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Inflections of Toric Varieties

DAvVID PERKINSON

To William Fulton

Let V. = {mo, ..., m,} be a set of distinct lattice points iAZ, with mo = 0.
Associated withV is an affine monomial map

v:C" —> C'*Y
x> @ x™M, L x™M),

wherex ™ stands for the monomial""x,"? - - - x"». (The ordering of the lattice
points will not be important. The lattice pointy = 0 is included, anticipating
the move to projective space.) As will be described carefully in Section 1, the span
of the derivatives ob up to orderk at a pointp determines the osculating space
of orderk at p. If the dimension of this osculating space is smaller than expected
then we say that is inflected atp. In this paper, we show how inflection points
are related to the lattice pointsand use this information to characterize toric va-
rieties with certain extreme inflectional behavior.

The following two theorems are examples of previous work in which varieties
are characterized by their inflectional behavior.
THeorREM 0.1 [FKPT]. Letr = (”Z") —1, and letX c P’ be a smooth projec-
tive n-fold whosekth osculating space is all oP’ at all points of X; thenX is
isomorphic toP" embedded via the-fold Veronese mapping.

TueoreM 0.2 [BPT]. Letr > 2, and letX c P?*! be a smooth projective sur-
face not contained in a hyperplane such that the dimension éfhtesculating
space ik at all points of X and for allk < ¢. ThenX is isomorphic tdP* x P*
embedded via all global sections pf; Op1(1D) ® pr; Opi(t), S0 X is a rational
normal scroll of degre@s.

These two theorems are proved using sophisticated machinery (in the former case,
a result of Mori characterizing projective space as the only variety with ample tan-
gent bundle; in the latter, adjunction theory). However, in all cases, the varieties
and embeddings turn out to be toric. As might be expected, if we are willing to
restrict our attention to toric mappings then we can establish these theorems by
fairly easy combinatorics characterizing polytopes with certain properties.

In Section 1, we show that the dimensions of the osculating space s
given by the Hilbert function of the set of lattice points,In Section 2 we discuss
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extending the monomial mapping to a mapping of a toric variety into projective
space. In Section 3, our main result is to describe toric varieties of dimensions 2
and 3 embedded in projective space so that the osculating spaces up to a certain
order are as large as possible at all points of the variety and strictly smaller than
possible for higher orders (cf. Theorem 3.2 and Theorem 3.5). In the case of di-
mension 2, we show that the variety must be the projective plane (embedded via
a Veronese), a Hirzebruch surface, or one of three exceptions. The exceptional
cases are nonruled varieties whose second-order osculating spaces have dimen-
sion strictly less than 5 at all points. One of these cases was first noticed in [T],
and the other two are new.
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versity of Oslo, Norway, for providing a stimulating and beautiful place in which to
work. Particular thanks go to Ragni Piene for many useful conversations. Thanks
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tial help with the proof of Theorem 3.5. A version of Proposition 1.1 appears as
part of Gugenheim’s undergraduate thesis [Gu]. Finally, thanks to Reed College
for providing time and support through a Vollum research grant.

1. Inflections of Affine Monomial Maps

Fora € Z, we denote theth partial derivative ob in the following way:

1 alaly
Va *= ~ 7 a1 a_an
al dxy* - - dxy,”
wherela| = Y _;a; anda! = ay! - - - a,!. To study the inflections aof, define for
each integek > 0 the matrix ofk-jets ofv

Jiv = (Vo) o<jal<k

whose rows are the partial derivativesuadp to order, written in any order. The

kth osculating space aof at the pointp € C", Osg v(p), is the span of the vec-
torsv,(p) forl < |a| < k, translated outto(p). Hence, Oscuv(p) is the tangent
space forv at p, and Osg,1v(p) is determined by the first-order infinitesimal
motions of Osgv(p). Since0 is included inV, it follows thatw is linearly inde-
pendent from the, with |a| > 0. Hence, rk/,v(p) = 1+dim(Osq, v(p)). If this

rank is not as large as possible—that is, if it is less tﬁgﬁ)—then we say thap

is aninflection point.In general, the rank af; v will have a generic value—which
might be less than maximal, and sowill be inflected everywhere—but might
drop below this generic value at special points. We call these special poipisr
inflectionsor justinflections,again. (For an arbitrary mapping X — P’ of a
smooth variety into projective space, one may define osculating spaces similarly
after taking local coordinates oxi and lifting toC’*%. It is a standard result that

the osculating spaces are independent of the choice of local coordinates, and it is
clear that dimensions of the osculating spaces do not change after an affine change
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of coordinates in the target spa€é. We are choosing to avoid the machinery of
principal parts or jet bundles as an unnecessary complication for the purposes of
this paper.)
As a further measure of inflection, Iét,jv denote theth Fitting ideal of J;v,
the ideal generated by the determinantg efi minors of Jyv. Then there exist
inclusions . .
Ftv < Flv
U U
Fifhv < Fl.
The rank ofJyv(p) is the largest such thatF v(p) = (1). Note that the Fit-
ting ideals are monomial ideals (this can be easily seen by direct computation, or
by appealing to the natural torus action©f). This means that we can realize all
possible ranks fov, v(p) by looking at only thosg@ whose coordinates are zeros
and ones. In other words, the rankfb (p) only depends upon the smallest co-
ordinate flat{x;, = --- = x;, = 0}, to which p belongs.

MaIN QuesTioN. What is the relation betweeW (i.e., the set of lattice points
serving as exponents foy and the inflections of?

To start, we can evaluate a partial derivative of a mononfial

P 1 glalx¢
Xy=—r"""—
al 9x%...9x%%

(o) ()
- (2)#—&, ®

where the multinomial coefficient is defined to be zero;it- ¢; for somei. An
easy consequence is that

tk Jkv(0) = [{m; €V | [m;| < k}|. 2

ReMaRrk. The affine version of Theorem 0.1 follows: If thth osculating spaces
of v: C" — C'* all have dimension, then (2) says that+1 = |{m; € V |
Imi| < k}|. 1f £ = ("7*) — 1, we are forced to tak& = {m € Z"y | |m| < k}.

Having determined the smallest possible rank, we now determine the largest.

ProrosiTioN 1.1.  The generic rank of;v is
rk iv(l, ..., 1) = Hy (k),

whereHy is the affine Hilbert function of. That is, Hy (k) is the codimension
in the linear space of polynomials invariables and of degreg & of those poly-
nomials that are satisfied by the lattice poifts- 2" c C”.
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Proof. From (1), the column of,v(4, ..., 1) corresponding to the monomiaf*

has the form
()= L) ()]
a Jo<lal<k a1 an ) Jocia<k

But {(ﬁ) e ()‘")}Oi‘alik forms a basis for the space of polynomials of degtde

in x1, ..., x,. Therefore, the linear relations among the rowgaf(l, ..., 1) cor-
respond to polynomials of degreek passing througlv. O

Hence, finding a monomial map whose osculating spaces have fixed generic di-
mensions is the same as finding a set of lattice points with a certain Hilbert func-
tion. (For the extension of this result to toric mappings, see Remark 2.3.)

In what follows, we will need to know only the generic rank&b and its rank
at the origin; but for completeness we will extend Proposition 1.1 to determine the
rank at all points. As noted earlier, is suffices to consider only points whose co-
ordinates consist of zeros and ones. We will use the following notation. Given
a C{l...,n}, let p, € C" be the point whoséth coordinate is 0 if € « and 1
otherwise. Thus, the generic value offl along the flafx; = 0| i € o} is de-
termined by the rank at the poipt,. Let [T denote the lattice of integer points in
this flat. To calculate the rank af,, we will take slices of the lattice that are paral-
lel to 1. For each positive lattice point in the space normdilt@.e., for each: €
Nt :={beZ",| b =0,i¢a}), we take the slice through, I, ;=1 +a :=
{(beZ”,| b; = a;, i €a}. By forgetting the components they have in common,
we can think of the exponents ofthat lie in a particular slicél, as defining a
monomial map from the smaller spaldg ® C = C"~1%I. Applying Proposition 1.1
to determine the rank of th& — |a|)-jets of this new map and then summing over
the firstk + 1 slices gives the result. To formalize this,4ebe the orthogonal pro-
jection of C" onto the slicd1, ® C = C"~*l and consider the exponents for the
new monomial map just described:

V,:i=m((VNTI,) Uf{a).
We have forced/, to include the origin, by addinf:}, in order to apply Proposi-
tion 1.1. Tocompensate, define
0 ifaeV,

8 =
v(@) {1 otherwise.

ProrosiTIiON 1.2, With notation as before,

tkJw(pe) = Y (Hy, (k= la]) — 8v(a)).

aellt, la|<k

Proof. For eachu e TI+ with |a| < k, let B, be the matrix whose rows are the
partial derivativew,, for b € I1,, such thatb| < k. Hence, up to a re-arrangement
of rows, J,v consists of the blocks of rows,,. Using (1) to take the partial deriv-
ative of a monomial gives
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x;n(Poz) #0 <— m; =aq; foricua
— mell,. (*)

Hence, each column dfv( p,) willbe nonzero along at most one of the blocRs;
therefore,
rk ka(poz) = Z rk Ba(poz)-

aell, |a|<k

Consider the map associated with the exponerifs. It follows from () that the
nonzero columns a8, ( p,,) come from those componentsiobf the formx ™ with

m € I1,. Hence, disgarding the columns of zerBs( p,) is Ji—4v(L, ..., 1) pro-
videda € V. The rank ofB,(p,) is then given by Propositichl. Ifa ¢ V, then it

has been added to froi,. Sov has an “extra” component, anil_,v(1, ..., 1)

has an “extra” row, linearly independent from the others. Thus, in this case,
rk B, (po) = rk Ji—10(L, ..., 1) — L This accounts for the presencedof. O

ReMArk 1.3.  In the case, = 0, we havell = {0}, [T+ = 74, M, = {a}, and

1 ifaeV,

Hy, (k) = dv (@) = { 0 otherwise

Thus, Proposition 1.2 reduces to (2).

2. Inflections of Toric Varieties

This section introduces the notation we use to describe toric varieties and defines
inflections for toric mappings. As general references, we use [F; O]Xlb an
n-dimensional toric variety associated with a fAnin ann-dimensional lattice

N = 7". We will use the notation in [C]M = Homy (N, Z) is the dual lattice;

A(k) is the set ok-dimensional cones ok ; if o € A(k), theno(£) denotes the
¢-dimensional cones containeddn for eachp € A(), letn, be the generator of

p N N andD, the associate@-invariant Weil divisor; and the set of sudb), is a

basis for the free abelian group BfWeil divisors,Z*® . To describe the homo-
geneous coordinate ring &f introduced in [C], recall the exact sequence

0— M — 720 A,1(X) — 0,

mr—> Dm:Z(m,np)Dp, (3
p

whereA,_1(X) is the group of Weil divisors modulo rational equivalence and the
mapZ*® — A,_1(X) sends a divisor to its class. For eaehl A(1), letx, be a
variable. There is a 1-1 correspondence betwedfeil divisors and monomials

in the x,, namely,D = Y a,D, € Z*® corresponds with” =[], x,”. The
homogeneous coordinate ring Bfis S = C[x, | p € A(D] with grading given

by the class groud ,_1(X). This means that two monomiat® andx? have the
same degree iflp] = [E]in A,_1(X). For eachr’-Weil divisor D, there exists a
coherent sheaDx (D) as well as the polyhedron
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PD)={meMQ®R| (mn,n,) > —a, ¥p e A},

whose elements may be thought of as global sectioi3dD).

For the rest of this section, assume tiias smooth and projective; hence, each
Ox (D) is aline bundle. Lev: X — P’ be a toric mapping—that is, determined
by globally generating sectiomsy, ..., m, of a T-line bundleOx (D). We iden-
tify eachm; with a point in the polytopeP(D). The fact that these:; globally
generata)y (D) means that they include the verticesRfD). In homogeneous
coordinates we have

v X —> P,

(4)
x — (xPmotD Pt Dy

whereD,, = Zp(m, n,)D, as before. Eachl},,,] = 0in A,_1(X), sov is ho-
mogeneous of degrde.

We define inflections fop by restricting it to the natural affine subsetsXof
The varietyX comes from gluing th&, = C” for each maximal cone € A(n).
For each such, the 1-dimensional congse o (1) correspond to variables, in
the homogeneous coordinate ring. Setting the remaitjng 1in (4) determines
an affine mapy? : X, — C'*1 of the sort considered in Section 1. This map is
the restriction ob to X, lifted to C'**. The lattice points determining this affine
map can be determined from the € P(D) by translating the vertex a?(D) cor-
responding ta to the origin and writing then; with respect to the basis for the
lattice, {n, | p € o(1)}. Restrictingv to another maximal affine subset amounts
to choosing another vertex &f(D) and writing them; with respect to the corre-
sponding basis for the lattice (cf. Example 2.4).

A point p € X, is aninflection pointfor v if it is an inflection point forv?. To
show that this definition is independent of the choiceofve define the matrix of
homogeneouk-jets, taking derivatives up to orderwith respect to the homoge-
neous coordinates:

v = (Ua)aezlfém"a‘sk.
ProposiTION 2.1. For eacho € A(n), theC[x, | p € o(D]-span of the rows of
the matrix of homogeneous jets restrictedkip,

thv‘a = thv‘xp:l,p@(l)’
is the same as that of the affine jets X,

g . o
Jiv® = (V7 aezt o Jal<k-

Proof. One direction is obvious, since the rows of the latter matrix are a subset of
the rows of the former. To show the opposite inclusion, we use “Euler formulas”
for X to rewrite the derivatives of homogeneous coordinates in terms of deriva-
tives of affine coordinates. As shown in [BC], there is one Euler formula for each
elementp € Homy(A,_1(X),Z). If f € S is a homogeneous polynomial of de-
gree [E], then the Euler formula correspondinggads

Y ¢UDDx, i, = dUED S,

peA(D)
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SinceX is smooth,{n,},cs(1) is @ basis for the lattic&. It follows from (3)
that [D,] ,¢.(1) forms a basis for,,_1(X). Hence, for each ¢ o(1), there is an
elementp € Homz(A,-1(X), Z) such thatp([D,]) = 1 andé([D,]) = O for all
otheru ¢ o (). Thus, for any polynomiaf of degree E], after settinge, = 1 we
can solve forf, using the Euler formula correspondinggdo obtain

fo, =0(EDSf = > ¢(DuDxufx,.
pneo(l)

In this way, a derivative of any order with respect to the homogeneous variables
can be reduced to an expression involving only the affine coordinates. [

As an immediate consequence, we see that our definition of inflection does not
depend on a choice df,.

CoroLLARY 2.2. The Fitting ideals oflk"v}d and J,v° are the same. In partic-
ular, rk J{'v(p) = rk Jyv? (p) for all p € X,,.

REMARK 2.3. Note that ifV = {my, ..., m,} C P(D) is the set of monomials
definingv, then the dimension of thigh osculating space at a generic pointof

is again given by the Hilbert functiori{y (k). This follows from Proposition 1.1
because the set of monomials defining any restriction tf a maximal affine
open setX,, differs fromV by an affine change of coordinates, which does not
affect Hy .

ExaMmpLE 2.4 (Togliatti's Del Pezzo). Consider the affine map
Cc?— C°,
(x,y) = L x, y,x%y, xy%, x?y?),
defined by monomials whose exponents form the vertices of the hexagon pictured

in Figure 1.

(1,2) (2,2)
(0,1) 2,1

(0,0) (1,0

Figure 1

The mapping naturally extends to a mapping of the toric surkageith fan A)
determined by the inward normals of the hexagon (see Figure 2).
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Figure 2

The maximal cones are labeled ..., os. The 1-dimensional cones have gen-
erators(l, 0), (0,1, (1,21, (-1 0), (0, —1), and (1, —1) to which correspond
the homogeneous coordinatgs. .., xg, respectively. Choosing the dual basis for

M andDs, ..., Dg as a basis foA1(X), the exact sequence (3) becomes
10
0 1
-1 1 1-11000
-1 0 1 00100
0-1 0 10010
0— 72 1-1/ 56 N1 10001 .4 g

ChoosingD = D3 + 2D4 + 2Ds + Dg, the polytopeP (D) is the convex hull of
the exponents with which we started. The extension of the mappikgsaiven
in homogeneous coordinates (cf. (4)) by

v: X —> ]P’S,
2.2 2.2 2.2
(x1, ..., Xe) > (X3X1XEXe, X1X4X5XE, X2X3X X5,
2 2 2.2 2.2
X{X2X5XG, X1X5X3X4, X{X5X3X6).

Our original map is the restriction afto X,, (lifted to C®) obtained by setting
x3=---=xg =1 Torestrictv to X,,, we setxy = x4 = x5 = xg = 1

vo2: C? - C8,
2 2.2 2
(x2, x3) P> (x3, 1, x2x3, X2, X5X3, X5X3).

The exponents for this affine restriction come from the original exponents by the
following affine change of coordinates: translate the vete®) to the origin and
use the first lattice points lying along the two edge#¢D) emanating from this
vertex as a basis for the lattice. Using ProposifidnProposition 1.2, and (2) (or
by direct calculation), we find the dimensions of the osculating spaces. By sym-
metry, we need only consider:—the affine map with which we started—and
by the discussion in Section 1 we need only consider the p@n®, (1, 0), and
(1,2) (see Table 1).

The first osculating spaces are all 2-dimensional sinisean embedding. We
would expect the generic second osculating space to have dimension 5. However,
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Table 1 Dimensions of the osculating spaces
of Togliatti's Del Pezzo

k Osg v°2(0,0) Osgv°(1,0) Osgv°i(l1

IV W N P
OB NDN
ao AN
aohsN

the six exponents happen to lie on a conic, so the dimension is 4. The exponents
place independent conditions on higher-degree curves. By (2), the dimension of
thekth osculating space at the origin is found by counting the numbafrexpo-
nents, with|m| < k.

The unusual inflectionary behavior in this example was first noticed in [T]. It
is a special projection—the expongfit1l) € P(D) is not included—of the Del
Pezzo surface of degree 6.

3. Characterization of Toric Varieties with
Special Inflectionary Behavior

Using the notation of the previous section, }tbhe a smooth, projective, toric
n-fold, and letv: X — P’ be a toric embedding determined by sections of a line
bundleOx (D). We identify the sections with a set of lattice poiftsc P(D) C

M = 7. Assume thab spandP’. In this section, we will characterizewith os-
culating spaces of certain dimensions. The idea is to apply the results in Section 1
relating the dimensions with Hilbert functions of lattice points to deternficB)

andV, from which X andv can be reconstructed (cf. [F, Sec. 3.4]).

Veronese

First, we have the toric version of Theorem 0.1.

Tueorem 3.1. Lets = ("/*) — 1and suppose thabsg v(p) = P’ for all p e
X. ThenX = P", andv is thek-fold Veronese embedding.

Proof. Translate any vertex aP(D) to the origin and take the first lattice points
along the 1-dimensional faces emanating from the vertex as a basis for the lattice
(possible since&X is smooth). As discussed previously, we can think of the points
of V (after the affine change of coordinates) as defining an affine map as in Sec-
tion 1, the restriction ob to a maximal affine subset &f. According to (2), we

must include the lattice poinis € Z~ ;, with |m| < k. However, since there are
t+1= (”Z") of these, there can be no other lattice point¥.iiSo, up to an affine
change of coordinate®,(D) andV (and henceX andv) are determined. [
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Surfaces

Consider now the case whekeis a surface and, at all points a&f, the osculat-
ing spaces fov are as large as possible up through orderl and strictly smaller
than possible for order.

THEOREM 3.2. Suppose thatlim(Osg v(p)) = (*/*) —1fork =1,...,s — 1

and thatdim(Osg v(p)) < (Zf) — 1forall p € X. Up to an isomorphism in the
category of toric mappings to projective space, the following are the only possi-
bilities.
(1) X isP?, visthe(s — 1)th Veronese embedding, aidD) is as shown in Fig-

ure 3 V consists of all lattice points i®(D).

(0,s-1)

(0,0) (s-1,0)

Figure 3

(2) X is a Hirzebruch surfac&, (including the cas&, = P! x P1), and P(D)
is as shown in Figure 4 for integets> s — 1andb > 0; V can be any sub-
set of the lattice points aP(D) containing all points‘out to levels — 1,” as
described in the beginning of the proof.

(0,s-1) ((s-1)b+a,s-1)

0,0) (a,0)

Figure 4

(3) s = 2, the surfaceX is P! x P! blown up at twar-fixed pointsy is a special
projection toP® of the Del Pezzo surface of degi@a P8 (cf. Example 2.4,
and P(D) is as shown in Figure 5V consists of the vertices &f(D).

(1,2) (2,2)

©,1) @1

(0,0 (1,0

Figure 5
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(4) s = 2, the surfaceX is the blow-up of the preceding example in tifdixed
points,u embedsX as a surface of degreltin P/, and P(D) is as shown in
Figure 6; V consists of the vertices &f(D).

(2,4) (3.4)

(3.3)

0.1

(0,0) (1,0)

Figure 6

(5) s = 2, the surfaceX is the blow-up of the preceding example in fdufixed
points,v embedsX as a surface of degre48in P, and P(D) is as shown in
Figure 7: V consists of the vertices @f(D).

(5,10) (6,10)

6.9)

(5.6)

1.4

©0.1)
(0,0) (1,0)

Figure 7

Proof. Translate a vertex oP(D) to the origin. SinceX is smooth, the genera-
tors of the two edges emanating from the vertex must fodiybasis for the lattice
M. With respect to this basis, the condition that/tkyv(p) = () for all p
implies, by (2) from Section 1, that the sections determiningust include all
those corresponding to lattice poirgts b) with a + b < s — 1. We say tha¥’ in-
cludes all point®ut to levels — 1 with respect to the chosen vertex. The fact that
rk Jsu(p) < (2;”) for all p means that the lattice points determiningust sat-
isfy a polynomial of degree in two variables, say. This reasoning allows us to
construct the possibilities faP(D) and the lattice pointsy.
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So far, we know thav (after the affine change of coordinates just described)
must include(a, b) such thatt + b < s — 1. To constructP(D), go out along one
of the edges emanating from the ver{@x0) to the next vertex, sag, 0), where
a > s — 1 SinceX is smooth, the next edge emanating from this vertex passes
through a lattice point of the forrth, 1) (see Figure 8). We divide the problem

into four cases as follows.
/ N
(a,0)

Case (i):b > a, s > 2. Inthis case, including all points out to lewel- 1 with
respect to the verticea®, 0) and(a, 0) implies thatV must include(b — 1, 1) as
well as(b, 1). This means that there are at least1 elements o¥ along the line
y = 1. Hence, the curve of degreecontainingV must have a linear component:
F = (y — 1)G for some polynomiat of degrees — 1 passing through the points
V not on the liney = 1. However, there are at leaspoints of V lying along the
x-axis. ThusG = yH, whereH has degree — 2 and passes through the remain-
ing lattice points. Continuing this reasoning now for the liges 2, y = 3, ...
shows thav is a mapping of a Hirzebruch surface as described in the statement of
the theorem.

0,0) ¢

Figure 8

Case (ii): a > s — 1, s > 2. The analysis here is similar to that for case (i).
Since we must have points out to level 1 with respect to the verte®, 0), there
are more thar elements ofV along thex-axis and soy must be a factor of.
Continue, showing that — 1, ..., y — (s — 1) are factors. The only possibility
(again) is the Hirzebruch surface.

Case (iii): a = s —1, 5 > 2. Given cases (i) and (ii), we may assume that each
edge of P(D) contains exactly lattice points and that < a. The edge emanat-
ing from (a, 0) is forced to connect with the vertex lying on theaxis, (0, s — 1).

The only possibilities ar&y = P x P! (if b = a) and the Veronese (if < a).

Case (iv):s = 2. This last case is more difficult. First, given the foregoing
cases and that the toric variety is smooth, we can assume that—bé&si0gs
(1,0), and (0, 1)—the setV contains lattice points of the forrib, 1) and (1, ¢)
with b, ¢ > 1. Fixing b andc, there is a unique conic passing through these points:

OQ=0C—Dx(x-=D+G-Dy(y—1D — (b —D(c—Dxy.

The lattice points o) are easy to describe. It happens thati$ a lattice point
on Q then the horizontal line througp (if not tangent) meets in another lattice
point, and similarly for vertical lines. Starting witl, 0), the horizontal and ver-
tical lines meeD in (1, 0), (0, 1), respectively. Repeating for the poiriis 0) and
(0, ) gives the pointsl, ¢) and(b, 1), respectively, and so on. In this way, we get
all of the lattice points orQ (see Figure 9). We want to show that to buitdD)
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starting with the initial five points requires that we take all the lattice point9pn
hencep andc must be such thap is an ellipse (sinc« is projective,P(D) must
have a finite number of vertices, for instance).

/[

(1,0) /

0,1) (b,1)
©.0) b (1.0)

Figure 9

Translating any lattice point of to the origin, we now show that the lattice
points onQ that are adjacent to that point will form a basis for the lattice. Hence,
thinking of the lattice point as vertex of a potent®lD), the smoothness condition
is satisfied. Consider consecutive lattice poiltts, y1), (x2, y2), and(xs, y3)
along Q (Figure 10) and assume the smoothness condition is satisfied, at;):

det<xs—xz ys—yz>=l
X1—=x2 y1— Y2

(x1,y1)

Figure 10

Itis easy to check that the intersection of a vertical line through any point)
on Q meetsQ again at(x, 1+ (¢ — 1)x — y) and that the intersection of a hor-
izontal line through(x, y) meetsQ again at1 + (b — 1)y — x, y). Drawing the
vertical lines through théx;, y;) gives a sequencer;, 1+ (¢ — Dx; — y;) with
i =1, 2, 3 of consecutive lattice points ap for which the smoothness condition
is still satisfied:

det(x?’_xz (c =D(x3—x2) — (ys—yz))
x1—x2 (c=D(x1—x2) — (y1—y2)
_ det(xs —x2 —(ys— )’2)) _

x1—x2 —(y1—y2)
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Similar reasoning holds for horizontal lines. Since any sequence of consecutive
lattice points onQ comes from repeatedly intersecting with horizontal or vertical
lines starting with the sequencgg, 1), (1, 0), (0, 0)—for which the smoothness
condition holds—the smoothness condition is satisfied for any three consecutive
points alongQ, as claimed.

Let po, p1, andp, be adjacent lattice points @f(D) lying consecutively orQ.
Thinking of p, as the vertex, the lattice poings for which ps — p, andp1 — p»
form a basis for the lattice lie on a line passing throygh This line intersects
Q in at most one other point; hence, it must lie consecutively al@ngith p;
andp,. This shows that, in order to builel( D) starting from our initial five points,
we must take consecutive lattice points alangThe construction can work only
when is an ellipse (i.e., when the discriminant @fis less than 0). This means
that(b—1)(c —1) < 4, which implies(b, ¢) € {(2, 2), (2, 3), (3, 2), (2, 4), (4, 2)}.
The case ob = ¢ = 2 gives Togliatti's surface, (3h = 2 andc = 3 give (4)
(isomorphic tob = 3 andc = 2); andb = 2 andc = 4 give (5) (isomorphic to
b =4 andc = 2). O

REMARK 3.3. Restricting to the category of toric varieties, Theorem 0.2 is easily
established as a corollary to Theorem 3.2. 4&t2, and letv: X — P?*1pe an
embedding with dindOsc, v(p)) = 2k for k < ¢ at all pointsp € X. Apply Theo-

rem 3.2 withs = 2 to narrow the possibilities. We then look for polytopesand

a subset of lattice pointg, including the vertices oP, satisfying two properties:

(1) translating any vertex of to the origin, and choosing the adjacent lattice
points as a basis for the lattice, the numberafb) € V witha + b < k is
2k + 1 for k < r (cf. Section 1, (2));

(2) Hy (k) = 2k for k <t (PropositionL.1, Remark 2.3).

It is straighforward to check that the only possibility is as stated in Theorem 0.2.
The following conjecture can be similarly established for toric varieties.

CoNJECTURE 3.4 [PT]. Letr > 2, and letX c P?*2 be a smooth projective
surface not contained in a hyperplane and such that the dimension ighitss-
culating space i2k at all points of X and for allk < 7. ThenX is isomorphic to
aP-bundle, the Hirzebruch surfad® embedded as a scroll via the natural map

X =F; ZP(Opi(t) & Opr(t + 1))
— P(HOpi(1)) ® HYOpi(t + 1)) = P2,

In fact, it turns out that the conjecture does not hold outside of the toric setting. R.
Piene and H. Tai (personal communication) have found special (nontoric) projec-
tions of Veronese embeddings that satisfy the hypotheses of the conjecture. Unlike
our toric examples, the hypotheses hold for these projectionskwith + 1, not
justk < t.

These counterexamples to the conjecture are at least projections of toric vari-
eties, and one might get the impression that placing many restrictions on the oscu-
lating spaces of an embedding at least forces the variety to be rational. However,
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Dye has given examples of embeddings of irrational varieties with very special
osculating spaces [D], including a nonruled surfac® frwhose second osculat-
ing spaces are all of dimensign4.

3-Folds

We now consider the same problem for 3-folds. Assume that, at all points of the
3-fold X, the osculating spaces are as large as possible up throughserdeand

are strictly smaller than possible for orderAs in the proof of Theorem 3.2, we
talk about lattice points of a polytope having a certain “level” with respect to a
vertex (cf. V.3 in the proof of Theorem 3.5).

TueoreM 3.5. Suppose thalim(Osg v(p)) = (*1*) —L1fork=1...,s =1

and thatdim(Osg v(p)) < (*/*) — 1 forall p € X. Up to an isomorphism in the

category of toric mappings to projective space, the following are the only possi-

bilities.

(1) X isP3, vis the(s — 1)th Veronese embedding, aR{ D) is the tetrahedron
shown in Figure L1V consists of all lattice points i®(D).

(0,0,5-1)

(S-] ’0’0) m (O,S- 1 ’0)

Figure 11

(2) X is an equivariant fiber bundle ové®! with fiber equal to one of the toric
varieties appearing in Theorem 3.2. The polytdp@®) is a truncated cylin-
der over one of the polygons in Theorem 3.2. Hexagons, octagons, and do-
decagons are allowed for the base of the cylinder only in the case? (cf.
Remark 3.§. V is any subset of the lattice points (D) containing all
points out to leved — 1.

(3) X is aP'-bundle of the fornP(Os(E) @ Os(E")) for some ample divisors
E, E' on an arbitrary smooth toric surfacg (cf. Remark 3.%, and P(D) has
the form shown in Figure 12. The shaded polygionthe planez = 0) rep-
resentsP(E) and the dashed polygdim the planez = 1) representsP(E”’);
the top facein the planez = s — 1) also has the formP(E”) for a divisor
E” on S. The setV is any subset of the lattice points R{D) containing all
points out to levet — 1.
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/'

Figure 12

(4) s = 2, X isP3 blown up in four points, an® (D) is the truncated tetrahedron
shown in Figure 13V consists of the vertices @f(D).

0,2,2) (1,2,2)

0,1,2) 2.12)

1,02) 202

Figure 13

(5) s = 2and P(D) is the join of two hexagons sharing an edgee Figure 1%
V consists of the vertices @f(D).

0,1,2) 0.2.2)

0,0,1) 0.2,1)

(1,0,0) (1,2,0)

(2,1,0) (2,2,0)

Figure 14
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(6) s = 2, X isP! x P! x P! blown up in six points, an® (D) is the truncated
octahedron shown in Figure 1% consists of the vertices &f(D).

(2.2.4) (2,34
(1,1,3) (1,3,3)
0,1,2) 0,2,2)
0,0,1) 02,1
(1,0,2) (1,3,2)
0,0,0) (0,1,0)
(1,0,0) (1,1,0)
(2,0,2) 232
2,0,1) 22,1
(3,1,2) (3.2,2)
(3,1,3) (3,3,3)
(3.2,4) (3,3.4)
Figure 15

(7) s = 2 and P(D) is constructed from eight dodecagons, six octagons, and
twenty-four trianglegsee Figure 1§; V consists of the vertices &f(D).

Figure 16
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(8) s = 2 and P(D) is constructed from four dodecagons, four hexagons, and
twelve trianglegsee Figure 1; V consists of the vertices &f(D).

(1,10,6)

(6,10,1) (6,12,2)

Figure 17

(9) s = 2 and P(D) is the join of two dodecagons sharing an edgee Fig-
ure 18); V consists of points out to lev2lfrom the vertices ofP(D) and any
number of the lattice points along the edges joining the dodecagons.

(0,9,6) (0,10,6)

0,6,5) (0,10,5)

04.4) 0,94

(0,1,2) (0,6,2)

(0,0,0)
(1,0,0) (1,4,0)

(2,1,0) (2,6,0)

(4,4,0) (4,9,0)

(5,6,0) (5,10,0)

(6,9,0) (6,10,0)

Figure 18
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(10) s = 2 and P(D) is constructed from two dodecagons, six octagons, and
twelve trianglegsee Figure 1§ V consists of the vertices &f(D).

(6,12,6)
(6,10,5)

(5,10,6)

Figure 19

(11) s = 2 and P(D) is constructed from six octagons and eight trianglese
Figure 20; V consists of the vertices &f(D).

0.33) 0.43)
0.1,2) 0.4,2)

(1,3,3) (1,6,3)
0,0,1) 000  (0,1,0) 0.3,1)
(1,0,0) (1,3,0)

(2,1,0) (2:4,0)

G3D (B30 (340 G.6.1)
(2,4,3) 2,7,3)
(3:4.2) (3.7.2)

(3,6,3) (3,7.3)
Figure 20

(12) s = 2 and P(D) is constructed from three octagons, two hexagons, and six
triangles(see Figure 2); V consists of the vertices &(D).
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A (0,0,1) (0,1,2) A

OLy 0,3,1) (0,4,2) 043

Figure 21

(13) s = 2and P(D) is the join of two octagons sharing an edgee Figure 22
V consists of points out to lev2lfrom the vertices of? (D) and any number
of the lattice points along the edges joining the octagons.

0,3,3) (0,4,3)

0,1,2) 0:4.2)

0,0,1) 03,1)

(1,0,0) (1,3,0)

(2,1,0) (2:4,0)

(3.3,0) (3:4.0)

Figure 22

(14) s = 2 and P(D) is constructed from one dodecagon, three octagons, four
hexagons, three quadrilaterals, and six triang{ese Figure 28 V consists
of the vertices ofP (D).



Inflections of Toric Varieties 503

(0,0,0) 0,1,0)
0,0,1) (0,3,1)
(1,0,0) (14,0)
0,12 042
,1,0) 033 s 2,60)
(1,2,2) (1,6,2)

22,1 (1.43) (1.6.3) @71
(4,4.0) (26.3) 2.1.3) (4.9.0)
482 49.2)

(5.6,0) (5.10,0)

Figure 23

(15) s = 2 and P(D) is constructed from one dodecagon, seven hexagons, and
six triangles(see Figure 2% V consists of the vertices @f(D).

(1,4,2)

0,2,2) (2,4,2)

I (1,0,0) (2,1,0) l

Figure 24

(16) s = 2and P(D) is constructed from six octagons, eight hexagons, and twelve
guadrilaterals(see Figure 2%; V consists of the vertices &f(D).
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(3.6,6) (3,7.6)

(1,3,4) (1,4,4)

(2,1,0) (2,4,0)

(6,8,4) (6,9,4)

Figure 25

(17) s = 2 and P(D) is constructed from one octagon, four triangles, four
hexagons, and a squafsee Figure 28; V consists of the vertices &f(D).

0,2,2) (1,3,2)

0,2,1) 24,1)

(1,3,00 (24,0

(0,1,0) (3,4,0)

(0,0,0) (3,3,0)

(1,000  (2,1,0)

0,0,1) 2.2,1)

0,1,2) (1,2,2)

Figure 26

Proof. Arguing as at the beginning of the proof to Theorem 3.2, the problem is
equivalent to finding all sets of lattice pointin R3 with convex hull a poly-
tope P such that
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(V.1) P is 3-valent (i.e., three edges emanate from each vertex);

(V.2) translating any vertex to the origin, the first lattice points along the three
edges emanating from the vertex fornZéeasis for the lattic&Z® c R3
(ensuring that the associated toric variety is smooth);

(V.3) V includes all lattice pointsut to levels — 1 with respect to each vertex:
translating any vertex aP to the origin and letting, y, z be the first lattice
points along the three edges emanating from the vertex, tHé stlattice
points must include those points correspondingiter by + cz fora, b, ¢
nonnegative integers with+» + ¢ < s — 1, and

(V.4) the lattice points irV must satisfy a nonzero polynomial in three variables
with degree< s.

Let F be a (2-dimensional) face df. The points ofF N V, thought of as sit-
ting in a 2-dimensional lattice in the plane supportifigdetermine a mapping
of a toric surface. We say thdt is proper if, up to a change of coordinates of
the 2-dimensional latticef’ N V has one of the forms of Theorem 3.2 (for the
sames): a certain triangle, a family of quadrilaterals, and a certain hexagon, oc-
tagon, or dodecagon (the last three are possibilities only when2). We say
that P is proper if each of its faces is proper; otherwisg, is improper. We
divide the problem into four cases: (P proper,s > 2; (Il) P proper,s =
2, but no octagons or dodecagons are allowed as faces; @tll) P proper,

s = 2, and P must include an octagon or dodecagon as a face; and RIV)
improper.

Case I:P proper,s > 2. SinceP is proper and > 2, each face o mustbe a
triangle or a quadrilateral. Euler’s formula shows that the only such 3-valent poly-
topes are formed by: (i) four triangles (a tetrahedron); (ii) two triangles joined by
three quadrilaterals (a truncated triangular cylinder); and (iii) six quadrilaterals (a
box). We consider these cases separately.

(i) (four triangles) There is one possibility: a tetrahedron withttice points
on each edge. In order to satisfy (V.3), the Behust contain all the lattice points
on or in the tetrahedron. It is then easy to check that (V.1)—(V.4) are satisfied.
This gives (1), the Veronese embedding.

(i) (two triangles, three quadrilaterals) Sinéeis 3-valent, if two triangles
meet then they must share an edge &nd forced to be a tetrahedron. Hence, in
the present case, the two triangles do not touch. We may assume that the coor-
dinate planes = 0, y = 0, andz = 0 form three of the five supporting planes
for P and that the bottom face (in the plane= 0) is the triangle with vertices
(0,0,0), (s —1,0,0), and (0, s — 1, 0), surrounded by quadrilaterals. The re-
maining triangle must also hauelattice points per side. Using the restriction
from Theorem 3.2 on the quadrilateral faces, the vertices of this triangle must have
the form(0, 0, @), (s — 1,0, b), (0, s — 1, ¢) for integersa, b, ¢ > s — 1. We may
assume that is no larger tha andc. Again using the restriction on the shapes of
the quadrilateral faces, it follows that= (s —1)e +a andc = (s — 1) e’ + a for
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some integers, ¢’ > 0. It is straightforward to check that the resulting polytope
satisfies conditions (V.1) and (V.2). The lattice points in the base of the cylinder
satisfy a polynomial of degreein two variables, and all the lattice points in the
polytope satisfy this same polynomial. Thus, any set of lattice points in the poly-
tope meeting condition (V.3) also meets condition (V.4). There is no restriction on
the height of the truncated cylinder. This example falls under (2) in the statement
of the theorem.

(i) (six quadrilaterals) We may take one vertex of the b@xto be the ori-
gin and take the coordinate planes= 0, y = 0, andz = 0 as three of the
six supporting planes. We may take the vertices of the bottom of the box (in the
planez = 0) to be(0,0,0), (s —1,0,0), (0,a,0), and(s — 1, (s — e + a, 0)
for integerse > 0 anda > s — 1. Ruling out the case of a box with lat-
tice points per side, assume that the bottom is choosen saithats — 1
The restriction from Theorem 3.2 on the shape of the quadrilateral in the plane
x = 0 forces(0,0,s — 1) to be a vertex ofP and the remaining vertex in this
plane to have the fornd0, (s — )¢’ + a, s — 1) for some integee’ such that
(s —1e’+a > s — 1 Since the edge along the bottom connecting, 0, 0) and
(s =1 (s — De + a, 0) has length greater than— 1, the height of the face at-
tached to the bottom along this edge muskbel This forcesz = s — 1to be
a supporting plane foP and the remaining vertex in the plape= 0 to have the
form ((s —De” + s —1,0,s — 1) for some integee” > 0. To make the top of the
box proper, we must take —1)e’ +a = s —1ore” = 0. In the former case, the
remaining vertex has the fortis — D(e” + 1), (s — D(e + 1), s — 1); in the lat-
ter,(s — 1 (s —D(e+e') +a,s —1). In either case, we get a truncated cylinder
over the face supported by= 0.

Itis straightforward to check that the resulting polytopes satisfy conditions (V.1)
and (V.2). As in case (ii), any set of lattice points satisfying (V.3) will also satisfy
(V.4). This example falls under (2).

Case II: P proper,s = 2, but no octagons or dodecagons are allowed as faces
of P. Inthis caseP may have faces that are triangles, quadrilaterals, or hexagons.
From Euler’s formula, the possibilities for the number of triangles and quadrilat-
erals are the same as in Case |. However, given an acceptable number of triangular
and quadrilateral faces, there are an infinite number of combinatorially different
3-valent polytopes that can be built by adding hexagons [G, pp. 253—-281]. Only
finitely many of these give rise to lattice points satisfying our conditions. We con-
sider three cases, as before.

(i) (four triangles) As argued in Case I(i), if two triangles touch tiemust
be a tetrahedron; so suppose that no two triangles touch. Up to a change of
coordinates of the lattice, we may assume that the polytope contains a trian-
gle surrounded by three hexagons with coordinates as shown in Figure 27 (the
coordinate planes are supporting planes). These lattice points sit on only one
guadric,

Q=-x+x>—y+y’—z4+2%+xy—xz—yz
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022) (1,2.2)
v=(0,2,1)

0,1,2) 2.12)

a=(0,0,1) B=(20,1)

(1,0.2) (2,0.2)

Figure 27

At each of the vertices labeled 8, y we must fit triangles, since a hexagon
added there would not have vertices lying on the quadric (e.g., for a hexagon to sit
ata = (0, 0,1) it must also include the adjacent vertiq@s0, 2) and (0, 1, 2)).

Lying in the plane determined by these vertices, the remaining vertices are forced
to be(2,1,4), (1, 2,4), and (2, 2,5), none of which lie on the quadric. Hence,
the triangle with vertices, (1, 0, 2), and(0, 1, 2) lies on the polytope and, simi-
larly, there are triangles at verticgsandy. Now, since the polytope is 3-valent,

z = 2 must be a supporting face, which closes the polytope with a hexagon. The
result is (4), a truncated tetrahedron. The vertices form a set of lattice points sat-
isfying condition (V.3). They lie on a unique quadrz and thus satisfy (V.4).
None of the remaining lattice points from the polytope—the centers of the four
hexagons—lie orQ. Finally, it is straightforward to check that (V.2) is satisfied.

(i) (two triangles, three quadrilaterals) Suppose that a triangle touches two
guadrilaterals. Using 3-valency and properness, and considering the supporting
planes of the polytope, we see that the only possibility is a truncated cylinder over
the triangle.

Now suppose that a triangle touches exactly one quadrilateral and hence two
hexagons. We may assume that the configuration is as shown in Figure 28. The
supporting plane determined by pointss, § forcesBe to be an edge, and the sup-
porting plane determined b, y, ¢ forcesy¢ to be an edge. Thus, the polytope
is what might be called the “join” of two hexagons sharing an edge, (5). Itis easy
to check that the smoothness property holds at each vertex. For instance, trans-
lating the vertexx = (0, 1, 2) to the origin, the adjacent lattice points—including
the point(1, 1, 1) on the edgers—form a basis for the lattice:

0,0, —« 0-1-1
det<(0,2,2)—a>=<0 1 O):l.
1,141 -« 1 0-1
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a=(0,12) B=(022)

¥=(0.2,1)
5=(2,1,0) (0,1,0)
£=(2,2,0) 0=(1,2,0)

Figure 28

For the final possibility, if there is a triangle that does not touch a quadrilateral
then we repeat the argument just given in (i) to get a truncated tetrahedron, (4).

(iii) (six quadrilaterals) There are three cases to consider. First, suppose that
at least three quadrilaterals meet at a point. By considering supporting planes
and using 3-valency, we are reduced to the case of no hexagons, Case I(iii). Sec-
ond, suppose that no three quadrilaterals meet at a point yet there is set of two
guadrilaterals meeting at a point. By 3-valency, the quadrilaterals that meet must
share an edge. Since no three quadrilaterals meet, there is a hexagon at both ver-
tices along this edge. It is straightforward to check that this forces the polytope
to be a truncated hexagonal cylinder, an instance of (2). Finally, suppose that no
two quadrilaterals meet. Since each quadrilateral is surrounded by hexagons hav-
ing two lattice points on each edge, the quadrilaterals must also have exactly two
lattice points on each edge. Starting with a square surrounded by hexagons, we
proceed as in the latter part of Case 1I(i) and arrive at (6), a truncated octahedron
as stated in the theorem.

Case llI: P proper,s = 2, and P must include an octagon or dodecagon as a
face. This case involves a long and tedious search, greatly facilitated by the use
of a computer. The basic idea is that the point&/afnust lie on a quadric, and
there are nottoo many choices for a quadric containing a dodecagon or an octagon.
Trying to construct a polytope one face at a time soon determines the quadric com-
pletely and allows us to specify the possibilities. We will give an outline of the
search as well as examples illustrating all of the techniques needed. The problem
is divided into six cases: (i) two dodecagons meet, (ii) two octagons meet, (iii) a
dodecagon and octagon meet, (iv) a dodecagon and hexagon meet, (v) an octagon
and hexagon meet, and (vi) none of the above.

(i) (two dodecagons meet) First note that—taking any vertex of the dodecagon
of Theorem 3.2 as the origin and the adjacent lattice points as a basis for the lat-
tice—there are two possibilities: the original dodecagon or its flip about the di-
agonal,y = x. Thus, in our case, we consider two possible orientations for the
dodecagons that meet. We may assume that one dodecagon sits in the-pl@ne
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and includes the lattice poing8, 0, 0), (1, 0, 0), (0,1, 0), (2, 1, 0) (the rest are de-
termined). We may also assume that the second dodecagon sits in the ptehe
and includes the lattice point8, 0, 0), (0, 1, 0), (0, 0, 1). However, there are two
possible orientations for the second dodecagon: it can include the v8r@&x)

or its flip, (0, 1, 2); the former case (see Figure 29) will be called orientation 1.

(0,0,1) (02%
y
(0,0,0)

o= (0,1,0)

(1,0,0)

140 > <

Figure 29

The quadrics containing these two dodecagons have the form
0 = 9ax? — axy + bxz + 3ay? — 3ayz + az?> — ax — 3ay — az

for a, b € C. What are the possibilities for the remaining face meeting the do-
decagons at vertex? There are two possible dodecagons (differing by orienta-
tion) that could fit there, but it is straightforward to check that neither of these
would have lattice points lying op. Similarly, there are two possible octagons,
neither of which would lie onQ. The same holds for the unique hexagon that
could fit there. Hence, a quadrilateral or a triangle must fit at

If a triangle fits atr, 3-valency would require thd®, 6, 0), (1, 4, 0), (0, 2,1),
and (0, 4, 4) be co-planar, but they are not. Thus, a quadrilateral is forced at
«. The quadrilateral and the s&tof exponents must contain the poifs 5, 1),
forcingb = 0 in Q. A priori, there are many possibilities for the shape of the
quadrilateral. Larger quadrilaterals would need to contain the next point out along
either the edge containin@, 2, 1) and(l, 5, 1) or the edge containingd, 4, 0) and
1,5,1), namely: (2, 8,1) or (1, 6, 2), respectively. However, it is easy to check
that these points are not zeroes@r . Hence, the quadrilateral has vertices
(0,1,0), (0,2,1), (1, 4,0), and(1, 5,1), as shown in Figure 30.
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(0,4,4)

(0,0,1)
(1,5,1)

(0,0,0)

(1,0,0)

Figure 30

It is now easy to check with a computer that (a) a dodecagon must fit at ver-
tex 8, having orientation 1 with respect to the dodecagon it meets along the edge
joining (1, 4, 0) and (2, 6, 0), and (b) a quadrilateral must fit at the origin, con-
taining exactly four lattice points. By symmetry, the whole figure must consist of
guadrilaterals and dodecagons, each quadrilateral surrounded by four dodecagons
and each dodecagon surrounded by six quadrilaterals and six dodecagons. If the
figure were to close up to give a polytope then consideration of Euler’s formula
would lead to a contradiction, as we now explain.

Let R be any 3-valent, 3-dimensional polytope, andpetbe the number of
faces ofR havingk edges. A simple consequence of Euler’s formula relating the
numbers of vertices, edges, and faces (taking 3-valency into account) is the fol-
lowing relation:

3ps+2pa+ ps=12+Y (k—6)py.
k=7
(In fact, there is a sort of converse. Eberhard’s theorem [G, p. 254] states that,
given any finite sequence of nonnegative integerfor k # 6, there is a 3-valent,
3-dimensional polytope, possibly containing hexagons, suchpthiathe number
of faces withk edges.) In our case, the formula reads

2p4 = 12+ 6[712.

Combined with the additional fact thap4 = 6p1, (a consequence of the arrange-
ment of quadrilaterals and dodecagons), we obtain a contradiction. Thus, orienta-
tion 1 does not produce an acceptable polytope (although it produces interesting
affine mappings).

Now consider orientation 2, shown in Figure 31. As in the case of orientation 1,
there is a quadri@, with two parameters, containing the vertices of the two do-
decagons. One may check that either a hexagon, a quadrilateral, or a triangle must
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fit at vertexa. The quadrilateral and the hexagon lead to figures that do not close,
as in the case of orientation 1 (using Eberhard’s theorem again). So suppose that
a triangle fits atx. The triangle does nothing to specialize the quadricso we

need to look at verteg. A triangle is ruled out by 3-valency, but it turns out that

a dodecagon, an octagon, a hexagon, or a quadrilateral are possibilities (i.e., con-
sistent withQ) at 8. The dodecagon leads to a figure that does not close, but the
octagon, hexagon, and quadrilateral lead to polytopes for which (V.1)—(V.4) hold.
These are (7), (8), and (9), respectively.

I
\

0,1,2) -
-
-~
(0,0,1) 0,4,1) -

(0,0,0)

(100) a=(0,1,0)

2.1,0) B=(1.40)

AN (260 N\

Figure 31

(ii) (two octagons meet) Proceeding as in (i), there are two orientations for the
meeting octagons. One produces no examples; the other produces (10), (11), (12),
and (13). Asiin (i), in the second orientation we fit a triangle at one of the vertices
on the edge shared by the octagons and then find that a dodecagon, an octagon, a
hexagon, or a quadrilateral can fit next to this triangle. Unlike (i), the dodecagon
leads to an acceptable polytope.

(iii) (a dodecagon and octagon meet) Again, as in (i), there are two orienta-
tions. One produces no examples (giving a figure that does not close, as before);
in the other, we can fit a quadrilateral or a triangle next to the meeting dodecagon
and octagon. The quadrilateral leads to a figure that does not close, so we do not
get an example. On the other hand, next to the triangle we can fit a dodecagon,
an octagon, or a hexagon; the dodecagon and octagon lead to examples we have
already seen, and the hexagon produces (14).

(iv) (a dodecagon and hexagon meet) There is only one orientation to consider.
A dodecagon, a quadrilateral, or a triangle must fit next to the meeting dodecagon
and hexagon. The dodecagon was already considered in (i) and did not lead to an
example. The quadrilateral leads to a figure that does not close. Finally, the triangle
yields several possibilities: a dodecagon, an octagon, a hexagon, or a quadrilateral
can fit next to the triangle. The dodecagon and octagon then produce examples
we have already seen. The hexagon produces (15). The quadrilateral does not pro-
duce an example.
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(v) (an octagon and hexagon meet) This case is similar to (iv). An octagon, a
guadrilateral, or a triangle can fit next to the meeting octagon and hexagon. The
octagon was considered in (ii) and did not lead to an example. The quadrilateral
gives (16). Next to the triangle, there can be a dodecagon (reducing to (iii)), an
octagon (reducing to (ii)), a hexagon leading to (17), or a quadrilateral leading to
no example.

(vi) (none of the above) We are left with the case of a dodecagon or octagon
surrounded by triangles and quadrilaterals. Using 3-valency, one may check that
there can be no triangle. We get a truncated cylinder over the dodecagon or oc-
tagon, instances of (2).

Case IV: P improper. Suppose we haveand P satisfying (V.1)—(V.4). Let
f(x,y,z) be anonzero polynomial of degrees satisfied by the points df, and
let F be a face that is not proper. The lattice pointgim V, sitting in the plane
supportingF (say,IT), determine a mapping of a toric surface.flfrestricted to
I is nonzero, then this surface mapping would satisfy Theorem 3.Zamoluld
need to be proper. Hencg,contains the equation fdil as a factor. In fact, we
will see that, up to an affine change of coordinates of the latti®@iand a con-
stant factor,f = [[$Zg(z — i).

If s > 2 letV =V \(V NI, let P be the convex hull of the points & and
let 7 be the polynomial of degree s — 1 obtained by removing the equation for
IT from f. We now verify thatV and P satisfy conditions (V.1)—(V.4) with re-
placed bys — 1. Making an affine change of coordinates, assume for the moment
that Il is defined by; = 0. Figure 32 labels consecutive vertiagg Bo, andyg
of F. The first lattice points on the edges leavifigrom these vertices are, 81,
andyi, and the vertices at the end of these edgesrae andy.

Figure 32
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Letag = (a,b,0), yo = (¢,d,0), andB1 = (i, j, k). We may assume that
Bo = (0,0, 0). SinceP satisfies (V.1), it follows that

a b 0O
c d O

S
k

Hence, we may assume tltat= 1 and, similarly, all the first lattice points on edges
emanating fromF lie in the planez = 1 Thus, chopping off the facé& leaves

a new faceF in the planez = 1. Also, note that none of these first lattice points
are vertices ofP (sinces > 2), so the new polytope is combinatorially equiva-
lent to P. Our computation shows that, after an affine change of coordinates, we
can take the edges (of the truncated polytghe), B1y1, andg18 to lie along the
coordinate axes. It is then easy to verify (V.1)—(V.3); of course, (V.4) is satisfied
with s — 1 in place ofs, using f.

RemovingF from P gives the new polytop®. If P is not proper and — 1 >
2, then we can repeat the process of chopping off an improper face. Eventually
we are reduced to lattice points* with convex hull the polytopé&*, combinato-
rially equivalent toP and satisfying (V.1)—(V.4) for some integgrin place ofs.

The polytopeP* is either (i) proper or (ii) improper with* = 2.

(i) (P* proper) If P* is proper, we have shown that (up to a change of co-
ordinates) it must be: (1), a certain tetrahedron (the numbers here refer to the
statement of the theorem); (2), a truncated cylinder over one of the polygons from
Theorem 3.2; or, in the cas¢ = 2, (4)—(17). To rule out each of these pos-
sibilities, imagine reversing the process of going fréro P*. This would in-
volve taking a face oP*, whose supporting plane we can take tozbe 0, and
extending the edges coming into this face down to a parallel plane, which we
can take to be = —1. The result is an intermediary polytog& combinatori-
ally equivalent toP and P*, and improper. The polytopg comes with a corre-
sponding subseY of lattice points such that (V.1)—(V.4) are satisfied forsaa
s*4+ 1

In the case of the tetrahedron, (1), reversing the process would implyPthat
was proper, a contradiction. In the case of a truncated cylinder over one of the
polygons from Theorem 3.2, reversing the process one step result® ithat
is either proper, combinatorially inequivalent &, or for which V necessarily
violates (V.3). For instance, suppo$¥ is a truncated cylinder over a quadri-
lateral (see Figure 33). IP comes from moving the upper or lower faces out
one unit, thenV could not satisfy (V.3) given that the base quadrilateral has not
increased in size. The same argument holds for moving the left or right faces
out one unit, or the back face in the case where- s* — 1 If a, b, and the
height are large enough, then moving the front or back face out may produce a
proper polytope—a contradiction. In the case where- 2, a = 1, andb > 0,
moving the front face out gives a polytope that is hot combinatorially equivalent
to P*.
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(0,a+b(s*-1),0)

(s*-1,0,0) (s*-1,a,0)

Figure 33

Finally, if P* is one of the polytopes (4)—(17), reversing the process gives a
polytope that is not combinatorially equivalent®d.

(if) (P* improper,s* = 2) This case subsumes the case ef 2. Let f* be
the quadric containing*, which is a factor of the originaf. We may assume that
z = 0 is a supporting plane of an improper facersf. By (V.2), the first lattice
points along the edges emanating from the face#n0 lie in the plane; = 1. It
follows that, up to a constant factof; = z(z — 1). Going backwards fron®* to
P, trying to add a face in a plane not parallekte= O at any step would give rise
to a polytope for which (V.3) could not hold. Hence, the edges emanating from
the face inz = O terminate in the plane = s — 1 and so, up to a constant fac-
tor, f = ]_[f;é(z — i) as claimed; this determing?. Its shape is determined by
the face inz = 0 and the convex hull of the lattice points Bflying in the plane
z = 1. These two polygons give rise to the same toric surfadbat is, one poly-
gon can be derived from the other by sliding each edge in a direction normal to
that edge. Another way to say this is that the two polygons have the fB(#$
andP(E’) for two ample divisorE, E’ on the toric surfacé (cf. Section 2). The
toric variety determined by isP(Os(E) @ Os(E")), giving (3). O

REMARK 3.6. In this remark, we describe more carefully the mappings in The-
orem 3.5(2)—that is, those coming from truncated cylindersR3nvith coordi-
natesr, y, z, let P be a polygon sitting in théx, y)-plane. Assume thak is a
polygon allowed by Theorem 3.2 (i.e., it gives rise to a mapping of a surface with
special osculating spaces). The cylinder oeis C(P) = {p + (0,0,2) | p €

P, z € R}. To truncateC(P) so that the corresponding toric 3-fold is smooth, fix
avector(e, ¢, 1), wheree, ¢’ are arbitrary integers, and Bt be the plane normal

to (e, ¢/, 1). The truncated cylinder correspondinglioconsists of the points of
C(P) on or betweerP andIl. The truncated cylinders in Theorem 3.5 are exactly
those constructed in this way.

The 1-dimensional cones of the fanfor the 3-fold corresponding to one of
these truncated cylinders are the 1-dimensional cones of tha&'féor the toric
surface corresponding ® (sitting in the(x, y)-plane inR®) and two more, gen-
erated by(0, 0,1) and—(e, ¢’,1). The projection mafR® — R, forgetting the
first two coordinates, maps onto the fanA’ c R for P, Let A’ be the subfan of
A with 1-dimensional cones generated®@y0, 1) and—(e, ¢/, 1). Then
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A=1{6"+0"|6"eN, o"eN'}.

Thus, according to [O, Prop. 1.33], the toric variety corresponding to the truncated
cylinder is an equivariant fiber bundle ovet with fiber isomorphic to the toric
surface corresponding t8. The bundles appearing in Theorem 3.5, (9), can be
analyzed similarly.
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