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Geometric Properties of Pluricomplex Green
Functions with One or Several Poles(ri

STEPHANIE NIVOCHE

0. Introduction and Statement of Results

In this paper we study the infinitesimal behavior near poles and the boundary be-
havior of pluricomplex Green functions with one or several logarithmic poles.

On the one hand, we prove a min-max principle for the Azukawa pseudomet-
ric that is related to the pluricomplex Green function. On the other hand, we find
a new proof of effective formulas for the pluricomplex Green function with two
poles of equal weights in the unit ball@f. With these formulas, we show that the
sublevel sets of this function are not (lineally) convex, no matter how close to the
boundary they are situated. This fact is surprising, especially since this convexity
property is lost in the case of several poles even when the domain is the unit ball
(the sublevel sets of the pluricomplex Green function with one pole of a bounded
convex domain are always convex). Moreover, this provides a counterexample to
a recently published statement.

Let us recall first the definition of theluricomplex Green functiowith one or
several logarithmic poles in a domainin C". Let m be a positive integer and
let P = {(p1, c1), ..., (pm, cw)} e @ set ofn distinct polesp; in D with positive
weightsc;, j =1, ..., m. Following Lelong (see [Lel] and [LeZ2]), the pluricom-
plex Green function with poles iR is defined onD by

gn(P, 2) = suplu(z) : u € PSHD, [—00, 0]) andu(z) — ¢; logl|z — p;l|
is bounded from above far nearp;, j =1,..., m},

where PSHKID) denotes the set of plurisubharmonic (psh) function®otf m =
1 andc; = 1, thengp(p, -) is the well-known pluricomplex Green function with
one logarithmic pole irp, introduced by Klimek (see [K1]). The pluricomplex
Green function has a connection to the complex Monge—Ampére operator. This
operator acts on locally bounded psh functions (see [BT1] and [BT2]) and it ap-
plies also for psh functions such that:—1(—o0) is relatively compact (see [C;
D1; Ki; Si]).

Let us consider the following Dirichlet problem for the complex Monge—
Ampere operator:
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uePSHD, [—o0, 0]) N C(D),
ulpp =0,
(dd‘u)* =0onD\ P,

forany j =1,...,m, u(z) — ¢;log|lz — p;|l is bounded from above
for z nearp;,

whered = 3 4+ 8 andd¢ = i(d — ). If D is bounded, then a necessary and suffi-
cient condition to obtain a unique solution to this problem is fhatust be hyper-
convex (i.e., there exists a continuous psh exhaustion fungtidh —]—o0, 0[).

This result was obtained by Demailly (see [D2] and also [Lel; Le2]). In this case
ddu)" = (2m)" Z;”:lcj%pj, wheres,,, is the Dirac measure at;. The resolu-

tion of this Dirichlet problem has been also studied in details by Lempert [L1],
who obtained this result with regularity properties wheiis strictly convex with
smooth boundary. Lempert’s method uses the study of extremal analytic discs in
D for the Kobayashi metric.

In Section 1 we study the behavior of a pluricomplex Green function with one
logarithmic pole locally near its pole in a bounded hyperconvex domay'in
More precisely, we look for a connection between the Azukawa pseudometric
associated to the pluricomplex Green function and the Kobayashi—Royden pseu-
dometric. For that we will use Poletsky’s definition of the pluricomplex Green
function. This problem is the dual version of another problem solved in [N2],
where it was proved that the sequencétbf Reiffen pseudometrics, generalizing
the Carathéodory—Reiffen one, converges to the Azukawa pseudometric. We will
now prove a min-max principle for the Azukawa pseudometric.

Recall the classical definitions of these different pseudometrics.wle¢ a
point in a domainD in C" and letX be a “tangent vector” i©”. Then Azukawa
[A1] has introducedd p(w, X) as

logAp(w, X) = limsup(gp(w, w + AX) — log|A|).
A—0

This Ap is a pseudometric of; that is, Ap is [0, +o00)-valued onC” satisfy-
ing Ap(w, AX) = |A|Ap(w, X) and is called in [JP] th&zukawa pseudometric.
At about the same time, Lelong [Lel; Le2] introduc;ﬁag1 as the capacitative in-
dicatrice of D. In fact, op(w, X) = logAp(w, X) is the Robin function oD,
introduced by Bedford and Taylor in [BT3].

The Carathéodory—Reiffen pseudomettig is defined by

Cp(w, X) = supf| fo(w)X| : f €O, A), f(w) =0},
whereA = {L € C: |A| < 1} is the open unit disc i, O(D, A) is the space of
holomorphic functions irD bounded by 1 in modulus, and
1
fo)X = fPw)X =Y =DV f(w)Xx".

=) v!

TheKobayashi—Royden pseudometkig is defined by
Kp(w, X) =inf{|7]:3p € O(A, D) st.¢(0) = w, ¢'(0) = tX},
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whereO(A, D) is the space of analytic dics i. The metricA, coincides with
the Poincaré metric o, which implies (see [Al]) that

Cp <Ap <Kp onD xC".

Now let us define two sequences of pseudometrics. For all integgeater
than 1, thepth Reiffen pseudometrig, of D, introduced in [N1] and [JP], is de-
fined by

vp(w, X) = supl| () X[Y7 : f € E,(w, D)},

where f(,,(w)X = ﬁf”’)(u})x = Y = 5 DV f ()XY and €, (w, D) is the
following compact set o (D):

Ey(w, D) ={fe€O(D,A): DYf(w) =0VveN"with [v| < p—1}.
If we denoteF, (w, X) the subset 0O (A, D) defined by
Fpw, X)={peO(A,D):90) =w, ¢P0)=0,1<k<p-1
¢'P(0) = p!tX, wheret € C},
then thepth Royden pseudometrig, is defined by

[T 20.000=w *|

F,,(w,X):inf{ |

1
:dp e Fp(w, X), Fp@(O) = tX}.

In the 1-dimensional case, we always takequal to 1 and writel p (w) instead
of Ap(w, 1), and so on. Then we obtain the following theorem.

THEOREM 1 (Min-max Principle for the Pseudometrics)Let D be a bounded hy-
perconvex domain i€”, w a point in D, and X a vector inC".

(1) If Dis strictly hyperconvex then we have, quasi-everywhet®i(i.e., except
for a pluripolar se),

Ap(w, X) = supy,(w, X) = lim y,(w, X).
p p

(2) If n > 2and D is strictly hyperconvex then we have, everywher@'in
Ap(w, X)=T,(w,X) Vp=>1
If n =1, there existg € F1(w) such that

|Hx¢0,zpm=o ’\|
lp’(0)]

We recall that a bounded domaihin C” is said to be “strictly hyperconvex” if
there exists a bounded domdanhand a functiorp € C(2,]—o0, 1]) N PSHQ)
suchthatD = {z € Q@ : 0(z) < 0}, ¢ is exhaustive fof2, and the open s¢t € 2 :
0(z) < c}is connected for all real number< [0, 1].

Let us remark that Poletsky [PS] considered another generalization of the
Kobayashi—Royden pseudometric for any domaim C”:

= IN(w) = Ap(w).
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. 1
Lp(w, X) = inf{|t|l e e Fp(w, X), —|(p(”)(0) = tX};
p!

Iy = KpandAp < T, < T, < Kp on D x C". Unfortunately, the sequence
(f“p)p does not, in general, have good properties of convergenge t@s illus-
trated in the following proposition and corollary.

ProposiTION 2. If D is a Dirichlet domain inC, thenTy(w) = [,(w) for all
p > 1 In addition, A p(w) = ['1(w) if and only if D is simply connected.

CoroLLARY 3. There exist bounded hyperconvex domair@'inr > 1) that are
lineally convex and such thét) their pluricomplex Green function with one log-
arithmic pole is symmetric with respect to the pole and the variable(@hdev-
ertheless{fp(w, X)), does not converge tdp (w, X) everywhere oD x C”.

Finally, let us remark that we always have the following inequalitie®ox C":
Cop=y1<y, <Ap <T, <T, <T1=Kp.

For some domains, all these inequalities are equalities—for example, ligen
convex or strictly lineally convex. Indeed, this is an immediate consequence of a
very strong Lempert’s theorem [L1; L 2] concerning the pluricomplex Green func-
tion with one logarithmic pole in strictly convex or strictly lineally convex domains
with smooth boundaryC® or real analytic). The foregoing min-max principle
(Theorem 1) generalizes the following.

THEOREM 4. If D is a convex or strictly lineally convex domain@f', then for
all integersqg > 1we have

CD=‘}/1=)/q=AD=Fq=f =ﬁ1=KD onD x C".

We recall that a bounded domaihin R” is strictly convex if there exists a neigh-
borhoodU of 9D and aC?-functionr: U — R such thatU N D = {r < 0},
UnNaoD = {r =0}, gradr 0 onU, and

Za (x)gjk>o forxeU and & € (R™)*.

J k=1

Moreover, aC?-bounded domairD in C" is strictly lineally convex if the com-
plex tangent hyperplanes 6fto D are disjoint fromD save for the unique point

of contact. These tangents have no higher than first-order contaciMittnat is,

the distance t@D, restricted to a complex tangent, has a nondegenerate critical
point at the point of contact.

In Section 2 we study the boundary behavior of some pluricomplex Green func-
tions with two logarithmic poles. We know [L2] that B is a bounded convex
domain inC" then the sublevel sefs € D : gp(w, z) < ¢} of gp(w, -) are again
convex for any < 0. If, in addition, D is strictly convex with smooth boundary
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(C* or real analytic), thergp(w, -) has the same regularity ab \ {w} as the
boundary.

In fact, this situation is quite special, and it is very different when the pluricom-
plex Green function has several poles. Indeed, there exist strictly convex domains
in C? (respectively irC") with pluricomplex Green functiongwith two (or more)
logarithmic poles such that any connected sublevel sgi®fot lineally convex.
Recall that the notion of lineal convexity has been introduced by Martineau (see
[H; M]) and that a domainD in C" is calledlineally convexif, for every z €
C"\ D, there exists an affine complex hyperpldieuch that € IT c C" \ D.
Obviously, any convex domain is lineally convex.

We also calculate explicitly (with other methods than used by Coman [Co]) the
pluricomplex Green functiogg, .1 in B2(0, 1), the open unit ball irC2, with
two logarithmic poles of weight 1. Then the sublevel sets of this function are not
lineally convex, no matter how close to the boundary they are situated.

If B€]0,1[ andw = (w1, wy) is any point inC?, denote byC,, the open com-
plex cone with vertex ab:

Cow =1{z = (21,22) €C?: Blza — wa| > |z1 — wal}.

THEOREM 5 [Co]. LetB €]0,1]. Letp = (B8,0) andg = (—8,0) € B2(0,1).
Then the following formula holds for the pluricomplex Green functioBgi®, 1)
with the two logarithmic poleg andg of weightl:

88,0,0(P, q;2)

2 2 2
1 o [B—z1"+(1—B)|z2| if EC_ A B»(0.1
? g( 1l 2e6 N B0 1),
2 2 2
1o [B+za|“+(1—B%)|z2] if 7€C. N B-(0.1
= 2 g( ‘l+[321|2 Z q 2( ’ )7
|B2—22124B% 22l *+20- B 22+ /A(Zz2) | .
% |09( 1 21-p222 - if z€ B2(0, D)\ (€, UCy),
“1

where
Aw) = (BHwal* — 182 — wil?)? + 4L — BH w2l B2lw2l? — (B2 — w1) |2

While writing this paper the author learned that these formulas have also been re-
cently obtained, with the same method, by Edigarian and Zwonek [EZ].

Letc €]—o00,0] and letB, = {z € B2(0,1) : gp,01(p, q; 2) < c}, a sublevel
set of the pluricomplex Green functi@g,.1(p. ¢; -) of Theorem 5. The sek,
is connected if and only if 2lo§ < ¢ < 0 andB, has two connected components
if ¢ < 2logg. Finally, we obtain the following proposition, which contradicts a
recent result of Einstein-Matthews [EM, Prop. 3.7].

ProrosiTION 6. If 2logB < ¢ < 0, thenB. is connected and not lineally convex.

| would like to thank the referee for precious remarks concerning this paper.
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1. Infinitesimal Behavior of a Pluricomplex Green Function
in a Neighborhood of Its Unique Logarithmic Pole

Let D be a domain irC", w a point inD, andgp(w, -) the pluricomplex Green
function onD with one logarithmic pole inv of weight 1. There are two ways to
reconstruct this function with holomorphic maps. The first method uses holomor-
phic functions onD with values inA and is, in fact, a precise version of Lelong
and Bremermann'’s theorem for this function; the second is a theorem of Poletsky
that uses analytic discs @, that is, holomorphic maps of with values inD.
With the first (resp. second) method, we put in relation the Carathéodory—Reiffen
(resp. Kobayashi—Royden) pseudometric with the Azukawa pseudometric associ-
ated to this pluricomplex Green function.

Let us recall briefly the first method using holomorphic functiongowalued
in A, with a zero inw of “large order”. For any positive integer, define onD
the psh Hartogs functioh, (w, -) by

1
hy(w,z) = sup{; loglf(2)| : f€&p(w, D)}.

We call exgh,) the pth Mobius function(introduced in [N1] and [JP]), and
logy, (w, -) is theRobin functiorof ,(w, -). We have obtained in [N2] the fol-
lowing theorem, which is the first part of our min-max principle. In this paper we
also find some applications of this theorem.

THeorReEM 1.1. If D is a strictly hyperconvex domain @ then, for everyw € D,
gp(w,z) = lim h,(w,z) = suph,(w,z) on D,
p—>00 [721

Ap(w, X) = lim y,(w, X) = supy,(w, X) quasi-everywhere o®".
p—>00 le

This result generalizes a previous result, which is an immediate consequence of
a very strong theorem of Lempert (see [L1; L2]) concerning strictly convex or
strictly lineally convex domains with smooth boundary.

TueoreM 1.2. If D is a bounded strictly convex domain or a strictly lineally con-
vex domain irC" with smooth boundaryC* or real analytig, then

gp(w,z) =h,(w,z) onD x D,
Ap(w, X) = y,(w, X) on D x C".

Note that we can obtain the same result as in Theorem 1.2 for any convex domain
and for any strictly lineally convex domain i@d”, since the former can be ap-
proximated internally by a sequence of strictly convex domains and the latter by a
sequence of strictly lineally convex domains with analytic boundary. However, it
is not possible in general to approximate internally a lineally convex domain by a
sequence of strictly lineally convex domains (see [H] and [Zn]).
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Now our question is as follows.

QuesTioN 1.3. Does there exist a sequence of pseudometric® enC” that
generalizes the Kobayashi—Royden one and such that it converges in some sense
to the Azukawa pseudometric?

This problem is dual to the previous one, solved in TheoteinThere already
exists a sort of generalizatid?;,(w, X) of the Kobayashi—Royden pseudometric,
introduced by Poletsky [PS]. In Section 1.1 we study its properties and show that
it is not a good choice for our problem. In Section 1.2 we introduce another gen-
eralizationl’, (w, X) of the Kobayashi—Royden pseudometric and prove that this
one is a good choice for our problem.

11

First we remark thafy(w, X) = Kp(w, X). According to the Schwarz lemma
we can easily prove that, for all integersandg greater than 1 and for a¥ in C”,
vp(w, X) < f‘,,(w, X). Letk, p(w, X, -) be the following function defined oA

by kg p(w, X, 1) = sup{gp(w, ¢ 0 6,(1)) : ¢ € Fy(w, X), 6, € O}, where®,

is the set of all continuous determinatiafysof the power 1q defined on an open
setA \ S in C, whereS is a closed line segment of length 1 with origin 0. Then
we obtain the following lemma.

LEmMA 1.4. LetD be a bounded hyperconvex domair(if, let w be a pointin
D, and letr, R > 0 be such thaB(w,r) C D C B(w, R). Thenk, p(w, X, -) is
a subharmonic function on, continuous om\, with values in—oo, 0]. On A,

these functiongp andg are two integers greater that) verify

log|A| +logr —logR < ky p(w, X, A) < kg p(w, X, A) < lOgJA|.
In addition, for all X € C", Ap(w, X) < [, (w, X) < [, (w, X) and

. AD(U}, X)
| k X, 0 =1 AD =1 = o |

Proof. In order to prove the first part of this lemma, we just use the continuity and
the maximality ofgp (w, ) and the fact that any bounded hyperconvex domain in
C"is taut. AdomainD in C" istautif O(A, D) is normal—that is, if whenever
we start with a sequendg;); C O(A, D) there exists a subsequengs,) with
@;, that converges if(A, D) top € O(A, D) or there exists a subsequerige )
that diverges uniformly on compact sets (i.e., for any two compactisets A
andL C D there is an indexo such that; (K) N L = @ if v > vo (see [KR])).

To prove that
Ap(w, X) )

lim sup(k , X, A) —log|a]) =logl —=
nst p(ky, p(w ) alrD 9( £, (w, X)
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it is sufficient to use the following property of Azukawa [Allhe upper limit
limsup_ o(gp(w, ¢(1)) — plog|r|) = log(Ap(w, X)|t|) is independent of the
choice of the map € F,(w, X) with #p”’)(O) = tX, wherer € C. The last in-
equalities are a direct consequence of what precedes and the proof is complete.

In some domains, the last inequalities of this lemma are equalities.

THEOREM 1.5. If D is a convex or strictly lineally convex domain@ft, then for
every integey > 1we havek, x(1) = log|A| on A and

[, (w, X) = Ap(w, X) on D x C".

Proof. As in Theorem 1.2, this theorem is again an easy consequence of a strong
result of Lempert [L1; L2]. Indeed, iD is as described here then, for &lle C",

there exists a unique extremal dise € F1(w, X) such thapy (0) = M(w, X)X

andgp o ¢x (1) = log|A| for all » € A. Consequentlyk; x(A) = log|x| for all

L € A andk, x (1) = log|x| forall A € A and allg > 1, according to Lemma 1.4.

For the equality of the pseudometriﬁ§(w, X) andAp(w, X), the proof is al-

most the same. O

Let us study what happens with a concrete example of a domaif,inot neces-
sarily convex. LetD be a complete circular domain with center 0; thatib, C
D foranyx € A. Letly be a complex line in directio € C" passing through
0. We denote the radius of the discn D by R(X). Note thatR(AX) = R(X)
for any A € C*. We define the functiom: C" — [0, +o00] by r(z) = ||z]|/R(2)

if z # 0 andr(0) = 0. Thenr is upper semicontinuous ard is represented by
D ={ze€C":r(z) <1}. The domainD is pseudoconvex if and only if logis
psh onC”. In addition, D is hyperconvex if and only if is continuous.

Let us suppose now th@ is pseudoconvex. It is well known thah (0, z) =
logr(z) on D. ConsequenthAp (0, X) = || X||/R(X) = r(X) onC", and it is
not difficult to prove that we also have, for evayye N* fq (0, X) =r(X)on
C". Indeed, this last property is a consequence of the following lemma, which is
an improvement of Sadullaev's Schwarz lemma [S].

LeEMMA 1.6. Let D be a pseudoconvex complete circular domain with cedter
and letg € O(A, D) be such thap®(0) = O forall k < g — 1(q is aninteger>
1). Then we have

1) eIl < [A7R(p(1)) ON A; .
(2) if ¢'?(0)/q! is not equal td theny@(0)/q! is a vector inD.

Proof. We fix 0 < r < 1 and denotey, () = ¢(rA)/A? on A. For everyi e
A, L = e, we havep, (L) = e P¢(re’’) € D becauseD is circular. In ad-
dition, D is pseudoconvex, so according to the continuity princigleA) c D
and|l¢, (M) || < R(p, (1)) = R(p(r)/21) = R(p(rr)) on A. Consequently, for
arbitraryi in A we havellp(L) || < |A]9R(¢p(X)).
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Let p1 be the analytic disc i©” defined onA by

p1(0) = &q) if e A" and ¢1(0) =

(p(q)(o)
-

According to the first propertyjpi1(M) | = le(M)|I/I1A19 < R(p())) on A*. Then
r(p1(A)) = ller(M) || /R(p1(A)) < 1onA*. Sincer is apsh function o&€” andg; is
a holomorphic mapping o valued inC”, it follows thatr o ¢; is a subharmonic
function inA. By the mean value property, we deduce th@t;(0)) < 1. Finally,

gD(q)(())
(p(‘1)(0) H
r( q! ) N

()
R( 4 (0)>
q!

Now we shall study the general case. Proving that the seqmép@e, X)), con-
verges toA p (w, X) is almost equivalent to proving that the sequegicex (1)),
converges to log.| on A. In fact, if (f“q(w, X)), converges toAp(w, X), then
(kq,x (1)) converges quasi-everywhere arto log|A| (i.e., except for a polar set).
Conversely, if(k, x (1)) converges om to log|A| then(f*q(w, X)), converges to
Ap(w, X).

Observe what happens in the 1-dimensional casb.iff a Dirichlet domain in
C, then its complementary setcontains at least two points and hence the uni-
versal coveringr of DisA. Letwr: A — D be such that (0) = w. According to
Azukawa [A2], gp(w, T (1) = Y ; ga(tj, 1), wherer (w) = {ro = 0,11, ...}.
In this 1-dimensional case we obtain Proposition 2 and deduce Corollary 3 in the
n-dimensional case.

@0 B
and o © eD. O
q!

Proof of Proposition 2.In what follows, we usé, to denotek, p(w, 1, ).

If D is simply connected, them is a biholomorphism fromA to D and it is
easy to prove thati p (w) = f“q(w) for everyq in N*. If 7 is not a biholomor-
phism (i.e.,D is not simply connected), ther'(w) contains at least two distinct
points inA. Sincer: A — D is the universal covering ab, for every holo-
morphic functionp in A with values inD there exists a holomorphic functign
in A with values inA such thatr o ¢ = ¢. Thenk, = sup{gp(w, T 0@ 0 6,) :
0,€0,, 0 O(A, A)st.p(0) e 7 ~Y(w) with orderg}. We can also writér, =
suplgp(w, Tofogob,) : 6, €0, € F, A0), 6 €Aut(A) s.t.6(0) € 7 H(w)}.

First we remark that all functioris, are equal om\. In fact, for allz in A¥, ac-
cording to the Schwarz lemma we have thyD0, |¢]) C {¢p@), ¢ € F1LA(0)} C
{p6,()), ¢ € F4.A0), 6, € ©,} C D(O, [t]). Then the sequence$,), and
(f‘q(w)),, are constant in all cases.

Let us study the function defined onA by

u(h) = suplgp(w, T 0 8(L)) : 6 €Aut(A) s.t.0(0) € 7 L(w)}.

We haveu (i) < log|i| on A andu()) > —oo on A \ {0}. The functionu is con-
tinuous and subharmonic af, and in its definition the supremum is in fact a
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maximum. Consequentlyi(1) := u(1) — log|x| is continuous, subharmonic on
A, negative onA, and not equal to O everywhere. Then, according to the maxi-
mum principlei(0) < 0 and there exists an open nonempty diX0, r) wherei
verifies 3i1(0)/2 < a()) < i(0)/2. Then, according to the Schwarz lemma,

ki(2) < supflogl@(1)| +i(0)/2 : ¢ € F1,A(0)}
<log|A| +u(0)/2 on D(O,r).
ThusIy(w) > Ap(w) and the proof is complete. O

Proof of Corollary 3. It is sufficient to prove this result ii?. Let D be a product
domainD; x D, in C2, whereD; and D, are two bounded Dirichlet domains in
C. ThenD is a bounded hyperconvex domainGi. Letw = (w1, w,) be a point
in D.

Any analytic discp = (¢1, ¢2) € O(A, D) is given by two holomorphic func-
tions ¢; andg, on A with values inD; and D,, respectively. Note thap;, =
mj o ¢;, whereg; € O(A, A) andrz;: A — Dj is the universal covering ab;
with r;(0) = w; for j = 1, 2. Then, according to the product property (see [E2]
and [Z]), we havegp (w1, wo), (21, 22)) = mMax(gp, (w1, 71), g&p, (w2, z2)) and
consequently, for an¥ = (X3, X,) € C?,

kq,D(w’ X’ ) = max(kq,Dl(wlv X].’ ')’ kq,Dz(w25 X25 ))

If, in addition, we suppose th&t; and D, are not simply connected, then (accord-
ing to Proposition 2) we obtain that, for alle D, all X e C?, and allg > 1,

Ti(w, X) = T,(w, X) > Ap(w, X). O

We remark that this corollary illustrates a well-known result of Znamens$ka:
lineally convex domain i€”" (n > 1) can be exhausted by strictly lineally convex
domains, then it is necessari-convex(see [H] and [Zn]).

1.2

In [P1] and [P2] (see also [E1]), Poletsky proved that, for any donirin C”,
the pluricomplex Green functiogy, (w, -) verifies

gp(w,z) = inf{ Z log|A] i o € O(A, D), ¢(0) =z }

rep~Hw)

if z e D andz # w, where we use'(w) to denote the subset af defined by
¢ iw) ={reA:p() = w} )

This result does not change if we repla®€A, D) by O(A, D), the set of
holomorphic mappings in a neighborhood®fwith values inD. We remark that
Y septw 0GRl = 30,1 802, 0) = ealp™(w), 0). Let us consider the
other pseudometrick,(w, X) defined in the introduction. It is easy to see that,
for any p andg in N*, we always have

Ap(w, X) < Tpy(w, X) < Ty(w, X) < T,(w, X) < Kp(w, X);
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for any convex domains and any strictly lineally convex domains, we have

Ap(w, X) =T,(w, X) = Kp(w, X).

Proof of Theorem 1(2)First we consider the cage= 1. Note thatD is a bounded
hyperconvex domain it if and only if it is a Dirichlet domain. As we have al-
ready seen, ifr is a universal covering ab such thatr (0) = w then, according
to Azukawa [A2],

go(w, (W) = ) galtj, 1) = galm (w), 1) on A,
J

wherex X(w) = {tg = 0,1, ...} and 0 is a zero of order 1 of — w. We note
7'(0) = ¢, and then lim_o(gp(w, (1)) — log|r]) = log(Ap(w)|t]). On the
other hand,

. 1 _ — . )

lim (ga(z ~(w). ) — log|A]) ygnozlgA(t,,x)
jz

)L—tj

1-7h

=im, Tl

j=1

= Z loglz;|.

j>1
Consequently, | |
HA#O,H(A):w A
Ap(w) = I'(w) 7(0)]

Thus,I',(w) = Ap(w) forall p > 1.

Now, if n > 1 then we fix a “direction’X in C” such that| X| = 1. We know
by definition that logA p (w, X) = limsup,_, ,(gp(w, w + AX) —log|A|). Hence
there exist a sequence,),, in C* that converges to 0 and a sequeligg),, in
O(A, D) such that,,(0) = w + 1, X, ¢, (w) = (A €A 1 9(A) = w} = {Ajn, :
1< j < N,} # 0 (the zeros ofp,, — w are repeated if they are of order greater
than 1) and that verify

’ l_[kezp;nl(w) A ’

17

Ap(w, X) = lim exp(gp(w, w +1,X) —loglr,|) = lim

For anym > 1,

Im

B,,(0)

whereB,, (1) is the Blaschke producﬁ[’}’gl(x — Ajm)/ (A= AjmA) @ndyy,, is a holo-
morphic mapping om\ in C" such thaty,,(0) = 0. If we useg,, to denote the
analytic disc defined on by

em(d) = w + Bm(?»)< X+ lﬁm(k)> on A,

I

B,(0)

()Zm()") =w+ (Bm()‘-) - Bm(o))< X+ wm()‘-)>7
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then we have the sup norm ax of ¢,, — ¢,,, which verifies||@,, — @ulla <
|B,(0)|M (where M is a constant independent of). By hypothesis,D is
strictly hyperconvex. Thus there exist a bounded donSaiand a functiorp €
C(R2,]—00,1[) N PSH) such thatD = {z € Q : 0(z) < 0}, ¢ is exhaustive for
Q, and the opensét € Q : 0(z) < c}is connected for all real numbears [0, 1].
If we denoteD,, the bounded hyperconvex domain defined{by Q : 0(z) <
1/m} for any integetn > 1, theng,, is an analytic disc irD,,,,, where(v(m)),,
is a sequence of integers that tendsdavhenm tends toco.

Even if it means changing (for amy) a zero ofy,, without changing all others
(this is possible becausgg, € O(A, D)), we can suppose th& (0) # 0. Thatis,
Ois a zero of order 1 af,,. In addition, for anyn sufficiently large|B,,(0)| < 1
Thus, according to Rouché’s theoreRy, andB,, — B,,(0) haveN,, zeros (counted
with multiplicity) in A. We have

AeAIA£0, Gu(l) =wl={AeA:r#0, Bu(A) — B,(0) = 0}

== {ijmvlf ] < Nm - 1}
We can write
Nm—l 5\
Bu(1) — Bu(0) = B,(1) = A H ——Z Bu(2) ONn A,
— AjmA
whereg,, is a holomorphic function or\, never equal to zero, such thg}(0) =
¢y 1S @ complex number not equal to zero. SIBE0) = (Hiv”’[l—kjm)cm,

it follows that
Np—1 :
5 (0) = —im Jom——X

Note that|B,,(1)| < 1+ |B,,(0)| on A. According to the maximum principle, we
may deduce thats,,(A)| < 1+ |B,,(0)] on A. In addition, ondA, |B,,(A)| >
1— |B,,(0)|. Becauses,, is never equal to zero oA, we deduce that/B,, €
O(A) and, according to the maximum principlg,.(A)| = 1— |B,,(0)] on A.
Consequently, & |B,,(0)| < || < 1+ |B,(0)|, and|c,,| converges to 1 whemn
tends toco.
We deduce that, for large enough,
| Bn(0)]

ADv(m(w X) < F]_ Dv(m(w X) < .
[Cmtm|

It is simple to verify thatAp,,, (w, X)),, converges tolp(w, X) whenm tends
to oo (see [N2]).

Now, we just need a last lemma to conclude the proof. This result takes its in-
spiration from a result [Yu] concernirfg,(w, X) pseudometrics.

LemmMma 1.7. With the previous notation, we have

lim Ty p,,,w, X) =y pw, X).

m— 00
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Proof. Assume, by way of contradiction, thgt p,,, (w, X) does not converge to
I'1, p(w, X). Then there exist, > 0 and a subsequenc¢e (m)),, of the sequence
(v(m)),, such that

|F1,Du(m)(wa X) - Fl,D(w5 X)| > 80'

By definition, for anyn €]0, 1], there exisb,, € O(A, D)) such that,,(0) =
w, 0,0 =1,X,t, >0, and

nx¢o,0m(x)=w|)‘|

Fl,DH(m)(wa X) + n Z
Im

Claim. Every subsequence of tli¢, ),, has itself a subsequence converging to
some elemem € O(A, D) such tha® (0) = w andd’(0) = ¢X for somer > 0.
As a result of the claim, we will obtain

liminf Iy p,,,(w, X) > Ty p(w, X). ()
m—0o0

First we check the claim. By hypothests, € O(A, D;) for all m. By the taut-
ness ofD, every subsequence @, ),, has itself a subsequence either converging
to some elemernt € O(A, D;) or compactly divergent. Sina,(0) = w € D,
only the first possibility could occur. Moreover, becads¢A) C Dy — D
(in the sense that lip, o dist(dD ;. dD) = 0), it follows thatd(A) C D. But
D is taut and?(0) = w € D, so we must havé(A) C D. Indeed, if there exists
a pointig € A such that (Ap) € aD, then the sef(A) is contained idD. This
verifies the claim.

It follows from the claim that

_u
M > Ip(w, X).

liminf Iy p,,, (w, X) +1 =
Whenp tends to 0, this impliesx).
Now we seek a contradiction. By the tautnesdxfthere exists an extremal
discod € O(A, D) for I'y p(w, X). Namely,6(0) = w, 6’(0) = X with ¢ > O,
and (1,0, 00y=w/*)/t = T1p(w, X). Sinced € O(A, D) for all m, it fol-
lows thatl'y p,,, (w, X) < (HA¢0’9(A):w|A|)/t. Taking lim sup with respect to
m, we obtain

lim supl'y p,,,,,(w, X) < Ty p(w, X). (%)
m—0o0

Obviously(x) together with(xx) contradict the first assumption. This finishes the

proof of Lemma 1.7. O

Consequently, it follows from this last lemma thap(w, X) = I'(w, X) =
I, (w, X) for all p > 1. The proof is complete. O

2. Boundary Behavior of a Pluricomplex Green
Function with Several Poles

Let D be a strictly lineally convex domain i6”, and letgp(w, -) be the pluri-
complex Green function o with logarithmic pole atv. Lempert [L2] proved
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that also the sublevel sese D : gp(w, 7) < ¢} of gp(w, -) are strictly lineally
convex for any nonpositive real numherlf D is a bounded convex domain, then
the sublevel sets gfp (w, -) are again convex for any< 0 (see [L1] and the ap-
pendix in [Mo]). In addition, ifD is strictly convex with smooth boundafg > or
real analytic), thergp (w, -) has the same regularity dn \ {w} as the boundary.

In fact, this situation is quite special. Indeed, Bedford and Demailly proved in
[BD] that there exist strongly pseudoconvex domaing C2 with C? boundary
such thagp (w, -) is notC2in all D \ {w}. Here, we consider instead the situation
where the domai is convex or even strictly convex but where the pluricomplex
Green function has several logarithmic polesiin For this case, we will prove
that pluricomplex Green functions with several poles have no more these regu-
larity properties. In Section 2.1, we show that there exist convex domaifi$ in
(respectively inC") with pluricomplex Green functions with two (or more) log-
arithmic poles such that any connected sublevel sgti@hot lineally convex. In
Section 2.2, where we obtain explicitly the pluricomplex Green funcgigi, 1
in B»(0, 1) with two logarithmic poles of weight 1, we prove again (how we are in
the situation of a strictly convex domain) that any connected sublevel ggief)
is not lineally convex and that this function is i@t on B,(0, 1) \ {poles.

Before starting, observe what happens in the 1-dimensional case. The complex
Monge—Ampére operator is the same as the Laplace operator and hence is lin-
ear. For any bounded Dirichlet domain@) the Green functiog, (P, -), P =
{(p1,c1), ..., (pm, cw)}, is @ set ofm distinct polesp; in D, and thec; (j =
1, ..., m) are strictly positive reals, verifieg, (P, z) = Z’;’zlcjgg(pj, z)onD.

The functiongp (P, -) is continuous onD and harmonic, thed> on D. Thus,

by regularity, if D is strictly convex then the subsevel setsegf P, -) are again
strictly convex for any negative reahear 0. On the other hand, iif is only con-

vex (and not strictly convex), the subsevel setgfP, -) can not be convex for

any realc < 0. To understand this easily it is sufficient to consider the different
sublevel sets of the Green function arwith two logarithmic poles i and—g,
whereg is a real number in JOL[. Note that any domain i is obviously lin-

eally convex, so in this case there is nothing to say about the lineal convexity of
sublevel sets.

The situation is quite different in the multidimensional case because, in partic-
ular, the Monge—Ampére operat@id©)”" is no longer linear [Lel; Le2]. For any
domainD in C", we have)""_; c;en(pj, 2) < gp(P, 2) < inf; c;gn(pj, z) onD.

And these inequalities cannot be replaced by equalitiessf 1 andn > 1

2.1. A Counterexample of a Recent Result

First we briefly recall some properties of Mébius transformations,@0, 1) and
of pluricomplex Green functions with one logarithmic poleRp(0, 1). Leta €
B,(0,1) \ {0}. Denote byP, the orthogonal projection onto the subspac&6f
generated by the vecter. Then P,(z) = ((z,a)/{a, a))a, where (., -) is the
standard complex scalar product gh¢l stands the Euclidean norm @". Let
0.(z) = z — P,(2) denote the projection onto the orthogonal complement of the
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subspace generateddbyThe Mobius transformation associated witts the map-
pPINg 7, (z) = (a — Pa(z) — 54Qa(2))/(L — (2, a)), wheres, = (1— ||a||®)¥? and
(z,a) # 0. Note that, by the Cauchy—Schwarz inequality, a)| < 1if ||z|]] < 1
Observe thal, (a) = 0 and7,(0) = a. We also defind as the identity mapping.
The Mébius transformatiof, is a homeomorphism o8, (0, 1) onto B,(0, 1),

and it mapsB,(0, 1) onto B,(0, 1) biholomorphically. The inverse df, |, (0.1 iS

T, 8,01 itself. According to the properties of the M6bius transformations and the
fact that the pluricomplex Green function is invariant by biholomorphism, the ex-
plicit formula for the pluricomplex Green function with one logarithmic pele
with weight 1inB,(0, 1) is

880w, 2) = log|IT, (2)]I.

Now we shall construct a pluricomplex Green function with two logarithmic
poles in a complex convex ellipsoid @P. Let F be the mapping i©? defined by
F: C? — C?, (z1,22) = (22, z2). Itis a polynomial holomorphic proper func-
tion in C? such thatF(D) = B»(0, 1), whereD is the complex convex ellipsoid
defined byD = {(z1, z2) € C? : |z1)* + |z2/? < 1}; D is convex, but not strictly
convex.

LEmMMaA 2.1. LetD and F be defined as before. Then we have

gs,01(a; F(z)) = gnp(p,q;z) on D,

wherea = (8%,0) € B2(0,1), p = (B.0) € D, g = (—B,0) € D (with 8 €
10,1]), andgp(p, g; -) is the pluricomplex Green function dnwith the two log-
arithmic polesp andg of weight1.

Proof. We can prove this lemma by using the fact tlais proper andr(D) =
B»(0,1). But here let us prove this lemma directly. First we verify tiiatz) =

(1/(1— B?21)) (B2 — z1, —/1— B%z;). Let the function
u(z1, z2) = 10g|| 7o (F(z1, z2)) II;

u is plurisubharmonic o (because it is the composition of a plurisubharmonic
function and of a holomorphic one), continuous Dn strictly negative onD
(F(D) = B»(0,1)), tends to zero when we approach the boundaryofand
has two logarithmic poles with weight 1 ip andg. In addition, « is of class
C?2on D\ {p,q}, sincev(z) = gg,01(a, z) = l0g||T,(z1, z2)| is of classC? on
B>(0,1) \ {a}. Because is maximal onB2(0,1) \ {a} andu = v o F, u is also
maximal onD \ {p, g}. In fact,

2
de t|:8 (vo F)
0707

2

(z )} |detBZF|2det[ 0

8Zj Lk
and then, oD \ {p, g}, (ddu)?(z) = |detd, F|?(dd°v)?(F(z)). Consequently,
u is the unique solution of the Dirichlet problem defined in the introduction with
m = 2 andc; = ¢, = 1—that is, the pluricomplex Green function with logarith-
mic polesp andg with weight 1 on the convex complex ellipsalel The proof is
complete. O

(F(z)):|
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Letc €]—o00,0] and denoteD, = {z € D : gp(p, q; z) < c} the sublevel set
of the pluricomplex Green functiogp (p, q; -). We remark that this open set is
“very symmetric”: if (zq, z2) € D, then also(—z1, z2), (z1, —22), (Z1, 22), and
(z1, 72) are inD,.. Note thatz € D, if and only if | 8% — 22> + (L — B9)|z2/? <
e?’|1— B?72|2; D, is connected if and only if log? < ¢ < 0. In the case where
¢ < log B2, D. has two connected components.

ProposITION 2.2. If logp? < ¢ < 0, then D, is connected and not lineally
convex.

Proof. Letz be a pointiD, such thaty = 0. Then|z,|? = (2 — %) /(1— B,
wheree?® > 4. We see if this is possible for a complex lihéhrough the point
z such thai ¢ C2\ D,.. Denote byl = {(0, z) + A(w1, wy), » € C} a complex
line in C? with direction(ws, w») # (0, 0) through the point.

If w; = 0, thenw, # 0 and we can choose, = 1. We have that0, z2) +
1(0,1) e C2\ D. ifand only if |zo + 1|2 > |z2|2. Of course, there exist complex
numbers\ that do not verify this inequality. v, = 0, thenw; # 0 and we can
choosew; = 1. Now (0, z») + A(1, 0) € C?\ D, if and only if

) 1— eZc ) 1— eZc
1— ,13482“ 1— IBAeZC'
Again, there exist complex numbexghat do not verify this inequality.

If neither w1 nor w, equals zero then we can choose = 1. In this case,
(0, z2) + A(wy, 1) € C?\ D, if and only if

FO) = Q= BH(z2h + 220) + A= BHIAZ — B2L— e®)((Gaw1)? + (Ab1)?)
+ (@ — B%®)|wi*|A* > 0.

22— B > B

But for A = —z,¢ (with smalle > 0),
F) = =21 — Yzl + AL — BH)zol%e?
— 2L — e®)((zaw1)* + (Zaw1)?) e? + |wi|*|z2|* (L — B%*)e* < 0.

Finally, for any complex line through, / N D, contains points other thanand
D, is not lineally convex. O

Now our question is as follows: Is it possible to obtain the same result for a strictly
convex domairD in C2? In Section 2.2 we answer in the affirmative by finding an
explicit formula for the pluricomplex Green function with two logarithmic poles
of weight 1 in the open unit ball i2.

2.2. The Pluricomplex Green Function of the Unit BallGA
with Two Logarithmic Poles of Weight 1

In proving Theorem 5, we shall first express the pluricomplex Green function
g8,0.1(p, g; -) with the help of a pluricomplex Green function with one pole in a
well-chosen convex complex ellipsoid, similarly as in the proof of Lemma 2.1. We
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then apply Lempert’s method in convex domains, which is based on a study of ex-
tremal discs for the Kobayashi metric, to express this pluricomplex Green function
with one pole. This is possible because Jarnicki, Pflug, and Zeinstra [JPZ] gave a
complete description of all geodesics of any convex complex ellipsaitf in

Let D be the following complex convex ellipsoid ii2: {(z1,z2) € C? :
|z1] + |22/ < 1}. Let F be the following polynomial holomorphic proper function
in C2: C% — C2, (z1,22) = (22, z2). Let F(B(0,1)) = D andF(bB»(0,1)) =
bD; D is convex, but not strictly convex.

LemmMma 2.3. Let D and F be defined as before. Then we have

88,0,0(P. q;2) = gpla; F(z)) on B2(0, 1),

wherea = (8?,0) € D and where botlp = (8,0) andg = (—8,0) are in
B»(0, 1) with 8 €]0, 1].

Proof. This proof is similar to the one of Lemma 2.1. The only thing to remark is
that we have the following general properbet f € H(2, '), whereQ and @’

are two open sets ift”, and letu € PSHQ') N L{S.("). Then, if we note =

uo fePSHQ) N LYF.(R), we have

(dd“v)"(z) = |detd, f|*(dd“u)?(f(2)).

First, it is easy to verify this formula whem € C?(Q’). To prove this prop-
erty in the general case it is sufficient to see that, foriagyPSHQ") N Li5.(2')
and for any exhaustive sequence of relatively compact operfxets<’, there
exists a sequende;); of psh and’* functions orEZ’ respectively, such thait;);
decreases to on Q'. By Bedford-Taylor’s convergence property of the Monge—
Ampeére operator, we deduce that}'(rzfid“uj)2 = (dd‘u)? on ', in the sense of
weak'-convergence of currents of order zero. Since the formula is valid for any
uj, itis also valid foru. O

Recall that a holomorphic mapping: A — D is a complex geodesic if
kp(pA), p(X)) = ka(x, A) for L andA’ € A, wherek, is the Kobayashi dis-
tance. In [JPZ] are described all complex geodesics of any convex complex el-
lipsoids&(p) = {(z1. ... za) € C" 1 Y4121 < 1} (with py, ..., p, = 3)in
C”". Here we are iC2, p; = 1/2, andp, = 1. Let (1, ¢2) be a complex geo-
desic ofD = {(z1, z2) € C? : |za] + |z2]? < 1}. If 91 = O (resp.g, = 0), theny,
(resp.py) is an automorphism of the unit digc. This means that, without loss of
generality, we can assume thatandg, are not identically zero oa. Then any
complex geodesip = (¢1, 2) of D has the following form:

. A — aj <1 oA

1 Olo)u

Yp;
> if the ¢; have a zero im,
(1)

1— @ \Y _ _
aj % if the ¢; have no zero im,
1-— Olo)\

whereay, a, € C\ {0}, ag € A, a; € A ifthe p; have a zeroim\, «; € A if the ¢
have no zero im\, g = Zf=1|aj|2Pfaj, and 1+ |aol? = ZJZ.=1|aj|ZPf A+ |ej]?).
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The complex geodesics ib are uniquely determined mod Aut). Let us re-
mark, in addition, that any complex geodesic/dextends holomorphically to a
neighborhood ofA. We now recall Lempert’s theorem.

THEOREM 2.4 [L1]. Let D be a strictly convex, analytically bounded domain in
C", and letw be a point inD. For everyz € D \ {w}, there is a holomorphic
imbeddingp. = ¢: A — D such that;, w € ¢(A) andgp (w, -) is harmonic re-
stricted top(A) \ {w}. Thisg is unique up to automorphisms &f Consequently,
the corresponding analytic disgs (A) yield a foliation ofD that is singular atw.

For the same reasons described after Theorem 1.2, this theorem is again true for
any convex domain irC”. In particular, Theorem 2.4 states thaj(w,z) =
inf{log|A| : ¢ € H(A, D), ¢(0) = z, ¢(A) = w}, where the infimum is a mini-
mum and is achieved for a complex geodesi®of

To prove Theorem 5 we need the following theorem, which expresses the pluri-
complex Green function o with one logarithmic pole of weight 1. Hereafter,
when we writex¥2 for » € C \ {0} we mearr such that? = A and Argt) €
[—7/2, /2] (0Y2 = 0).

THEOREM 2.5. LetB €]0, 1]. Leta = (B2,0) € D and letp, g € B»(0, 1), where
p = (B,0)andg = (-8, 0). Then the following formula holds for the pluricom-
plex Green function o® with the logarithmic pole: of weight1.

gpl(a,w)
1 \ﬂ—1u%/2\2+(1—ﬁ2)\7112|2 f 1/2 >
§|09< 11-Bul/22 if (wy'", wz) €C, N D,
= 2. 2. a4 4 NP
11oq( [Frorat B w20t AW Y e ap
1 g< e (w}?, w2) € D\ Gy,
where

A(w) = (BYwal* — |2 — wil>)? + 41— BH|wal?| Blw2l? — (B2 — wi)|*.

Proof. Let w = (w3, wy) € D be such thatv # a. Because of (1), any complex
geodesia = (¢1, ¢2) passing through andw is such that eithep~(0) = ¢ or
¢~%(0) contains exactly one point. Our aim is to decide for which pairs of points
the complex geodesic joining these points is of the first type and for which it is of
the second type.

We shall first computgp (a, w) for all the pointsw € D such thatw; = 0 or
wy = 0. If wy €]0, 1], then the unique geodesic= (g1, ¢2) of D that passes
through both pointa and (0, wy) and that verifieg(0) = (0, w») is defined on

A by

A A—
a;_ and ¢o(A) = az—_az,
(1—aopr)? 1—aphr

whereag = |a2|2012, 1+ |Olo|2 = |ai| + |a2|2(1+ |(¥2|2), —azay = wy, and
aar /(1 — @pap)® = B2. Of course,ay # 0. Then we haver, = —w,/as,

P1(2) = (M
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oy = wz/az, a = B2 (1 - wz)z/az, and|a2| verifies the following quadratic
equation: |az|? — |az|B%(1 — w3) — w3 = 0. The unique solution fota,| is
1[B21—w?) + Vi1 — w3)? + 4w3]. If w = (0, wp) € D with w, # 0, then
gp(a, (0, w2)) = gp(a, (O, |wz|)), because of the invariance g (a, -) under the
mapping(z1, z2) — (z1, €%z,) of C?, whereé is any real number. lfv, = 0,
then the unique geodesicof D which passes through pointsand 0 and that ver-
ifies ¢(0) = 0 is defined omA by ¢1(A) = A andg,(1) = 0. Thus, consequently,
forall w, € A,

gn(a, (0, wy)) = log(3[ %L — w2l 2) + VB~ [wal?)? + 4lwe] ?]).

If wy € A then, according to (1), the unique geodesienod Aut(A)) of D passing
througha and (w3, 0) and such thap(0) = (ws, 0) is defined omA by ¢1(X) =
(A + w1)/(L+ wir) andg2(2) = 0. Hence, for allw; € A, gp(a, (wg, 0)) =
log(1 % — w1l /11— BZwil).

Now observe what happensif = (w1, wz) € D with w; # 0 andw, # 0. We
can suppose that, > 0 for the same reason as before: the invariangg,dd, -)
under the mapping1, z2) — (z1, ¢z2) of C2, whereg is any real number. Sup-
pose thatp; 1(0) = @. Theng verifies onA

(k)— 1—0_51)» 2 and ()\)_ )\.—(12
¢1(A) = ay 1—aon @2(A) = az 1—aor )’

whereaq = |ai|a1 + |az|?az, 14 |aol? = |as| (14 |@al?) + |az|?(1+ |a2|?), and
¢(0) = w; thatis,a; = w1, —ara2 = wy, ande(az) = a. In other words,

(1— 6[10[2 )2 2
all ———=) = p>
1- apl2
We have immediately that
1—a
w}ﬂ(—?{lm) =48 or —B.
1- apl2

After some calculations, we obtain in the first case

2

pA—w3) —wy —Bwy? + Jwi] + w3

o1 = g =
' an (-1t pul?)’ a1 — pw??)
» 1B —w?P+A- pAHws
|a2| - |1 ﬁ 1/2|2 )

in the second case,

B(L—w2) + wy? ao_ﬁwl/z + [wy| + w2
" a1+ pu 1/’") a1+ pwy’?)
2= 1B+ w?? + A pHw3

|1+'3 1/2|2 .

7
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We now usep to denote the complex geodesic®4(0, 1) defined onA by

1— a1 A—ao
~ 1/2 1 ~ 2
A =w - - and A =a .
</)1( )— 1 (1 _0)\> (PZ( ) 2(1 _0)\>

In the first casep(A) is a part of the complex line of the equati@fy — f)w, =
Z,(w¥?— p), passing througlp; in the second casg(A) is a part of the complex
line of the equatioriZ; + B)w, = Z>(w}? + ), passing through. By hypoth-
esis,p; 1(0) = ¥ and Argwi/?) € [—r/2, /2], so the first case is the only one
that can occur and necessarily}/2, w,) € C, N D. Conversely, if(w}/2, w,) €
ép N D then there exists a complex geodegiof B,(0, 1) that passes through
(w2, wp) andp. In fact, it is a part of a complex line. Then= (¢2, @) is a
complex geodesic ab that passes through anda; it is such thap;(0) = 0.
Consequently, for all = (w1, wp) € D such thatwi/?, wp) € C, N D,

1B — wl?2+ 1 - ﬁ2)|w2I2>
11— pwy/?? '

—1Io
gpla,w) = > g

Finally, letw € D be such thatwy’?, w,) € D \ C,. Without restriction, we can
suppose thab, > 0. Then, according to what is previous, the unique geodgsic
(mod Aut(A)) of D passing througly anda is such that?;l‘l(O) contains exactly
one element. In addition, there exists a unique poift= (0, w5) € D N @(A)
and a unique geodesicof D of type (1) such thatpy(0) = w’ andg(a2) = a. We
can suppose without restriction (with the help of well-chosen rotationpthat

0. Now ¢ verifies onA

)»—Otz
1—agr’

a]_)»

m and ()02()\.) =day

p1(A) =

wherew, = 1[82(1—wj|2)+VB* (A — |wpl?)? + 4w)l?] a1 = B2(L-wD) Y az,
a; = —wh/az, anday = wiZ/a,. We remark thaip(A) C {z = (z1,22) €
D @ whzr = B3(wh — z2)(1 — Wwhz2)}. Now w), € A and verifieswiw; =
,32(w§ — w2)(1 — wiywy). This permits us to express, with w; andw;:
_ _ 2 2 2.2 p2, -
2 1

LetAg € A be such thap(rg) = w. From the equatiom,(1g) = wo, itis easy to
obtainig = (w2 + azaz)/(az + agwz). Sinceay, ag, o, are expressed according
to w’, Ag also can be expressed accordingutoand thence according t0. The
relation betwee andg is ¢ = ¢ o 6, whered is the automorphism ok defined
by 8(1) = (A + A0)/(L+ AoA). Finally, (0 Xaz)) = a,

— A
gp(a. w) = log|§az)| = log| 2220

1— Aoz ’

and, for allw € D such thai(wi/z, wy) € D\ C,, we have
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@ w) = Io 182 — wi|? + BHwal* + 2(1 — B4 wal? + VA(w)
spld: d 211— p2w?
where
Aw) = (BHwal* — |82 — w1l?)2 + 4L — BH|w2l?| B2 wa|* — (BZ — w1) |2
The proof is complete. O

Proof of Theorem 5The theorem is a direct consequence of Lemma 2.3
and Theorem 2.5. Let us remark that,zife C, N B2(0,1), then Argz;) €
[—7/2, /2] and (z2)Y2 = z1. Moreover, ifz € C, N B2(0,1), then Argz;) €
[—7, —m/2[U[7/2, w[ and (z2)Y? = —z;. O

Proof of Proposition 6.This proof is very similar to that for Proposition 2.2. The
calculations are only a little bit more off-putting. Lebe a point ifdB.. such that
z1=0andz; > 0. Then 2¢ = B2(1— z2) + VB* (L — 22)? + 43, where 2¢ >
282. We check for the possibility of a complex lin¢hrough the point such that

I ¢ C?\ B,. Denote byl = {(0, z2) + A(w1, w2), A € C} a complex line inC?
with direction(ws, w) # (0, 0) through the point. Then

88,00(P, g, wy, 22 + Awp)) = 1log fAi(R),
where fi(1) = g1(A)/(2]1— B2w?1?|?) and
1) = |82 — w22 + Y22+ war|* + 20— BY|z2 + war[?

+VAWA2, 25+ woh)
if e CisnearO.
If wy # 0, then we can choose, = 1. We obtain that
A1) = f10) + T+ 1) + S (12D,
whereg (|A])/|A| tends to 0 when tends to 0 and
B?za(—B*(1—z5)" +1— 3z§)
VB - 22)? + 422

We remark thatr; # 0 becauses €]0,1[. Since f1(0) = ¢, there exists
A € R as near to zero as we want and such thgkL) < e°; that means that
88,0.1(P, g, (0,22 + 1)) < c for theser and that N B, # @.

If wp, = 0, thenw; # 0 and we can choose; = 1. We obtain thatfy(A) =
Ff1(0) 4+ 12(A% + A2) + ¢ (|11|%), whereg (|1]?)/|1|? tends to O when tends to O
and

11 =z2(1- p*1—25) +

ﬁz[ 4 2
T = B (1—12) +2z2 1

N (23 = D[-B8L— 23)° + B — 23)(L — 423) + 222 }
VA, z2) '
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In fact, 7, = (B%/4VA(0, z2)(z3 — 1), wheretz = 41— z3)% 4+ 225 — 1+
VA(O, z2). Clearly, 73 +1 > 0; moreover,r3 < 1. Indeed, this is equivalent to
B41— 222+ VA(0,z2) < 2(1— z3); after a simplification of both sides with
(1—z3), this becomeg*(1— z3) + B2(B*(1—z3)% + 4z5)Y/? < 2. Note that, by
the choice ot in the beginning of the proof, the left-hand side of the last inequal-
ity is just 282%¢¢ < 2. Hencer, < 0, and one choosese R small to getfi(r) <
e?c; that means thats,0.1(p, ¢, (A, z2)) < c for thesex and that N B, # 0.
Finally, for any complex line through, I/ N B, contains others points than
andB. is not lineally convex. O

To conclude, we make a remark on the regularity of pluricomplex Green functions
with one or several poles. Coman proved [Co] thafo 1(p, g, -) (p andg al-
ways are equal tog, 0) and(—p, 0), resp., wheres €]0, 1|) is: (a) of clasg™*

on B2(0,1) \ {p, ¢}; (b) real analytic omB,(0,1) \ ((C, — C,) U (C, — C,)); but

(c) is not of clas€? on B»(0,1) \ {p, q}.

If D = {(z1, z2) € C? : |z1)*+1z2/? < 1}, we have proved that, (p, ¢, ) isreal
analyticonD \ {p, ¢}. Note thatD is convex, but not strictly convex likB,(0, 1).
Consequently, there is no relationship between the regularity of the boundary of
the domain and the regularity of the pluricomplex Green function with two poles
in this domain.
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