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1. Introduction

The classical theorem of Poincaré states that a biholomorphic map from an open
piece ofdB? to 9B2 extends to a global biholomorphism of the unit spheres. A
general question that arises from this result can be stated as follows.

ProBLEM. Let.f: " — T’ be a germ of a holomorphic map, at a pajnt T,
between two smooth real-analytic connected hypersurfaeesl’ in C". Under
what conditions o™ andl"’ doesf extend analytically along any path &P

We will usually identify the germf with one of its representatives—that is, a map
f: U — C" defined in a small neighborhodd > ¢ and satisfyingf(U N T) C
r'.

Several authors have studied this problem. Alexander [A] generalized Poin-
caré’s theorem to higher dimensions in 1974. A year later, Pinchuk [P1] proved
that any germ of a biholomorphic mapping from a connected strictly pseudo-
convex real-analytic hypersurfatec C" to 0B” extends analytically along any
path onl™ as a locally biholomorphic map with the inclusigiil’) c 0B”".

Recall that a strictly pseudoconvex real-analytic hypersurifaceC” is called
sphericalat a pointp € T if there exists a germ of a biholomorphic magetom
" to aB". It follows from [P1] that, if a connected strictly pseudoconvex hyper-
surface is spherical at a point, then it is spherical at any point. Pinchuk’s result
clearly holds if, in the target spac&B” is replaced by an arbitrary simply con-
nected compact strictly pseudoconvex spherical hypersurfadedeed, ifl"’ is
spherical then a germ of a biholomorphic mappingl’’ — 9B” extends along
any path orl’. Sincel'’ is simply connected; extends to a global mapping from
'’ to aB”. But thenI'’ is biholomorphically equivalent taB”. If I'" is not simply
connected, the resultis no longer true. Infact, Burns and Shnider [BS] constructed
some examples of compact and spherical but not simply connected hypersurfaces
in C". For any such hypersurfa¢® c C", there exists a germ of a biholomorphic
mappingf: dB" — I’ that does not extend holomorphically along some paths
onoB”.
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In 1978, Pinchuk [P2] proved that, i is connected real-analytic strictly
pseudoconvex and’ ¢ C” is nonspherical compact and strictly pseudoconvex,
then any germ of a biholomorphic mgia I' — I’ continues analytically along
any path o as a locally biholomorphic mapping with the inclusigar) c I'.
Note thatl"" is not assumed to be simply connected.

If we do not require strict pseudoconvexity Bf then f may not extend holo-
morphically to certain points oh, as the following example shows.

EXAMPLE. LetD’ = {z/€ C2: |z}|> + |z5|* = 1}. Then f(z1, z2) = (21, \/22)
mapsdB? to I'’, but f can not be extended as a holomorphic mapping to a neigh-
borhood of(1, 0) € dB2.

Nonetheless, it is possible to generalize Pinchuk’s results for non—strictly pseudo-
convex hypersurfaces in the preimage. In this case, of course, we can extend the
germ of a mapping only holomorphically, not locally biholomorphically. The goal

of this paper is to present the following theorem.

THeoreM 1.1. LetT be a connected, essentially finite, smooth, real-analytic hy-
persurface inC", and let¢ e I'. LetT"’ be a compact strictly pseudoconvex real-
algebraic hypersurface ift". Let f be a germ of a holomorphic mapping frdm

to I’ defined atz. Thenf extends holomorphically along any path Brwith the
inclusionf(I") C I'".

By a real-algebraic hypersurface we mean a hypersurfa€é iglobally defined

by P(z,z) = 0, whereP(z, z) is a real polynomial. Precise definition of essential
finiteness will be given in Section 2. We do not claim tifaéxtends to a global
holomorphic mapping fronr to I'’. Without further topological assumptions on

" it could happen that analytic continuation along different paths with the same
endpointz® will give different holomorphic mappings in a neighborhoodz8f
However, ifl" is assumed to be simply connected, then (by the Monodromy theo-
rem) f does extend to a global mapping. Note that we do not require compactness
or pseudoconvexity of, and f is not assumed a priori to be biholomorphic.

CoroLLARY 1.2. Suppose thal is an essentially finite real-analytic hypersur-
face inC". If there exists a germ of a nonconstant holomorphic mapping fram

a compact strictly pseudoconvex real-algebraic hypersurface C”, thenT is
pseudoconvex at any point. Moreover, the set of points winere the Levi form
is degenerate has real dimension at mpst— 3.

CoroLLARY 1.3. Suppose thaD is a bounded domain if©” with a smooth
real-analytic connected and simply connected bound&rySupposef is a non-

constant holomorphic mapping defined in some opef/sstich that N aD is

not empty and connected afdU N aD) C aD’, whereD’ is a compact strictly
pseudoconvex real-algebraic domainGt and aD’ is its boundary. Therf ex-

tends to a proper holomorphic mapping franto D’.

The proof of Theorem 1.1 is based on the technique of Segre varieties and the re-
flection principle; the actual proof will be carried out in Section 6. We will first
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show that, by choosing a point arbitrarily closest¢denote it again by) and a
defining function ofl" near¢, we may assume€ to be strictly pseudoconvex in
some neighborhood, > ¢. LetI'y denote the set of strictly pseudoconvex points
of I'and letz C I' denote the set of points where the Levi fornTub degenerate.
Then, using the results in [P1] and [P 2], we can show fhaktends analytically
along any path in the connected componerit,dhat containg. The difficult part

of the proof is showing thaf extends alond” pastX; in Sections 3, 4, and 5

we will build the necessary tools for such extension. Background material is pre-
sented in Section 2.

Under the additional assumptions thais real-algebraic and compact, the con-
clusion of Theorem 1.1 was obtained in [HJ]. The proof of this special case is
easier, since by Webster’s theorem [W] the gefnis automatically algebraic,
which immediately gives its globalization.

2. Notation and Background Material

LetI” be a smooth real-analytic hypersurfac€inwith a defining functiom (z, z).
For a fixed point:° € T, choose the coordinate system so tﬁ%nn(zo) # 0. Let
U={z:lz —z.?| <o, j=1,...,n}be apolydisk centered at. Chooser suf-
ficiently small that (a) (z, z) has a well-defined complexificatignz, w) that is
holomorphic ing and antiholomorphic iw for (z, w) € U x U and (b)%(z’ w) #
Ofor(z,w)eU x U.

DEFINITION 2.1. Letw € U. The analytic varietyQ,, :={z € U : p(z, w) = 0}
is called theSegre varietyf w with respect to the hypersurfate

Another analytic variety associated with the hypersurfa@nd a pointw € U is
the set

Ly :={¢elU: Q= Qul}.
Letz; = x; +iy;, 'z = (21, ..., Zn—1), @andz = ('z, z,,). We next list some impor-
tant properties of,, andl,, (see e.g. [DF2; DW] for proofs).

PROPERTIES OF SEGRE VARIETIES.

(@) z€e 0y < weQ;.

(b) ze 0, < z€el.

(c) zel,.

(d) If z e thenl, is a complex subvariety df.

(e) I, = m{Qz 12€ Qul

(f) Q. is independent of the choice of the defining function.

(9) Letz%eT andé‘i—’;(zo) # 0. Then there exists a pair of neighborhoa@gsand
U = 'Up x "Up C CM1 x C,, of z% with U; € U, and such that, for any
w e Uy, Q, is a closed smooth complex-analytic hypersurfac&dnhat can
be written as a graph of a holomorphic function,

Qw ={(z,z22) € (U2 x"U3) @ z, = h('z, w)},
whereh(-, w) is holomorphic inUs.
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(h) The Segre map: w — Q,, is locally one-to-one near strictly pseudoconvex
points of I'.

Following [DP], we will call the neighborhoodg; andU,, just defined atandard
pair of neighborhoods of the poinb.

Recall that a smooth real-analytic hypersurfate- C” is calledessentially
finiteatzeTif I, = {we U, : 0, = Q0,} = {z}, wherel, is a sufficiently small
neighborhood ot. The hypersurfac€ is said to be essentially finite if it is es-
sentially finite at any point. Here are some useful properties of essentially finite
hypersurfaces.

(i) Any real-analytic hypersurface of finite type is essentially finite. This fol-
lows from property (d) of Segre varieties.
(i) If T contains a complex hypersurface passing thraifgh I, then it is not
essentially finite at°.
(i) If T is essentially finite at® e T, then the Segre map: z — Q. is finite-
to-one neat?, as dim/, = 0 for z sufficiently close ta°.

Suppose thal' andI'™’ are real-analytic hypersurfaces@t and that(Ui, U,)
and(Uj, Uj) are standard pairs of neighborhoodsfge I" andzy € I'', respec-
tively. Let f: U, — U, be aholomorphic map, witfi(U1) C U; andf(I'NU2) C
('’ N U3). Then the following invariance property holds:

f(Q,NUy C Qy,,yNU, forall wel,.

Throughout this paper we follow the convention of using the (right) prime to de-
note the objects in the target domain. Forinstagze,will mean the Segre variety
of w’ with respect to the hypersurfate.

Since every real hypersurfatén C” is orientable, there exists a neighborhood
U containingl” such thaf" dividesU into two connected components, which we

denote by~ andU ™. Let
dist(z, I') if zeUTUT,

8a) = { _distz,T) if zeU".
If U is sufficiently small, them is a defining function of” ands € C“(U). Any
other defining function has the forp(z) = «(z)8(z), wherea(z) is of constant
sign inU. If « > 0 thenp defines the same orientation brass; if « < 0, the
orientation is opposite.

Suppose the orientation bfis fixed byp. Then we say thdf is pseudoconvex
(resp. strictly pseudoconvex) at a pairg I if the Levi form of p is nonnegative
(resp. positive) on the complex tangent pldii€r™) for all z € I" sufficiently close
toa. Clearly, this definition depends only on the orientation. We will assume that
the orientations of the hypersurfaces are always suitably chosen. In partichlar, if
is a compact connected real hypersurface then it is the boundary of some bounded
domainD cc C", and we assume that< 0 in D.

Finally, we will need the following definition.

DEFINITION 2.2. A holomorphic correspondence between two domairend
D’ in C" is a complex-analytic set C D x D’ that satisfies: (iJ is of pure
complex dimension; and (ii) the natural projection: A — D is proper.
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We will also treatA as the graph of a multivalued mapping defined by.=
7’ o 7L, wheren’ is the natural projection of to D’.

3. Extension along Segre Varieties

LetI" ¢ C" be a connected smooth real-analytic hypersurface avithi, and let
U1 andU; be a standard pair of neighborhoods:of

Recall that a nonempty connected complex submanifoltf a complex man-
ifold M is called ananalytically constructible leaff A and A \ A are closed
complex analytic subsets #1. A locally finite union of analytically constructible
leaves is called an analytically constructible set; for details, see [L]. In this section
we will prove the following proposition.

ProrosiTioN 3.1. Let f be a germ of a biholomorphic map fromto a com-
pact strictly pseudoconvex real-algebraic hypersurfaicec C" defined atz €
I'. Then there exist a neighborhodtlof O, N U; in C" and an analytically con-
structible setA ¢ V withdim¢ A < n — 1such thatf extends analytically along
any pathd c vV \ A.

Proof. Without loss of generality we may assume that 0. Let U be a neigh-
borhood of the origin wherg is biholomorphicand/ ='U x"U (here/z € 'U).
We assume that/ is smaller tharl/;. ChooseU andV so that, for anyw in V,
0., NU is connected. Observe thatlifis small enough the®, N U # & for
anyw in V, asw € Qq implies Oe Q,,. Following the ideas in [DF2; DP], define

A={w,w)eV xC": f(Qu,NU)C Q). (3.1)

We would like to haveQ,, N U connected for anyw € V to avoid ambiguity in
the conditionf(Q, N U) C Q,,, since different components @, N U could
be mapped a priori to different Segre varieties. We will also use this in further
constructions.

Let P'(z’, zZ’) be a defining polynomial of’. Letz € U andz’ = f(z). The
condition f(Q,, NU) C Qj, can be expressed as

P'(f(z),w')=0 foranyze Q, NU.
Therefore by property (g) of Segre varieties, (3.1) is equivalent to
A={(w,w)eV xC": P(f(z,h(z,w)), w") =0V'ze'U)}. (3.2)

Thus (3.2) is defined by an infinite system of holomorphic equationsamdw’
that are polynomials inv’. By the Noetherian property of the ring of holomor-

phic functions, we can choose finitely many poifafs ...,z so that (3.2) can
be written as a finite system:
Za (wyw'’ (3.3)
[J=d

wherek =1, ..., m andd is the degree oP’ in w’. We define the closure of in
V x P" in the following way. Let = (¢o, 11, ..., t,) be homogeneous coordinates
inP", and Ietwjf =t;/to andt = (1, ..., t,). Then
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J
t
rd Zaf(w)<%> =0, k=1,...,m, (3.4)

|J=d

is a system of equations homogeneousirat defines an analytic variety inx P".
Denote this variety again by. Clearly, its restriction t&/ x (P"\ Hg) = V x (C")
coincides with the set defined by (3.2). Héfg = {to = 0} is the “the hyperplane
at infinity”.
LetU’ = f(U). Letus show thatd N (U x U’) =T}. Suppose
(w,w)e AN U x U’).

Thenf(Q,NU) C Q). Sincef(Q,NU) C Q}(w) anddime f(Q,NU) = n—1,
we haveQ), = Q}(w) and thereforev’ € I5.,. Sincel'’ is strictly pseudoconvex,
we may assume that is chosen so small that the Segre majs one-to-one in
U = f(U) and

Iran N fU) = {f(w)}.
Thus,w’ = f(w).

Consider the irreducible component afthat coincides withly in U x U’;
for simplicity, denote this componentagain®yThendiny A = n. Letr: A —
V andn’: A — P" be the natural projections. Notice that projectiois proper
becausé” is compact.

By Remmert’s theorem, the image of an analytic set under a proper map is
an analytic set. Hence(A) is analytic and, moreovet/ C w(A). Therefore,
7(A) = V. Let

Ay = (' {(Ho) N A),
Ay = m{(w, w") € A : 7 is not biholomorphic neafw, w")},
A= A1U Ao.

Forany patl® : [0, 1] — V\ A suchthab(0) = a € (U\ A), there exists a unique
lifting 6 c 7~%(6) C A with the starting pointa, f(a)). This liting defines the
analytic continuation off alongé. To finish the proposition we need only prove
the following lemma.

LemMma 3.2. A is an analytically constructible set ii, anddim¢ A < n.

Proof. Ay is a proper analytic subset &f becauser’ (Hy) is a proper analytic
subset ofdA andx is proper. Thus, dira A; < n.

The set{(w, w’) € A : 7 is not biholomorphic neafw, w’)} is the union of
two sets:S ;= {(w, w') € A™9: 7 is not biholomorphic neafw, w’)} and A",
whereA"™ andAS" are the regular and the singular parts (respectively) of the va-
riety A. For (w® w’®) e AS"9 7 is not biholomorphic in any neighborhood of
(w®, w'®) becauset is not a complex manifold ne@w®, w’®), by the definition
of A3"9, and hence cannot be biholomorphically equivalent to an open €&t in
According to [L, Thm. 1, p. 265]§ is an analytically constructible set In x P".
Sincer is proper onS, by the Chevallay—-Remmert theoremis an analytically
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constructible set ivV. ThusA; = 7(S) U (A9 is analytically constructible in
V. Clearly, dime Ay < n.
This proves Proposition 3.1. O

Note that any analytically constructible setof a complex dimension less than
does not dividé/. Therefore, for any € V \ A there exists a path along whigh
extends to some neighborhoodiof

For the proof of Theorerh.1, weneed to consider an additional set:

Az = ({(w,w) €A dime(rHw) N A) > 1). (3.5)
ProposITION 3.3. Agjis an analytic set andlimc Az <n — 2.

Proof. {(w, w’) € A : dim¢(rX(w) N A) > 1} is an analytic subset of by
Cartan—Remmert’s theorem (see e.g. [L]). Therefore, its imdag@nder a proper
mappingr) is also an analytic set. Suppose dimiz = n — 1. Then there exists
some locally analytic séf C Ag such that ding Z = n — 1 and, for anyw in Z,
dime (7 ~Y(w)) = 1. By [L, Cor. 2, p. 266], ding (7 ~%(Z)) = n. This yieldsA =
77Y(Z), sinceA is irreducible. Butr(A) = V and so we obtain a contradiction,
proving the claim. O

4. Connecting Points orT" by Segre Varieties

Recall that a real submanifold c C" of real dimensiort > n is calledgeneric

if, for any z € M, dim¢ TS(M) = k — n (hereT (M) is the complex tangent
plane toM at the point;). Following Trepreau and Tumanov, we call a hypersur-
faceminimalif it does not contain germs of complex hypersurfaces. Although (for
the proof of Theorem.1) weneed only essential finitenessofin the following
proposition, we would like to prove it in full generality.

ProrosiTiON 4.1. LetT" ¢ C" be a minimal smooth real-analytic hypersurface.
LetM c T be a generic submanifold of dimensidn — 2, and letp € M. Let

U be a neighborhood gf such that N (I" \ M) consists of two connected com-
ponents, which we denote By andI'*. ThenQ, N U contains an open subset
o such that, for any poink € w, there exists a closed pagh satisfying(i) y C
(@yNTH)U{ptand(ii) y N M = {p}.

Proof. We will prove this proposition in two steps: far= 2 andn > 2.

Step 1.Suppose that = 2. ThenM is totally real. After an appropriate change
of coordinates we may assume thet 0 and, in a small neighborhodd of the
origin, I is given by the defining function

p(z,2) =22+ 22+ Zpkl(yz)ZfZi (4.1)
k.l
andM is given by
x1=0,
_ 4.2
{ p(z,2)=0. *.2)

Assumethal’* ={zeT'NU : x; > 0}.
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To simplify computations, we introduce special (“normal”) coordinates, which
firstappeared in [CM] as an intermediate step in their construction of normal forms
of strictly pseudoconvex hypersurfaces. The form of the defining function that we
use here is valid for arbitrary real-analytic hypersurfaces. It was shown in [CM]
that—if we subject” to a holomorphic transformation

27 =121,
73 =22+ 8(z1, 22),

whereg(z1, z2) is some holomorphic function satisfyind0, z,) = 0—then the
defining function ofl" in new coordinates (to simplify the notation we omit the
asterisks) takes the form

p(z,2) =22+ 22+ Z P (22171 4.3)
k,[>0

Itis clear thatM in these coordinates is also given by (4.2).
In dimension 2, a finite-type condition is equivalent to minimality. Thus we
may assume thdt is of finite type and that there exists

m = mi%{(kﬂ) D pu(0) #0}, m < oo.

ThenQq = {p(z,0) = 0} = {z, = 0}. Forb € Qg whereb = (b;, 0), we have

22 -
Qb = {Z elU . 720+ Z ,Okl(z>2fbi = 0}

k,1>0

By solving this equation fog, near the origin, we obtain
22 =nz{ + a(z), (4.4)

wheren depends holomorphically oby, n # const a(z1) = o(z]) with g =
min{k : p;;(0) # 0} and 1< ¢ < m.
The setQ, N T is given by the system
24224 Y pu(y2)ziz =0,
k.1>0 (4.5)
22 =nz{ +a(za).
By plugging the second equation into the first, we obtain

2Re(nz] +az)) + Y pu(IMmz] + az))zfzi =0.  (4.6)
k,1>0
Choosew C Qg such that, fob € w, Ren # 0 and Imp # 0.
If ¢ = 1then, by the implicit function theorem, equation (4.6) can be rewritten
in the formx; = cy; + a@(y1), wherea(y1) = o(y1) andc # 0. Forbe w, y =
' N Q, is then given by
{ x1=cy1+a(y1),
22 = nz1+ a(z1).

Hencey intersects botl"* andI'~, andy N M = {0} for smally;.
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If ¢ > 1theng < m and (4.6) admits the form
Re(nz{) + o(|z1]) = 0. (4.7)
Letz; = re®. Then (4.7) is equivalent to
Rencosqg® — Imnsingd + ra(r, ¥) =0,

wherea is a real-analytic function in a neighborhood of the lif@ x R C
Riﬁ. Let U(r, ¥) = Rencosqy — Imnsingd + ra(r, ¥). Choosedy such that
(Ren) cosqtg — (Imn)gde = 0 and(Ren) singdg + (Im 1) cosqdy # 0. Then

v
5(0, o) # 0.

By the implicit function theorem, the equatick(r, #) = 0 can be rewritten as
¥ = B(r) near the point0, ¥y), whereg(r) is some analytic function near the
origin.

Thus,Q, N T contains the curve given by

(21, 20) = (reiﬁ(r)’ RG] _i_a(reiﬁ(r)))’ r>0. (4.8)

Additionally, g can be chosen to satisfy cég > 0. Thenx; > 0 asr — 0, so
the curve (4.8) is contained int.

These computations are valid for any palnt ». Hence, the proposition is
proved forn = 2.

Step 2.Suppose: > 2. Choose the coordinate system so that 0; similar
to (4.3), the defining function df is given by

P D) =2x,+ Y pxe(yn)2¥zE.
IK1,IL|>0

ThenQo = {z : z, = 0}. Consider the family of 2-dim complex planésg such
thatbe L, forb = ('b,0) and{zy = --- = z,_1 = 0} C L,. SinceTl is minimal,
in any arbitrary neighborhood of the origin there exists an opem setQo such
that, for anyb € w, I’ N L, is a real surface of real dimension 3 that is of finite
type inC? = L,,. Itis easy to see that(I" N L,, 0), the type ofl" N L, at point
0eT' N Ly, is an upper semicontinuous functiontofTherefore, we can find an
open subset ab with m(I" N L, 0) = const Denote this subset again hy

If we repeat step 1 fof N L, then we can find a poiriip € w such thatQ,,
contains the path required by the proposition. het n(b) andg = ¢(b) be
the functions from (4.4) satisfying Re(bg)) # 0, Im(n(bo)) # 0, andg(bg) <
m(I'NL,,, 0). Itis clear thatifb € w is sufficiently close td, then Ren (b)) # 0,
Im(n(b)) # 0, andg(b) < m(I' N L, 0). The lastinequality holds becaugé),
the order of contact 0f, N L, with ' N L, is an upper semicontinuous func-
tion. Therefore, for all such we can apply the argument of step1fonL,. O

ReMarks. 1. Analogously, it can be shown that the samewsetiso satisfies
Proposition 4.1 witH™* replaced byl .
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2. It follows from the construction of the set that, for anyb € w and any
small neighborhood/; of the origin, the Segre variet@,, intersects both con-
nected components @fy \ I'. To see this, notice that § = 1 in (4.4) thenQ,
intersectd” transversally. 1y > 1, then from (4.3) and (4.4) we obtain

(2, D) g,00, = REMZD) +0(12l), (22, 22) € o,

and the assertion follows. Note that this implies ddnN T" = 2n — 3 at the
origin.

3. Proposition 4.1 is false ¥/ is a complex hypersurface (in this caFes not
minimal). Indeed, lep = 0 and

['={zeC":x, + ¢ (z,'2) =0},

whereg is real-analytic ang(0) = 0. Let M = {z : z, = 0}. ThenM C T" and
[ is not minimal. For any point € Qg = M, we haveQ, = Qg near the origin
and the pathy does not exist.

5. Extension across Generic Submanifolds
The next proposition is the key result for the proof of Theoden

ProrosiTIiON 5.1. LetI" be an essentially finite, smooth, real-analytic hypersur-
face, and lefl"’ be a compact, real-algebraic, strictly pseudoconvex hypersurface.
Let M be a generic submanifold of dimensi@n — 2, and letp € M. LetU

be a neighborhood of. Denote byl and I'* the connected components of
U N (T \ M). Suppose thaf is a holomorphic mapping defined in a neighbor-
hood of ', f(I't) C T'’, and suppose thaf;, the Jacobian of the mapping

is not identically zero. Theif extends holomorphically to a neighborhoodpof

Proof. Let U,, U, be a standard pair of neighborhoodsofSincerl is essen-
tially finite, we may assume that the Segre maig finite-to-one inU; and that
I, N Uy = {p}. By Proposition 4.1, there exists an openset (Q, N Uy) such
that, for any poin € w, Q, N T contains a patly in '™ with the end point at
p. The choice ob € w, y, and a pointz € y N Uy will form a triple, which we
will denote by(b, vy, a). We can choose so close t that, possibly after a small
perturbation/;, U, will also be a standard pair of neighborhoodsdor

We can chooséb, y, a) such that/;(a) # 0. Indeed, by Remark 2 following
Proposition 4.1, dirfcQ, N T") = 2n — 3. Sincerl is essentially finite, there exists
a neighborhood/, of the pointb such that

#zeU: Jf|w+ =0} < oo.

Moving b if necessary, we may assume mﬁ‘tgbmw is not identically zero.

Let U, be a neighborhood af, so thatf is biholomorphic inU,. By Proposi-
tion 3.1, f extends analytically along any path¥\ A, whereV is a neighbor-
hood of 9, N U; and A C V is an analytically constructible set of complex
dimension at most — 1. There are two cases to be considered: either
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(1) 0, NV is not contained im\; or
(2) 0, NV iscontained inA.

Case 1.In this situation we can slightly perturb the triplg, y, a) so thatb €
(wnNV), b¢ A, and f is biholomorphic inU,. Notice that slight changes of
(b, y, a) do not change\. SinceV \ A is connected, we can find a continuous
pathd c V, with no self-intersections, connectiagandb and such tha# N A =
@. Choose a simply connected neighborh@faf 6 so that, C V andUgNA =
@. Then, by the Monodromy theorerﬂ extends holomorphically to/y.

Denote byF the extension 0V| y, 10 Ug obtained by Proposition 3.1. Choose
a small neighborhood,, c U, of the pointb such that, for any in some small
neighborhood/, of y, Q. N U, is nonempty and connected. (Since- Q;, we
haveQ. > b for all z € y.) Thus, F is holomorphic inU,. Consider the set

A ={(w,w')eU, x C": F(Q,, NUy) C Q). (5.1)
As in Proposition 3.14* is a closed complex-analytic subsetlaf x C”.

LemMma 5.2. There exists a small neighborhoézlof @ such that
A' N (Q X Q/) = 1—}"|Q, (52)
whereQ’ = ().

Proof. Choose some small neighborho@dcontaininga and a pointz in Q.
Let w € Q. N U, be an arbitrary point, and lat’ = F(w). It follows from
the definition of F that f(Q, N U,) ¢ Q. andz € Q,. This implies that
f(@) € Q) = Q;(w) But thenF(w) € Q}() Sincew € Q, was arbitrary, we
deduce that'(Q, N U,) C Q ,- This means thatz, z') € A* if 2’ € If(,); in par-
ticular, A* N (2 x Q') # @, smce(z f(z)) € A*. If Q is chosen small enough,
then2’ N Iy = {f(z)} and we conclude that* N (2 x Q') = T}|,. O

Consider the irreducible component 4f that coincides witly in 2 x Q'. For
simplicity, denote this component again By. Then dime A* = n. Letz/ — p

asj — oo, z/ € y. By passing to a subsequence if necessary, we may assume that
there existgp’ € I'” such thatp’ = lim;_., f(z’). Since the graph of|U Ar+ 1S
contained inA*, we have(z/, f(z/)) € A* and thus(p, p’) € A*. Let: A s

U, andr’: A* — C" be the natural projections.

Lemma 5.3. There exist neighborhood$, > p and U} > p’ such thatf =
n’ o 17X(z) is a holomorphic mapping iw, that extendsf. Herex~*: U, —
A O (U, x Up).

Proof. Choosel; > p’ so small that the Segre mapis one-to-one irU/,/, and
let U, be a smaII neighborhood ¢f such thatl/, C 7 (z’ ‘l(U ). Let us show
thatn A*N (U, x Uy) — U, is one-to-one. If not, then we can find U, and
7L 7%eU) (z’1 £ z’z) such that

(z,2'Y, (z, 2 e A*N (U, x Uy). (5.3)
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ThenF(Q, N U, C Q; for j =1, 2. It follows from the definition ofF that,
for anyw € U,, we have

f(QuwNUd) C Qpyy-

Sincer: z — Q. isfinite-to-one inlU,, there exist only finitely many points in
U, that have the same Segre varietyuasrThus,

#FY(F(w))} < oo foranyw e U,.

This shows that dim F(Q, N U,) = n — 1. But then, since\ is one-to-one in
U,, there exists at most one poitite U}, such thatF(Q. N U,) C Q7. This
contradicts (5.3) and therefofeis one-to-one.

By [Ch, Sec. 3.3, Prop 3k: A*N (U, x Uy) — U, is a biholomorphic
mapping and henc¢ =n'on ) is holomorph|c inU, and extendsf. By
analyticity, we also havg(I' N U ) C TV, 0

Case 2.0, C A. In this situation, f may not extend holomorphically to a
neighborhoodJ;, of b € Q, becauses C A. However, one can show th#tex-
tends as a holomorphic correspondence. By such extension we mean a complex-
analytic set of pure dimension defined inlUy x C”, with proper projection onto
the first component that contail u,

LeEMMA 5.4. There exists a triplgb*, y* a*) such thatb* € (w N V), y* C
't N Qs+, a* € y*NU,, andf|Ua extends to a neighborhood bf as a holo-
morphic correspondence along some pattt V, possibly after a biholomorphic
change of variables in the target space.

Proof. We use the notation of Proposition 3.1. First we can exclude the case when
0, NV C Aj. Indeed, after a biholomorphic change of coordinateB’in we

may assume that (in new coordinat&s)remains compact i€” c P" and that
n/(nfl(Q,,)) is not entirely contained ity c P". Thus,b* can be chosen so
thatb* ¢ Aq. If Q, is not contained im,, thenb* can be chosen so that ¢

A, and we are in the conditions of case 1. Otherwise, since (by Proposition 3.3)
dim Az < n —1and hencg, NV is not contained im 3, we can find a poink*

in (wNV)\ (A1U Ag), that is,b* € A, \ Az. Furthermore, since\ is analyti-

cally constructible, we may choosé € A™9. Let y* C Q,+ N T be close to/.
Chooses* so thata* € U, N y*. Analogously to case 1, there exists a pats V
(without self-intersections) connecting andb*, andd N A = {b*}. Let Uy be a
simply connected neighborhood ®&uch that/, ¢ V and

ANUy=(A\ (A1UA3) N Uy = Q,NUp.

Let A be the analytic set from Proposition 3.1, definetfir P”. Consider the irre-
ducible component od N (Uy x P") that contamstw Denote this component
again asA. ThenA is the desired extension 9)"11 v, asa correspondence because
AN Uy x Hy) =0, sincely N (ALU A3) =0 andr: A — Uy is proper. [J

To simplify the notation we will drop the asterisks fro(h*, y* a*). Let F:
Uy, — C” be a multivalued mapping corresponding4othat is,
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Fw)={w :(w,w')eAl.

Let U, be a sufficiently small neighborhood gf wherex: z — Q. is finite-to-

one. Analogously, let/’ be a small neighborhood &, where the Segre map

is finite-to-one. Choose a small neighborhdadof » (U, C U,) such that, for
allzeU,, Q. N U, is nonempty and connected. Define

A*={(w,w) e U, \{ph x Ut F(QuNU,) C Qu}

LeEmMA 5.5. A*is a closed complex-analytic subset(@f, \ { p}) x U’ that con-
tains the graph off |, .

Proof. For any(w, w’) € A* the condition

F(QuNUp) C Qu

can be expressed as follows. Take an open, simply connectedseU, \ Q,)
such thatQ,, N Q@ # @. Since2 N A = @, the branches of” are correctly de-
fined inQ. Then (5.4) is equivalent t§(Q,, N Q) C Q. for all branchesf of F.
Notice that such an open sRtcan be found for anw € U,, \ { p}. The inclusion
f(Qw N Q) C Q) can be written as a system of holomorphic equations; there-
fore, A* is complex-analyticA* is also closed because(ib/, w'/) — (w° w’?)

as;j — oo with (w’/, w”’) € A* and(wo, wo) € (U, \ {p}) x U’, thenQ,; —
Q,0andQ.,; — QLoasj — oco. AsaresultF(Q,0) C 0,0 andw® w'®) e

A*. By repeating the argument in Lemma 5.2 we can show #fatontains the
graph off|,, . O

Denote again by* the irreducible component of* that containd’, . Thus,
dimc A* = n. Let
S={pyxU)cU, xU.

Thens is a removable singularity fot*; that is,A* is a complex analytic variety
in U, x U'. Indeed, let(z/, z"/) € A* and(z/, z"7) - (z°,z°) e Sasj — oc.
Thenz/ — p, F(Q.;) C QL,, and SOF(Q,) C Q. It follows that

ANScipyx{z’ el :F(Q,NU,) C Q4}.
Because
{z'eU 1 F(Q,NUp) C 04} C Qu

and dim Q) = n — 1, it follows that A* N S has Hausdorff 2-measure zero.
SincesS is a pluripolar set, Bishop’s theorem (see e.g. [Ch]) can be applied to con-
clude thatS is a removable singularity fot*.

DenoteA* again byA*. Note thatA* is an analytic variety i/, x U’. The rest
of the proof is identical to case 1: we show that there exist neighborhigpds
andU, > p’ such thatr ! is single-valued and, as a resut.extends holomor-
phically to a neighborhood gf if we set

f@) =r"on ).

This proves Proposition 5.1. O
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6. Proof of the Main Result

Let p(z, z) be a defining function of in a neighborhood of € I'. Let U, be

a small neighborhood af and letf: U, — C" be a nonconstant holomorphic
mapping such thaf(U, NT) C T/, wherel'’ is a compact strictly pseudoconvex
real algebraic hypersurface with the defining functiiz’, 7).

ProposiTION 6.1.  There exists a poirlt € U, NT" such that all eigenvalues of the
LeviformH, (&, v), ve TS (), are of the same sign.

Proof. Sincel'" is strictly pseudoconvex(U,) is not contained irf"’. Consider
the setf ~X(I'’). This is a real-analytic set iti;, andI” C F£7XT"). Since the set
of regular points of a real-analytic set is dense, there exists a{aibt, NT" such
that f ~%(I'") N Uz = I' N U in some small neighborhodd: > &. Moreover, since
I is essentially finitef andU; can be chosen such thé}, (z, v) is nondegenerate
onTfA(T") for anyz € U:. Replacingo by —p (if necessary), we obtain

fzeUs : p(z,2) <0) C{P'(z,Z) <O} (6.1)

Indeed, if there are two points b € {z € U : p(z, z) < 0} that are mapped by
to different sides of"’, then we can conneatandb by a pathy not intersecting
. But f(y) will clearly intersectl™’, which contradicts the fact thagt%(I'’) =
rin Ug.

Consider the functio®’o f(z), which is defined irU; and negative iz € U :
p(z,7) < 0} because of (6.1). Sinde' is strictly pseudoconvex, we can choose
P’ to be plurisubharmonic in a neighborhoodtf ThenP’ o f is also plurisub-
harmonic. By the Hopf lemmai,(P’ o f) # 0 onT" N Us; we may thus consider
P’o f to be alocal defining function df in Ug. By the invariance property of the
Levi form, for any vectow € 7,(I") we have

Hpiop(§,v) = Hp (f(§), fiv) = 0. (6.2)
Since the Levi form of” is nondegeneraté; is strictly pseudoconvex gt [

Notice that it follows from (6.2) thaf; (§) # 0. By a suitable choice of the defin-
ing function ofT’, by moving¢ to a nearby point (if necessary), and by the choice
of U, we may therefore assume that (6.1) holdstfer ThenI is strictly pseudo-
convex inU, and f is biholomorphic. Recall thalf; denotes the set of strictly
pseudoconvex points df. Let us show thatf extends along any path in a con-
nected component df; containing¢.

Any compact strictly pseudoconvex algebraic hypersurfacés either non-
spherical or spherical at any point. In the latter caSes globally biholomorphi-
cally equivalent to a unit sphere, by [HJ]. Thus, we may assumdthiateither
nonspherical or is a unit sphere. By the results in [P1] and [P Zxtends ana-
lytically along any path containing in a path-connected componenit.of

As before, letz denote the set of points &f where the Levi form is degener-
ate. Note thak is a real-analytic set. Le¥ be the set of regular pointse ©
such thatr, (X) is not a complex plane, and I#1* = ¥ \ M.
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LEMMA 6.2. The setM* does not dividd™.

Proof. M* is the union of the seEs"9 and the seM¢ = {7z € ™9 T,(X) =
Tf(X)}. Observe that, locallyy/ ¢ is a real-analytic set. Indeed, suppgse M¢
and that locally, neap, X is given by

{zel :1¢j(z,2) =0, j=1...,2m, m <n},

whereg;(z, z) are smooth real-analytic functions agiph A - - - Ad¢a, # 0. Then

M ¢ is given by the condition rar¢;/dz;) = m and thus\ ¢ is defined by a finite
system of real-analytic equations. Also, dif ¢ < 2n — 3, for if dimgz M€ =

2n — 2 at some regular pointe M€ then, by the Levi—Civita theorenM ¢ nearz

is a complex hypersurface containedinThis contradicts the essential finiteness
of I'. Since dimz*"9 < dim ¥, we have

dimg M* <2n-—3
and soM * does not dividd". O
LemMma 6.3. f extends along any path in\ M*.

Proof. Let z: [0,1] — T be an arbitrary simple path with(0) = ¢. Suppose
there exists a numbeg € (0, 1] such thatf extends along (z) for 0 < ¢t < 19
but does not extend to a neighborhoodpot= t(7¢). Let U be a small neigh-
borhood ofp suchthaty N X = U N M. If dmz(M NU) < 2n — 2, then we
can find a generic submanifold such that dig M = 2n — 2 andM C M. We
may therefore assume that di = 2n — 2. The setM N U dividesI" N U into
two connected and simply connected components, which we dendte laynd
't Lettg = r|[0’t0). Denote byf; the extension of alongzy. Then f; is holo-
morphic inU.,, a small neighborhood afy. There existr(#1) € (zo N U) and a
neighborhood/; > 7 (#;) such thatf; is holomorphic in/;. Clearly, U; intersects
at least one of the connected component& of M—say,I"" for definiteness. It
follows from Proposition 6.1 that the eigenvaluegf(z, v) are of the same sign
in I't. Hence, by the choice of the defining functidri’ can be assumed to be
strictly pseudoconvex an;z‘l,\u1 extends ta" " as a locally biholomorphic map-

ping. Denote this extension by. By Proposition 5.1f extends holomorphically
to some neighborhoot, of p. If 7o also intersect§ —, then analogously; ex-
tends as a locally biholomorphic mappindto. Fors < 7o and close tag, t(t) €
U, and f, coincides with the extension ¢f to U,. In view of Lemma 6.2, these
considerations show thgtextends along any path In\ M*. O

The remaining case i € M*. It follows from the theorems of Cartan (see e.g.
[N, Prop. 15, p. 104]) and Narasimhan [N, Prop. 18, p. 105] that, if a real-analytic
set is defined by a finite system of equations, then singular points of this analytic
set are contained in some real-analytic set of lower dimension, which is also de-
fined by a finite system of equations. Hence there exists a real-analyd sét

real dimension at most2- 3 such thakz®" C %;. Itfollows thatX,UM¢is alo-

cally real-analytic set of dimension at most-2 3. For anyp € (X,UM“)™9there
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exists a small neighborhodd, such thatU, N (X1 U M,) is contained in some
generic submanifold of, of dimension 2 — 2, and we can show that extends
holomorphically to a neighborhood pfby repeating the argumentin Lemma 6.3.

The singular part ok; U M€ is now contained in an analytic set of dimension
2n — 4. By induction on dimensionf extends holomorphically to every pointin
%. Theorem 1.1is proved. O

Proof of Corollary 1.2.Sincel is essentially finite, the set of points where the
Levi form of I' is degenerate has dimension at most22. Let U be an open set,
and letf: U — C" be a holomorphic mapping such thédU NT") c I'". Then
there is a point irU N T" where the Levi form is nondegenerate. By Proposition
6.1, N U contains strictly pseudoconvex points (up to orientation). If dith<

2n — 2, thenX does not dividd™ and the latter is globally pseudoconvex. Sup-
pose now thak contains a componet of dimension 2 — 2 and thatp € M.

By Theorenil.1, f extends holomorphically to a neighborhadgl> p along some
path inI". Moreover, it follows from Proposition 6.1 thd} is not identically zero.
SinceA = {z € U, : Jr(z) = O} is an analytic variety anl is essentially finite,
M is not contained i; hence there is a poigte M N U, such that/;(¢) # 0
and f is biholomorphic neag. But this contradicts the fact that the Levi form of
I is degenerate &t Thus, ding £ < 2n — 2. O

Proof of Corollary 1.3.By [DF1], any compact domain with a smooth real-
analytic boundary is of finite type; in particular, it is essentially finite. By Theo-
rem 1.1, f extends holomorphically along any path&b and, sincéD is simply
connected; extends to a global mapping froé to 0D’. By Hartog’s theorem,

f extends to a holomorphic mapping . Since f(3D) ¢ aD’, the extended
mapping is proper. O
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