesic by the Hopf-Rinow theorem. If there is a smooth family
of minimizing geodesics from to y, then these two points are said to dmnju-
gate. Conjugate points are cut points. The collection of cut points of M is
called thecut locusof x, which we denote by, in this paper. It is known that

C. is nowhere dense iM (see e.g. [GKM; K]).

1.2. Spanning Cartan—Hadamard Sets

A subsetX of M is aCartan—Hadamard sef there exists ang € X such thafX C
M\ C,,. We will call xo apoleof X. A pole of a set is in no way unique. But, for
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convenience, we will commonly use the notatidh x) for a Cartan—Hadamard
subset paired with a pole.

We now fix notation. Foy € M \ C,, we denote by, : [0, {] — M the unit-
speed length-minimizing geodesic with, (0) = x andy,, (£) = y.

Now we say that a Cartan—Hadamard sul§&etxy) is spanningf the polexg
has the property that the sigt; ,(0) | y € X \ {xo}} spans (in the sense of linear
algebra) the tangent spagg, M.

1.3. Determining Sets for Isometries

We now can discuss the existence of finite subsets that may determine isometries.
We begin with the following lemma.

LemMmA 1.1. If (X, xo) is a spanning Cartan—Hadamard subsetMf and if
i M — M is anisometry withf (x) = x for everyx € X, then f coincides with
the identity map.

Proof. Since isometries preserve geodesics and arc-lengths of curves, it follows
thatdf,, must fix eachy;  (0) for everyy € X \ {xo}. Owing to the spanning
property of these vectordy,, thus coincides with the identity map @f,M. As
aresult,f must fix every point in a geodesic polar coordinate neighborhoad of

or, equivalently, every point a¥ \ C,,. SinceC,, is nowhere dense, we see that

[ =idy. O

In the case that dimM = d > 2, we see that one has great freedom in choosing
a spanning Cartan—Hadamard subset consistinigHol points. This can be done
in general as follows.

Letxo € M be chosen arbitrarily. Le¥;, be the largest connected open subset,
containingrg, of M \ C,,. Then we may find a connected open suléseff 7., M
thatis star-shaped at the origin and such that the exponential mgp éxp> W
is a diffeomorphism. We let

W1 = Wo \ {xo}
and choose; to be an arbitrary point of;. Then let
W2 = W1\ (expx, (Spariy;,,,(0)}) N Wo)
and letx, be an arbitrary point o,. Now W1 will be chosen inductively to be
Wir1 = Wo \ (expe(Spay;y,, (0). ... ¥1,,, (O)) N Wo)

fork = 2,.... Then, of coursey;,, is chosen fronm,_; without any further re-
strictions. Because eadtj, constructed in this way is nowhere densédras long

ask < d, we may always find/ + 1 points in this fashion. Moreover, it is now

clear that such & + 1)-point set is a spanning Cartan—Hadamard subs#1,of

and that spanning Cartan—Hadamard subsets are generic. We may summarize this
discussion in the following proposition.
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ProrosiTioN 1.2. Let M be ad-dimensional, connected, complete Riemannian
manifold. There exists an open dense suidsefthe product manifoldf x - - - x M

of d 4+ 1 copies ofM with the following property If f is an isometry o/ with
f(x;) =x; foreveryj =0,...,dandif (xo, ..., xs) € W, then f =idy.

2. Biholomorphisms and Determining Subsets

If @ c C"is a domain (connected open set)Mris a complex manifold, then
Aut(2) (resp. Aut{M)) denotes the group, under composition, of biholomorphic
self-maps of2 (resp.M ). We call such mappingsutomorphismsef Q (resp.M).

At this point, we remark that the study of determining sets is meaningful. It is
indeed known that most domains (or manifolds) @ged ; that is, they have auto-
morphism group consisting of just the identity mapping. This assertion means
that the collection of rigid, smoothly bounded, strongly pseudoconvex domains is
dense in the collection of all smoothly bounded, strongly pseudoconvex domains
in the C* topology (see [GrKr]). A complementary fact, however, is that the col-
lection of bounded domains with nontrivial automorphism group is dense in the
collection of all domains in the topology induced by the Hausdorff distance (see
[FrP, Thm. 2.1]). Moreover, every compact Lie group occurs as the automorphism
group of a bounded strongly pseudoconvex domain (see [BD]).

DEFINITION. LetK be a subset of a complex manifalfl. The setX is said to be
adetermining subseif M if each automorphisrg of M satisfying the condition
g(x) = x for all x € K is the identity map oM.

As mentioned previously, a self-map of a domainCnhat fixes three points is
necessarily the identity (see e.g. [Pel]). Hence any 3-point set is a determining
set for plane domains. Note that no “general position” hypothesis need be man-
dated on the points of the determining set. (However, a certain general position
hypothesis is essential even in dimension 1 if one considers nonplanar Riemann
surfaces; we will clarify this point in a later section.)

In an attempt to extend this result to higher dimensions, one can ask the follow-
ing question. For > 2, does there exist a positive integesuch that, ifS is a
set ofk points in “general” position irfC”" and if D c C" is a domain containing
S, then each automorphism &f fixing S is necessarily the identity? The answer
to that question is negative: no such “general” position can be defined to obtain a
positive answer, as shown by the following theorem.

THEOREM 2.1. For each finite seK = {p1, ..., px} C C" (n > 1), there exist
a bounded domai containingK and a subgrougd C Aut(D) isomorphic to
U(n — 1) (the complex unitary group of ") such that each element #f fixes
each point ofK.

Proof. Let p; = (u;, v;) with u; € C andv; € C"~% Without any loss of general-
ity, we assume that the are all distinctand that;| < 1. Consider the polynomial
transformation
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Fiwyi=z1, w =27+ f(z1),

where f: C — C"!is the Lagrange interpolation polynomial map satisfying
f(uj) =v;. ThenF(u;,0) = p; for j =1,..., k. Let D = F(B), whereB is the
unit ball inC". Let U,_; be the unitary group acting aoB in the last: — 1 coor-
dinates, and le = F o U,_1 o F~L Now the assertions of the theorem can be
verified directly. O

Although no given finite set in “general position” can be a determining subset for
all bounded domains containing the set, we will establish in the sequel that, for
each given bounded pseudoconvex domaiftin “almost any” subset of + 1
points is a determining subset.

Consider the group of biholomorphic automorphisms, (A}, of a complex
manifold M. For the next theorem, we assume that

(A) M isaconnected, complete Hermitian manifold such that each automorphism
in Aut(M) is an isometry.

We would like to point out that these restrictions are rather mild in the sense that
we have a broad collection of examples. Every bounded pseudoconvex domain in
C™ admits a complete Kéhler—Einstein metric ([MY]; see also [O]). Then there is
an ample collection of compact complex manifolds that admit complete Bergman
or Kahler—Einstein metrics; see [GrW; Ko; Y] and further references therein.

The discussion in Section 1 naturally yields the following theorem.

THEOREM 2.2. For a complex manifold/ satisfying(A) and of dimensiom =
dimc M > 1, there exists an open dense subBebf the (m + 1)-fold product
M x --- x M such that any automorphisiffixing po, ..., p,, coincides with the
identity map ofMf wheneven(po, ..., p,) € W.

Proof. If one follows the proof of Proposition 1.2 line by line, using the invariant
Hermitian metric, the only difference one encounters is in the number of points
and their choices. We therefore replace the exponentiation of the real span of vec-
tors by the exponentiation of the complex span of vectors given by the minimal
geodesics emanating from the pole point. We now exploit the fact that automor-
phisms are isometries that preserve the complex holomorphic tangent subspaces.
Then all the arguments simply go through. O

Suppose thak is a determining subset of a bounded dom&im C”. We next
prove a “stability” theoremX is also a determining subset for a small perturba-
tion D of D.

THEOREM 2.3. If D isabounded domaini@” and if K is a nonempty determin-
ing subset oD, then each domaif, containingk and for whichdD is sufficiently
close todD in the Hausdorff metric, also hak as a determining subset.

Proof. Seeking a contradiction, we assume that there exists a seql@pcef
domains converging t® such that, for eacli, D; containsk, someg; € Aut(D;)



On Fixed Points and Determining Sets for Holomorphic Automorphism$11

satisfiesg; # id, andg; fixes each point oK. Choosez € K and arr > 0 so that
the closureQ = B(z, r) of the ball with centet and radius- is contained inD
andinallD;. Let

H; = {g e Aut(D;) : g fixes each point oK }.

By assumptionfd; # {id}. Itis clear thaif; is a compact Lie subgroup of AUD; ).

By [Ma, Thm. 2.4], for eacty there exists a point; € Q and an:; € H; such that
|hj(x;) — x;| > r/2. Passing to a subsequence if necessary, we can assume that
x; — x andh;(x;) — y. Using a normal families argument (again passing to a
subsequence if necessary) and the factih@at) = z, one can show that the se-
guenceh; converges in the compact-open topology tahianAut(D). It is clear
thath(x) = y # x andh fixes each point oK, contradicting the hypothesis that

K is a determining subset @. O

3. Automorphisms, Isometries, Fixed Points, and Cut Loci

We would now like to address the fact that if the fixed points of isometries actually
lie in a cut locus then the number of fixed points can be arbitrarily large, making
it impossible to relate them to the complex dimension of the manifold.

If the dimension is> 2, this claim was exhibited in Theorem 2.1. The next two
examples show the validity of our claim in dimension 1.

ExampLE 3.1. Consider the complex, 1-dimensional tofugenerated from the
lattice{l, i}. Letz: C — T be the standard covering map. Ther> —z on the
complex plane generates an automorphism,ayn 7. Now t hasfour fixed
points, which are

7(0), 7(1/24i/2), 7(1/2), 7(i/2).
Yet r does not fixr (%), so it is not the identity map.

ExampLE 3.2. We now consider a 2-holed torus. This manifold can be gener-
ated by a regular octagon centered at the origin of the Poincaré disc together with
its reflections. Againz — —z generates a nontrivial automorphism of this Rie-
mann surface. The number of fixed points is r&iw coming from the center (the
origin), the vertices, and the corresponding pairs of midpoints of the sides of the
octagon.

It is now clear that one can obtain arbitrarily large numbers of fixed points just
from among the compact Riemann surfaces. By standard embedding and thick-
ening processes, one can construct examples of this nature for bounded domains
as well.

4. The Plane Domain Case

For the sake of completeness of this exposition, we now consider the following
well-known theorem that follows from work of Maskit [Mas], Peschl and Lehti-
nen [PeL], Leschinger [Les], and others.
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THEOREM 4.1. LetQ be a domain irC. If an automorphism of2 fixes three dis-
tinct points, then it is the identity.

Here, we would like to give a slightly more geometric rephrasing of the proof of
[PeL] in order to demonstrate our geometric methods. Planar domains are rather
special among the Riemann surfaces. Indeed, the reason why one does not have
to take the cut loci into consideration for planar domains is this topological fact:
Every Jordan curve in the plane bounds a cell. Our arguments here concentrate
more upong itself and on its geometry, especially emphasizing the role of our
topological fact.

First of all, the case of2 = C or C \ {0} or a topological annulus is simple.
Thus, let us assume th@tis a plane domain that has at least three boundary com-
ponents. Then, by the uniformization theorem for instance, it admits a complete
Hermitian (automatically Kahler) metric with negative constant curvature and for
which every holomorphic mapping is an isometry.

Now let f be a holomorphic automorphism 6f with three distinct fixed
points—say, b, andc. We are to show that is the identity map.

If b is not a cut point of:, then there is one and only one length-minimizing
geodesic joining: andb. In such a case, every point on this geodesic must be
fixed by f. Then, by the uniqueness theorem for analytic functighss in fact
the identity map.

Hence we may now assume that there are at least two length-minimizing geo-
desics joining any pair of fixed points. At this juncture, we might note that the
negativity of the curvature eliminates the possibility of conjugate points, owing to
the second variation formula of arc length.

We now suppose thgt € Aut(€2) is not an identity map but does have three dis-
tinct fixed points inQ2. To reach a contradiction, let us start with the fixed point
a. If the set of fixed points accumulatesatwe are done. Hence we may re-
place the second fixed poihby the closest (with respect to the Hermitian metric)
one toa apart froma itself. This choice may not be unique and so we simply
choose one.

As mentioned before, we need only consider the case whisra cut point
(not conjugate) of:. Then there will be several unit-speed minimal connectors
(all of which have the same length, of course), sayyo, ..., joining a to b.

First notice that no minimal connector can have a self-intersection. Then the auto-
morphismy maps any one of the minimal connectors to another such, as the end-
pointsa andb are fixed. Note thay o y; cannot intersecy; except at the end-
points. For if they do intersect at a point other than the endpoints then they must
intersect at the same time; otherwise one may find an even shorter connector be-
tweena andb than the minimal connector, which is a contradiction. Then the
intersection point becomes a fixed pointjotloser toaz thanb, which also is not
allowed.

Now, y1 and f o y; join to form a piecewise smooth Jordan curve in the plane;
thus it bounds a cell, say, in the planeC. Consider the third fixed poirt which
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is distinct froma andb. Notice that we may assume thats not on any of the
minimal connectors for andb. Suppose that is inside the cellE. Now join ¢

to a by an arct in E N Q that does not intersect with eithgg or f o y1 or, in
fact, with any minimal geodesics joiningandb. Notice that the conformality of

f at the fixed point: shows that there is a sufficiently small open ball neighbor-
hoodU of a on which f must mapU N & to the outside of the celt. This results

in the conclusion thaf o & must cross/; or f o y;. But this is impossible, since

a point not on any minimal connector fraito b cannot be mapped to a point on
a minimal connector frora to b.

If ¢ is outside the celE then the arguments are similar. Because there are
only finitely many minimal connectors betweerandb (sincea andb are not
conjugate to each other and since the quotient from the universal covering space
is formed by a properly discontinuous group action), it follows that some iterate
f™ of £ will move ¢ so that its image has points inside Then, f o & again
crosses one of these minimal geodesics joimidgdb, which leads us to another
contradiction.

5. Some Examples

We now present several elementary examples that should put our results into
perspective.

ExampLE 5.1. LetA ={zeC:1/2 < |z| < 2}. Thisis an annulus in the plane.
The mapr (z) = 1/z has two fixed points (i.e., 1 andl), yett is not the identity

mapping.

ExaMPLE 5.2. LetU = C?2. Consider a shear of the form(z, w) =
(z, w+¢(z)), whereg is any entire function on the plane. Thers a biholomor-
phic map ofC2. If ¢ has infinitely many distinct zeros therwill have infinitely
many fixed points, even thoughis not the identity.

By contrast, any biholomorphic (conformal) mapgbthat fixes two points must
be the identity.

ExampLE 5.3. It can be shown from first principles that a biholomorphic map of
the unit ball inC" that fixesn + 1 points in general position (in the usual sense
of topology) must in fact be the identity. We leave the details to the interested
reader.

ExaMpLE 5.4. Consider the domaifi,, = {(z1, z2) € C? : |z1*" + |z2|?" <
1}, any integern > 2. Then any automorphism df,, that fixes two points in
general position must be the identity. This result follows because the automor-
phism group ofU,, is well known to consist only of rotations in each variable
separately.

Contrast this example with the result from the previous example (for the unit
ball in C?).
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ExampLE 5.5. LetU, be one of the domains from Example 5.4. lebeany
rigid domain inC” (hererigid means that the domain has no automorphisms ex-
cept the identity). Then, for an adroitly chosen pair of pomnt® € U,, and an
arbitraryx € V, any automorphism df/,, x V that fixes bothz, x) and(w, x) will

be the identity. For instance, the points= ((1/2, 0), x) andw = ((0, 1/2), x)
will do.
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