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1. Introduction

In [11], Serre introduced a definition of intersection multiplicity for regular local
rings, showed that it satisfied many of the properties which should hold for inter-
section multiplicities, and stated a humber of conjectures. Of these conjectures,
the only one that is still open is the positivity conjecture, which states that under
certain conditions on dimension (we give a precise statement below), the intersec-
tion multiplicity will be positive. Recently, Gabber used a construction of de Jong
to prove that these multiplicities are always nonnegative, thus establishing one of
the conjectures. In his proof, Gabber constructed a scheme that can be represented
by a bigraded ring and reduced the computation of intersection multiplicities to
the computation of an Euler characteristic defined by modules over this ring. In
this paper we define Hilbert polynomials for bigraded modules over this type of
bigraded ring and show that the Euler characteristic can be computed using these
Hilbert polynomials. We then use this construction to give a simple proof of a cri-
terion for positivity proven in Kurano and Roberts [7]. Some of these ideas were
discussed in Roberts [10]; however, the criterion we prove here was not included
in that paper.

The outline of the paper is as follows. In Section 2 we recall the facts we need
about the positivity conjecture and Gabber’s construction. In Section 3 we prove
the existence of Hilbert polynomials in the case we are considering; we then prove
(Section 4) a reduction formula for dividing by a homogeneous element. In Sec-
tion 5 we prove the basic relations between Hilbert polynomials and dimension.
Finally, we prove the criterion for positivity in Section 6.

I would like to thank C.-Y. Jean Chan for pointing out several errors and an in-
correct proof in an earlier version of this paper.

2. Intersection Multiplicities and Gabber’s Construction

Let R be a regular local ring of dimensiehwith maximal idealm, and letX =
SpecR). Letp andq be prime ideals oR such thap + g is m-primary or, equiv-
alently, such thaR/p ®x R/qis a module of finite length. Then the intersection
multiplicity of R/p andR/q is defined to be
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d
X(R/p, R/q) =Y (-1 length(Tor[ (R/p. R/q)).
i=0

For the basic properties of intersection multiplicities we refer to Serre [11]. Serre
made several conjectures, of which we state two.

(1) Nonnegativity:x(R/p, R/q) > O.
(2) Positivity: If dim(R/p) + dim(R/q) = dim(R), thenx(R/p, R/q) > O.

Serre proved these conjectures in the equicharacteristic case using the method
of reduction to the diagonal. This method reduced the problem to the case in which
one of the ideals is generated by a regular sequence, and in this case he showed that
the intersection multiplicity defined as above could be computed using Samuel
multiplicities defined by Hilbert polynomials. For Samuel multiplicities, these
properties are easy to verify.

Recently, Gabber proved the nonnegativity conjecture by using a theorem on
the existence of regular alterations of de Jong [6]. We next describe this construc-
tion briefly; for more details, we refer to Berthelot [1], Hochster [5], and Roberts
[10]. In particular, for the theorem of de Jong to apgymust be essentially of
finite type over a field or a ring of Witt vectors; however, the multiplicity conjec-
tures can be reduced to this case, and a description of this reduction can be found
in references [1] and [5].

Let R, p, andq be as above. The theorem of de Jong implies that there exists an
integern and a graded prime ideélof the graded ringA = R[Xo, ..., X,;] such
that the following conditions hold:

(1) ProfA/I) is aregular scheme;

(2 INR =p; and

(3) the induced map from Prigd /1) to Spe€R/p) is generically finite.

The third condition means that the extension of fields from the fraction field of
R/p to the field of rational functions of Pred /1) is finite.

Let A denoteA /qA, and let/ denote the image dfin A. We consider the as-
sociated graded rings defined byn A and/ on A, which we denote bys (1)
andG(I), respectively. Sincé and/ are graded idealg; (/) andG(I) are bi-
graded rings. In this bigrading we assign degieen) to an element of /1",
which is represented by an element/éfthat has degres in A. There is a sur-
jective map fromG (1) to G(I); let K, denote its kernel. TheK, is a bigraded
ideal. We note for future reference that, since P4gy) is a regular scheme, it
follows that! is locally generated by part of a regular system of parameters and
thatG(7) is locally a polynomial ring oveA /1.

Denote the residue field at by k, and letCo = (A/I) ®g k. Then, if R is
equicharacteristic or ramified of mixed characteristic, there is a homomorphism
of bigraded rings

¢: G(U)®rk — Co[S1, ..., S84, To, ..., T,],

where theS; are variables of degre@®, 1) and theT; are variables of degree
(1,2). We letC denoteCo[ Sy, ..., Sq, To, --., T,]. (The mapy is induced by the
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differential on//12, butthe details are fairly complicated and we refer to the sources
previously cited for the complete definition; we will not use the details of the con-
structioninthis paper.) The magmefines an extension of polynomial ringslocally;
that is, locally on PrdjA), G(I') ®g k is a polynomial ring ove€y, ¢ is injective,
andC can be obtained from the imagegpby adjoining indeterminates. Finally, if
we letJ denote the ideal aof generated by, ..., Sy, To, ..., T, and letK be the
ideal generated by the image&i§ in C, theny(R/p, R/q) is positive if and only if
x(C/K, C/J) is positive, where the Euler characteristi€ /K, C/J) is defined in
terms of an alternating sum of Tor modules in a way that we will now make precise.
SinceK andJ are bigraded ideals, the modules T6€/K, C/J) are bigraded
modules for alli. In addition, they are annihilated by, which is generated by
the variablesSy, ..., Sy, To, ..., T,, SO they can be considered as graded modules
overCy. Thus the Tor modules define coherent sheaves ovet@®ynjwe denote
the coherent sheaf defined by fe€/K, C/J) by F;. SinceCo = (A/I) ®x k
is a graded ring over the field the cohomology module&/(Proj(Cy), F;) are
finite-dimensionak-modules for ali andj. For each and; we let

X(F) =Y (=1 dimi(H/(Proj(Co), Fi)).
j
We then define the Euler characteristic under consideration by letting

X(C/K, C/]) =Y (=D x(F).

We refer again to Berthelot [1], Hochster [5], and Roberts [10] for more details
and different versions of this construction.

Inthe remainder of the paper we show that the Euler characteyigtijk, C/J)
can be expressed in terms of the Hilbert polynomial defined by the bigraded mod-
uleC/K.

3. Hilbert Polynomials in Two Variables

In this section we prove the existence of Hilbert polynomials in the specific situa-
tion we are considering.

We first change the notation slightly from that of the previous sectionClLiz
a bigraded polynomial ring over a fiekdin variablesXo, ..., X;, To, ..., T, and
S1, ..., Sy, where eachX; has degre€l, 0), eachT; has degre€l, 1), and each
S; has degre€0, 1). (The ringC considered in the previous paragraph is a homo-
morphic image of a bigraded polynomial ring of this type and we also had that
u = n andv = d; it is more convenient here to restrict to polynomial rings but to
allow more general conditions on the number of variables.)

We assume the basic facts about Hilbert functions Gfgraded ring (as pre-
sented e.g. in [8, Sec. 13]). We will often consideas aZ-graded ring by using
the grading in the first variable, so thaj, = &, C,. .. In general,C,, is not a
finite-dimensional vector space overalthough ifu = 0 (so that there are no vari-
ables of degre€), 1)) then we will haveCy = k andC,, will be finite-dimensional
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for all k. We use the notation Pr@j) to denote the projective scheme associated
to C using this grading, and i is a bigraded”-module then we will sometimes
consider it as &-graded module in the same way.

For any finitely generated bigradédmoduleM and for any integera: andn,
let M, , be the component aif of degregm, n). Let Hy, be the Hilbert function
of M defined by the formula

Hy(m,n) = dime(M,,.;).

Just as in the classical case, the Hilbert function is not a polynomialandn
for all (m, n), but there is a polynomial that agrees with the Hilbert function for
(m, n) in a certain subset df x Z. We prove that there exist integerg andng
such that the Hilbert function is given by a polynomial fer, n) with m > mg
andn > m + ng. We note that the intersection of two subset¥o% Z defined
by inequalities of this type is nonempty and is defined by inequalities of the same
type. We will sometimes abbreviate the statement that a condition holds fa)
satisfying such inequalities by saying that it holds for sufficiently langendn.

To prove the result we will need to know that certain simply graded subsets of
M have Hilbert polynomials. Lét be an integer, and ldd, (M) be the subset of
M defined by

D(M)= €D My
n<m+k

Let B be the subring o€ generated by th&; and theT; and by allX;S; fori =
0,...,sandj = 1, ..., v. Then each generator & has degre€l, 0) or (1, 1),
andB is a bigraded subring @f. Like C, B can be considered agagraded ring,
and D, (M) can be considered asZagradedB-module.

LemMma 1. For eachk, Dy (M) is a finitely generate@®-module.

Proof. We are assuming tha is finitely generated ovef’; let x; be homoge-
neous generators af and let the degrees af be (m;, n;). We assume first that
n; < m; + k for all i, which means that the; are in D,(M). For eachv-tuple
(ky, ..., k,) of nonnegative integers, 1K | = ky + - - - + k, and letSX denote
the monomialS{“Sé<2 .-~ 8§k We claim thatD, (M) is generated as B-module
by the set ofsXx; for all i and allK such thawk; + |K| < m; + k. Note that these
elements are i, (M) and that this set is finite.

To show that these elemens€x; generateM, we will show that each com-
ponentM,, , of D,(M) is generated as &vector space by multiples of these
elements by monomials iB. Fix m andn with n < m + k. The component,,, ,,
is generated as a vector space gvby elements of the fornx /7 7/sXx;, wherel,

J, andK denotes-, u-, andv-tuples of nonnegative integers and whar /s ¥

is a monomial of the correct degree. If one factor of the f@inor one factor of
the form X; S; occurs in this monomial, thefj or X;S; can be factored out and
this generator is a multiple of an elementify,_; ,—1 by an element o3, and
we can conclude the result by inductionmnIf no factor of 7; or X; S; occurs in
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X'T/SKx;, thenX!T'SKx; is of the formX’x; or SXx;. In the first case, since we
have assumed that € D, (M), we can divide byX; for somej, so we can again
divide by an element oB and conclude the result by induction. In the second
case, the element is one of those that we have chosen to gebg(Me. Hence,
in either case we can conclude tHat7T/sXx; is a multiple of one of the given
generators by an element Bf so D, (M) is finitely generated.

If some of thex; are notinD, (M), we choose &' large enough so that the
are inD,/(M). Then the foregoing argument shows tiiat (M) is finitely gen-
erated. Sincéd, (M) is a subB-module of D, (M) andB is NoetherianD; (M)
is also finitely generated. O

Our proof of the existence of Hilbert polynomials uses an inductive argument, and
it is convenient to represent polynomials using binomial coefficients. We recall
that a polynomial in one variable can be uniquely written as a linear combina-
tion of the binomial coefficient@) for various nonnegative integeisSince a
polynomial in two variables is a sum of products of polynomials in each variable
(for example, the monomials are such products), it follows that a polynomial in
two variablesn andn can be written as a linear combination of prodL((fl.tys(’})

for variousi andj. The reason for writing polynomials in this form comes from
the fact that binomial coefficients satisfy the equation

() -("7)=(2)

which is useful in proving results by induction.

We can now prove the main result of this section.Mfis a bigraded mod-
ule, we letM[i, j] denote the modul@/ with degrees shifted byi, j), so that
MIi, jlm.n = Mutins; forall m andn.

THEOREM 1. LetC be as above, and léif be a finitely generated bigraded-
module. Then there exist integetg andng and a polynomialPy, (m, n) in two
variables such that we have

Py (m,n) = Hy(m, n)

for all (m, n) withm > mg andn > ng + m.

Proof. We prove this result by induction on the number of varialslesf degree
(0, 1). We first suppose that there are no variables of this typeM_be generated
by elements; of degree(m;, n;), and letng be an integer greater than the max-
imum value ofn; — m;. For every(m, n), the component oM of degree(m, n)

is generated by products of the with monomials inX; andT;. Since each¥;
has degre€l, 0) and eaclf; has degre€l, 1), if X'T’x; has degre€ém, n) then

n —m < n; —m,;. Sinceng was chosen greater than all of the— m;, we thus
haveM,, , = 0 whenn — m > ng. Therefore,

Hy(m,n) = Zdimk M, ;= Z dimg M, ; = H(m, m + ng)

i<n i<m+ng
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whenn > m + ng. ThusHy, (m, n) is constant im for largen, and its value is the
sum)_ dimg(M,, ;), where the sum runs over ale Z. Thus, if we letH),(m) be
the Hilbert function of theZ-graded modul@Z, we have

Hy (m,n) = Hy(m)

forn > m 4+ no. Combining these results with the usual theory of Hilbert polyno-
mials, we conclude that there existsrap such thatH,, (im, n) is a polynomial in
m (it does not involve: in this case) whem > mg andn > m + no.

Now assume that > 0, so that there are variables of ty§ie Then, lettingM,
denote the submodule 81 consisting of elements annihilated By, we have the
exact sequence

0 — Ms,[0, —1] — M[0, —1] = M — M/S,M — O.

By induction onw, the theorem holds fa¥/s [0, —1] andM/S, M. Taking the dif-
ference of the Hilbert functions of these modules and using the above short exact
sequence, we obtain an equation

Hy(m,n) — Hy(m,n —1) = Gi(m, n) (*)

for some polynomialz; and for large enough andn. Let mo andng be inte-
gers such that equatior)(holds wherm > mg andn > m + ng. We consider
the B-moduleD,,,(M) as defined before. By LemmaD, (M) is a finitely gen-
erated graded-module, so there is a polynomiél,(m) such thatG,(m) =
dimg(D,,(M)),, for largem. Chooseng large enough so that both this equality

and equation) hold. Represent(m, n) asy_ c;; (’j’)(;’) Then we claim that

1 1
Hy(m,n) = Clﬁi(?) (7; 11) -2 Cij(r?) (m J;’jro;r ) + Ga(m)

for (m, n) in this range. The first two terms on the right-hand side cancel when
n = m + ng, leavingG,(m), which is the value o, (m, m + ng). Hence this
equality holds whemn = m + ng. If n > m + ng then, lettingP (m, n) denote the
polynomial on the right-hand side, we have

P(m,n) — P(m,n —1)

m\(n+1 m n
- C”(i)(jﬂ) _Zc"j<i><j+1>
m n
= Zcij<i><j> = G1(m, n) = Hy(m,n) — Hy(m,n —1).

Hence these polynomials agree for @, n) with m > mg andn > m + ng, as
was to be shown. O

For convenience, we define the Hilbert polynomial of a bounded complex of finitely
generated modules to be the alternating sum of the Hilbert polynomials of the mod-
ules. By the additivity of Hilbert functions (and thus of Hilbert polynomials), we
have the following.
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ProrosiTioN 1. If F, is a bounded complex of finitely generated bigraded mod-
ules, then

Pr(m,n) =Y (=1)'Ppr(m, n).

4. Difference Formulas

In applications of Hilbert polynomials, the most important information is usually
contained in the terms of the polynomial of highest degre®,,Ifn, n) has degree
less than or equal ta we useP;,; (m, n) to denote the homogeneous component
of Py, of degreer, and we use the same notation for the Hilbert polynomial of a
bounded complex. If isahomogeneous element®bf degred, j) then we de-
note byK,(x) the Koszul complex on, so thatko(x) = C, Ki(x) = C[—i, —Jj],
K;(x) = 0fori # 0or1, and the map fromi1(x) to Ko(x) is multiplication byx.

ProrosiTION 2. Let F, be a bounded complex of bigraded modules, and It
andk be integers betweebands, 0 andu, and 1 and v, respectively. Assume
that the degree ofp, is at most-. Then the degrees &, k., (x,), Pr.ox.(1;), and
Pr,sk.(s,) are at most — 1, and we have

Pr—l _ 8P1?.
Fo@Ke(Xi) ™ g

pri L P
F@Ko(T) ™ g on '

Pr—l _ 8P1‘E.
Fo®Ke(S) ™ g, -

Proof. We prove the second statement; the other two are proven in the same way.
The degree of/; is (1, 1). Thus the modules in the compléx ® K(T;) consist

of a copy of the modules i, together with a second copy of the modulesFpf

but with the position in the complex shifted by 1 and the degrees of the graded
modules shifted by—1, —1). Thus we have

Pr,ek,1)(m,n) = Pg,(m,n) — Pr,(m —1n—1).

To complete the proof it suffices to show thatGitm, n) is any polynomial of
degree at most in two variablesn andn, then (a) the polynomial;'(m, n) =
G(m,n) — G(m —1,n —1) has degree at most- 1 and (b) the component of de-
greer —1isaG’/om + dG'/9n. To see this, it suffices to check the formula for a
monomial of degree. A simple computation shows that

m'n! —(m —1'(n — )7 =im" "/ + jm'n’~! + lower-degree terms
dm'nly  d(m'n')

- om + on
This completes the proof. O

+ lower-degree terms.

We state a similar proposition for the degreePaf(m, n) in the variablen.
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ProrosiTioN 3. Let F, be a bounded complex of bigraded modules, and let
be an integer betweehandv. Assume that the degree Bf, in n isr. Then the
degree ofPr, gk, (s,) iINnisr — 1.

Proof. The proof of this result is the same as Proposition 2—using the fact that,
if G(m,n) is any polynomial of degree in n, then the polynomiaG'(m, n) =
G(m,n) — G(m,n — 1) has degree — linn. O

We note that ifS,, for example, is not a zero divisor on a modwe then Propo-
sition 3 together with Proposition 1 implies th%ﬁslm = dP;;/on, provided that
Py, has degree at most

Proposition 2 also makes it easy to compute the Tor modules@yitithat we
need for the positivity criterion. Lek be the ideal of” generated by the elements
To, ..., Ty, S1, ..., S;. Then we have the following proposition.

ProrosITION 4. LetG;(m, n) be the Hilbert polynomial of the bigraded module
Tor;(M, C/J) for eachi, and let

G(m.n) =) (=D'Gi(m,n).
i>0
Let Py, denote the Hilbert polynomial dff. Assume that the degreef Py, is at
leastg + h + 1. Then

r—g—h—-1 0 0 i 0 ¢ r
G (m,n) = B_m_’_ﬁ o Py(m,n).

This proposition follows from the fact that the resolution®f/ is a Koszul com-
plex, which is a tensor product of th&,(7;) and theK,(Sy), together with a
repeated application of Proposition 2.

5. Hilbert Polynomials and Dimension

Just as in the classical case, the dimension of a bigraded module is given by the
degree of the Hilbert polynomial. We now prove this fact, together with a similar
result for a different type of dimension that we shall define.

We first specify the precise definition of dimension that we are using. As men-
tioned above, we can consider a bigraded modilas aZ-graded module, and
as suchM defines a coherent sheaf on R@), whereC is given itsZ-grading as
described in Section 3. By the dimensioniéfwe mean the dimension of this co-
herent sheaf. Usually (i#/ has no components supported at the ideal generated
by the X; and theT;), this dimension is one less than the Krull dimension of the
moduleM. We note that ifM,, is a finite-dimensional vector space oweior all
m, then the theory of Hilbert polynomials @-graded rings implies that the de-
gree of its Hilbert polynomial is equal to the dimensionMfin the sense we are
considering.

We next introduce the second type of dimension that we will use M & a
bigraded module as before. Th&f, is a finitely generatef[ S, ..., S,]-module
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for eachm. Let a,, be the annihilator oM,,. Since M is finitely generated, we
havea,, C a,,,1for largem, and since[Sy, ..., S,] is Noetherian, we thus have
thata,, = a,,.1 for largem. We leta = a,, for largem, and we define the-
dimensionof M to be the dimension of[Sy, ..., S,]/a; note thata is a graded
ideal ofk[S1, ..., S,]. Equivalently, we can define ti2dimension ofM to be the
dimension of th&[Sy, ..., S,]-module M,, for largem.

In the proof of Theorem 2 we wish to take a filtration of a bigraded module
M with quotients of the fornC/Q[i, j], whereQ is a bigraded prime ideal @f.
This is, of course, a standard procedure; we prove that it works properly also for

bigraded modules.

LEmMMA 2. LetM be afinitely generated bigraded module. Then there is a filtra-
tion
O=MoCcMyC---CM, =M

of M consisting of bigraded modules such that, for eaolie have
Mi/M;—1 = C/Qilji, ki]

for certain bigraded prime ideal®; of C and integersj; andk;.

Proof. It suffices to show that if¥ # 0 then there is a submoduld; of the
correct form; the lemma follows by dividing by, and repeating the process (it
eventually stops since the module is Noetherian). Q. éte a maximal annihilator
of a nonzero homogeneous elemeiof M. If a andb are homogeneous elements
not in Q then, following a standard argument (see e.g. [8, Thm. 6.1]), we use the
maximality of Q to conclude first that does not annihilate and then thak does
not annihilatenx, so thatab ¢ Q. We next show thap is prime. Ifa andb are
not in Q, we take the maximal nonzero homogeneous compongntandb; ;
with respect to the lexicographic order @rx Z; by the preceding argument, their
product is not inQ, so the maximality of the indices implies that the produci of
andb is notinQ. O

We note that it follows from this lemma that the associated prime ideais afid,
in particular, the minimal prime ideals in the supportMfare bigraded. We re-
fer to a module of the forn®'/Q;[ j;, k;] in the filtration of dimension equal to the
dimension ofM as acomponenbf M.

There are two other properties of bigraded modules that can be seen easily using
Lemma 2. First, the Hilbert polynomial of a bigraded module is zero if and only
if the associated coherent sheaf is zero. To see thi&f le¢ of the formC/Q; the
associated coherent sheaf is zero if and only if allXhe@nd theT; are inQ, and
this holds if and only if the componenf/Q),, is zero for largen, which in turn
holds if and only if the Hilbert polynomial of'/Q is zero.

The second property is that tifedimension is always less than or equal to the
dimension. Again we assume thet = C/Q. If the associated coherent sheaf is
zero, then(C/Q),, = 0 for largem and both dimensions are the dimension of the
zero module. Assume thet'/Q),, # Oforlargem, and leta = QNk[Sy, ..., S,].
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Since Q is the annihilator of every nonzero element@fQ, it follows that the
annihilator of thek[Sy, ..., S,]-module (C/Q),, is a for all m and hence thé-
dimension is the dimension &Sy, ..., S,]/a. Assume thatX; ¢ Q (the case
where one of thd; is not in Q is similar). Since the map froi[ Sy, ..., S,]/ato
(C/0Q)x; is injective, and since both rings are of finite type over the fielthe
dimension ok [Ss, ..., S,]/a is less than or equal to the dimension(6¥Q) x;)-
Thus theS-dimension ofC/Q is less than or equal to its dimension.

With a filtration as in Lemma 2, the dimension &f is the maximum of the di-
mensions of th&”/Q;, and similarly for theS-dimension. We need to know that
the same properties hold for the degrees of the Hilbert polynomials.

ProprosITION 5. Let M be a bigraded module, and I8f have a filtration with

quotientsC/Q;[ ji, k;] as in Lemma 2.

(1) The degree oPy, is the maximum of the degrees of thgy, .

(2) The degree oPy, (m, n) in the variablen is the maximum of the degrees of the
Pcjp,(m, n) in the variablen.

Proof. We note first that both the total degree and the degreedre the same

for C/Ql[i, j] as they are foC/Q. Since Hilbert polynomials are additive on short
exact sequences, what must be shown is that the terms of highest degree on the
modules in the filtration cannot cancel out. We show that this holds first for the de-
gree inn. If the maximum value of the degreesinon any module in the filtration

is ¢, suppose that this value is attained €xQ;, and letp,(m) be the polynomial

in m that is the coefficient ot’ in the expansion 0P/, (m, n) as a polynomial

in n with coefficients that are polynomials in. Sinceg,(m) is a honzero poly-
nomial, there exists ain g such thaw,(m) # 0 form > mo. Letm be an integer

with m > mg and such thaPy, (m, n) = Hy,(m, n) for n sufficiently large. Then

jim 2201 ),
n—o0 n

so this limit is nonzero. On the other hand,

Py (m, n) _ Hy (m, n) -0
n! n! -

for sufficiently largen, so the limit cannot be negative. Henggm) > 0 for suf-

ficiently largem. Since this is true for every module in the filtration with Hilbert

polynomial of degree in n, the sum must also have this property.

For the total degree, the proof is similar. Lebe the maximum value of the
total degrees of modules in the filtration, and suppose that it is attain&tf for
Then, fork sufficiently large, the polynomial im given byg (m) = Pcjp,(m, km)
has degrea and so its leading coefficient (which is nonzero) is the coefficient of
m". Representing this leading coefficient as a limit of

PC/Ql.(m, km) _ HC/Q,.(m, km)

mu mu
shows that it must be positive. Hence, as before, the leading polynomials cannot
cancel and the total degree Bf; (m, n) is u. O
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THEOREM 2. LetM be a bigraded module, and I1&, be its Hilbert polynomial.

Then

(1) the total degree oPy, (m, n) is the dimension o#/;

(2) the degree ofPy;(m, n) in n is the S-dimension of\/; and

(3) if M has acomponer/Q|[i, j] such that thes-dimension o/Q ist and the
total dimension o€ /Q (which is equal to the total dimension &f) is s + ¢,
then the coefficient ef‘n’ in Py, is positive.

Proof. We prove all three statements by induction on the dimensioW ofor
fixed dimension, we use induction on thedimension ofM.

We first prove all three results when thedimension ofV is zero. Using Propo-
sition 5, we assume thatt = C/Q for a bigraded prime ideaD. Let a be the
intersection ofQ with k[S] = k[Sy, ..., Sy]. Since dimk[S]/a) = 0 anda is
a graded prime ideal, each must be ina, so thesS; annihilateM. HenceM is
a finitely generated module ovgfX, T]. In this case, as shown in the proof of
Theorem 1, the ordinary theory of Hilbert polynomials applies, Bpdn, n) is a
polynomial inm of degree equal to the dimension Mf. If this degree is, then
statement (3) says that the coefficient:of is positive; this is clear because the
leading coefficient of a Hilbert polynomial of/a-graded module is always pos-
itive. Also, the degree im is zero, which is thes-dimension. Hence all three
statements hold in this case.

Assume now thatth&-dimension ofVf ist > 0. Take afiltration asin Lemma 2.
If every quotient in the filtration has either dimension$dimension less than
that of M, then parts (1) and (2) of the theorem follow by induction and the third
statement does not apply. Hence we may assumeMhat C/Q, where thesS-
dimension ofC/Q is ¢, and let the dimension af/Q bes + ¢. It suffices to show
that the degree of the Hilbert polynomial 6fQ is at mosts + ¢, that the degree
in n is at most, and that the coefficient af*n’ is positive. This will establish all
three statements.

We first prove the two inequalities. L&f = C/Q as before. If all thes; were
in 0, theS-dimension would be zero. Hence there is &or which S; ¢ Q. Both
the dimension and th&-dimension decrease by at least 1 when we replddey
M/S;M, so by induction the degree /s, is at most the dimension af/S; M,
and similarly for theS-dimension. By Proposition 3, the degreeRf s, ) in n is
exactly one less than the degreeRyf; hence, denoting the degreerirby ndeg
and theS-dimension by Sdim, we have the relations

ndegPM) —-1= ndegPM/SiM) =< SdIm(M/S,M) < SdimM) — 1
Thus the degree dfPy,) in n is less than or equal to th dimension ofM. We
can argue similarly using/S; M to conclude the corresponding inequality for di-
mension, except in the case where the total degré®gf » is strictly less than
degre€P,) — 1. However, the only way this can happen is for the component of
Py, of highest degree to be a powernof In this case we can replade by one of
the X; or T; and, using Proposition 2, complete the argument as before.

Thus we may assume th&ét = C/Q, where theS-dimension ofM is r and the
total dimensionis +¢. We need to show that the coefficientefn’ is positive. As
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before, we may assume thgtis not a zero divisor oM. We claim thatM /S; M
has a component witki-dimensiory — 1 and total dimension+ ¢ — 1. Since the
rings involved are finitely generated over a field, every componemt/st M has
total dimensiors + ¢ — 1, so it suffices to show that there is a component with
S-dimension equal to— 1. Letabe Q Nk[Sy, ..., S,], and letp be a prime ideal
of k[ Sy, ..., S,] that is mimimal overa, S;); the dimension ok[Sy, ..., S,]/pis
thent — 1. Let S be the multiplicatively closed sé{S, ..., S,] — p. Then, for
all m, the component ofMy) of degreem is the localization(M,,)s, which is
not zero (we use here thA = C/Q for some bigraded prime ided}). Since
(M,,)s is afinitely generated module over the local rif[¢y, ..., S,]s and since
S; isin the maximal ideal of[S, ..., S,]s, this implies thap is in the support of
(M/S;M),, for largem. Hence theS-dimension ofM/S; M, which is clearly less
than or equal to — 1, is equal tor — 1.

We now complete the proof. Let= s+, and letP;, (m, n) be the component
of the Hilbert polynomial of\f of degree~. We have shown that the degreeRj
is at mostr. By Proposition 2, the component of degree 1 of the Hilbert poly-
nomial of M/S; M is dP;,/dn. We have also shown thaf/S; M has a component
of S-dimensionr — 1 and total dimension + r — 1. By induction, we have that
the coefficient ofn*n’~1in Puys;m(m, n) is positive. Thus the coefficient of°n’
in Py, must be positive. O

We conclude this section by recalling a standard fact that relates Hilbert polyno-
mials to Euler characteristics of coherent sheaves.

LemMma 3. Let F be a coherent sheaf dProj(A), whereA is a Z-graded ring
over afield. If F is defined by a graded modulé, then for alln in Z we have

x(F(n) = Py(n).

Proof. See for example Hartshorne [4, BX..5.2].

6. A Criterion for Positivity

In this section we prove the criterion (mentioned in the introduction) for intersec-
tion multiplicities to be positive.

THEOREM 3. LetC = k[Xy, ..., X, To, ..., Ty, S1, ..., Sy], and letQ be a bi-
graded prime ideal of. Assume that the dimension©fQ isu + v + 1, and let
J=(To,...,T,, S1,...,S,). Then the following are equivalent.

(1) x(¢/Q.C/J) > 0.

(2) Them"*+'n® coefficient of the Hilbert polynomidatc/, is positive.

(3 ONk[Sy,...,S,]=0.

Proof. By Theorem 2, the degree of the Hilbert polynomialgl isu+v+1. Let
G (m, n) be the alternating sum of the Hilbert polynomials of the;T&yQ, C/J).
By Proposition 4G (m, n) is constant and its value is
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9 N 9 u+1 9 vP ( )
— 4+ — — m,n).
om  on on c/e

(We note that Proposition 4 gives this formula Wiﬂ;if”“(m,n) instead of

Py (m,n), but in this case, since the degree®d,, is u + v + 1, all compo-
nents of lower degree vanish after applying the partial derivatives.) Since the
dimension oC/Q is at most, the degree of¢/p inn is atmost. If we firstapply
(£)" to Pcjo(m., n) we thus obtain a polynomial i of degree at most + 1. If

we then apply(;% + %)“H, which is the same a(s(%)””rl for polynomials irva,

we end up withw! (u + 1)! times the coefficient ofz“*1n? in Pcjo(m, n). Using
parts (2) and (3) of Theorem 2, we see that this coefficient is positive if and only
if the S-dimension ofC/Q is v; this, in turn, is equivalent to the condition that
Q Nk[Sy, ..., S,] = 0. On the other hand, by Proposition 3 the constant value of
G(m, n) is equal tox(C/Q, C/J). Hence the three conditions are equivalen]

The equivalence of (1) and (3) in this theorem appears in Kurano and Roberts [7].
It implies, as shown there, thatfifandq are prime ideals of a regular local ring
R with dim(R/p) + dim(R/q) = dim(R) and such thaR/p ®z R/q has finite
length, then the Serre positivity conjecture implies #&atn q < m”* for all n,
wherem is the maximal ideal oR.

We conclude by giving another version of the third criterion and applying it to
the situation that arises in considering the Serre positivity conjecture.

ProrosiTiON 6. LetC = k[Xo, ..., X,, To, ..., T, S1, ..., S4], and letK be a
bigraded ideal ofC such that the dimension @f/Q is equal ton + d + 1 for all
minimal prime idealg) containingK. Let

K ={ceC | (Xo,..., X,)*c € K for somek}.

Then the following statements are equivalent.

(1) K Nk[Sy, ..., Sq] =0.

(2) There exists a componeay/Q of C/K such that some; is not in Q and
QO Nk[Sy,...,S4] =0.

(3) x(C/K,C/J) > 0.

Proof. The equivalence of the second and third statements follows from Theo-
rem 3 together with the fact that, @ is a prime ideal containing and either

the dimension ofC/Q is less tham + d + 1 or theS-dimension is less thad,
thenx(C/Q, C/J) = 0. To see that statement (1) implies (2), suppose that every
minimal prime idealQ over K contains all theX; or a nonzero element, of
k[S1, ..., S4]. Let o be the product of they. Then the product of all minimal
primes contains the product efwith a power ofX; for eachi. Since the product

of minimal prime ideals is nilpotent modulls, a power ofa will then be inK.
Conversely, suppose that some minimal prigheneetsk[ S, ..., S,] trivially and

that there exists ai; notin Q. Then, for alle # 0 in k[Sy, ..., S,], X[kot ¢ Q0

and hence(fa ¢ K. Thusk Nk[Sy, ..., S,] = 0. O
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We note that the hypotheses of Proposition 6 hold in the situation arising from the
Serre multiplicity conjectures, since they are constructed from graded rings over
an integral domain.

References

[1] P. Berthelot Altérations de variétés algébriques (d'aprés A. J. de JoAgjer-
isque 241 (1997), 273-311.

[2] W. Fulton, Intersection theoryErgeb. Math. Grenzgeb. (3), 2, Springer-erlag,
Berlin, 1984.

[3] H. Gillet and C. SouléK-théorie et nullité des multiplicites d’intersectio€, R.
Acad. Sci. Paris Sér. | Math. 300 (1985), 71-74.

[4] R. HartshorneAlgebraic geometryGraduate Texts in Math., 52, Springer-Verlag,
Berlin, 1977.

[5] M. Hochster,Nonnegativity of intersection multiplicities in ramified regular local
rings following Gabber/De Jong/Berthelatnpublished notes.

[6] A. J. de JongSmoothness, semi-stability and alteratiomst. Hautes Etudes Sci.
Publ. Math. 83 (1996), 51-93.

[7] K. Kurano and P. Robert§he positivity of intersection multiplicities and sym-
bolic powers of prime ideal€Zompositio Math. (to appear).

[8] H. Matsumura,Commutative ring theoryCambridge University Press, Cam-
bridge, 1986.

[9] P. C. RobertsThe vanishing of intersection multiplicities and perfect complexes,
Bull. Amer. Math. Soc. (N.S.) 13 (1985), 127-130.

, Recent developments on Serre’s multiplicity conjectures: Gabber’s proof

of the nonnegativity conjectur&nseign. Math. (2) 44 (1998), 305-324.

[11] J.-P. SerreAlgébre locale. Multiplicitéslecture Notes in Math., 11, Springer-

Verlag, Berlin, 1965.

[10]

Department of Mathematics
University of Utah
Salt Lake City, UT 84112

roberts@math.utah.edu



