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Inflections of Toric Varieties

David Perkinson

To William Fulton

Let V = {m0, . . . , mt } be a set of distinct lattice points inZn≥0 with m0 = E0.
Associated withV is an affine monomial map

v : Cn→ C t+1,

x 7→ (1, xm1, . . . , xmt ),

wherexmi stands for the monomialxmi11 x
mi2
2 · · · xminn . (The ordering of the lattice

points will not be important. The lattice pointm0 = E0 is included, anticipating
the move to projective space.) As will be described carefully in Section 1, the span
of the derivatives ofv up to orderk at a pointp determines the osculating space
of orderk atp. If the dimension of this osculating space is smaller than expected
then we say thatv is inflected atp. In this paper, we show how inflection points
are related to the lattice pointsV and use this information to characterize toric va-
rieties with certain extreme inflectional behavior.

The following two theorems are examples of previous work in which varieties
are characterized by their inflectional behavior.

Theorem 0.1 [FKPT]. Let t = (n+k
k

) − 1, and letX ⊂ P t be a smooth projec-
tive n-fold whosekth osculating space is all ofP t at all points ofX; thenX is
isomorphic toP n embedded via thek-fold Veronese mapping.

Theorem 0.2 [BPT]. Let t ≥ 2, and letX ⊂ P2t+1 be a smooth projective sur-
face not contained in a hyperplane such that the dimension of itskth osculating
space is2k at all points ofX and for allk ≤ t. ThenX is isomorphic toP1× P1

embedded via all global sections ofpr∗1 OP1(1) ⊗ pr∗2OP1(t), soX is a rational
normal scroll of degree2t.

These two theorems are proved using sophisticated machinery (in the former case,
a result of Mori characterizing projective space as the only variety with ample tan-
gent bundle; in the latter, adjunction theory). However, in all cases, the varieties
and embeddings turn out to be toric. As might be expected, if we are willing to
restrict our attention to toric mappings then we can establish these theorems by
fairly easy combinatorics characterizing polytopes with certain properties.

In Section 1, we show that the dimensions of the osculating spaces ofv are
given by the Hilbert function of the set of lattice points,V. In Section 2 we discuss
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extending the monomial mapping to a mapping of a toric variety into projective
space. In Section 3, our main result is to describe toric varieties of dimensions 2
and 3 embedded in projective space so that the osculating spaces up to a certain
order are as large as possible at all points of the variety and strictly smaller than
possible for higher orders (cf. Theorem 3.2 and Theorem 3.5). In the case of di-
mension 2, we show that the variety must be the projective plane (embedded via
a Veronese), a Hirzebruch surface, or one of three exceptions. The exceptional
cases are nonruled varieties whose second-order osculating spaces have dimen-
sion strictly less than 5 at all points. One of these cases was first noticed in [T],
and the other two are new.

Acknowledgments. I would like to thank the Matematisk Institutt of the Uni-
versity of Oslo, Norway, for providing a stimulating and beautiful place in which to
work. Particular thanks go to Ragni Piene for many useful conversations. Thanks
also to Reed College students Oliver Gugenheim and Chris Fesler for helping me
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part of Gugenheim’s undergraduate thesis [Gu]. Finally, thanks to Reed College
for providing time and support through a Vollum research grant.

1. Inflections of Affine Monomial Maps

Fora ∈Zn≥0, we denote theath partial derivative ofv in the following way:

va := 1

a!

∂ |a|v
∂x

a1
1 · · · ∂xann

,

where|a| =∑n
i=1ai anda! = a1! · · · an!. To study the inflections ofv, define for

each integerk ≥ 0 the matrix ofk-jets ofv

Jkv := (va)0≤|a|≤k
whose rows are the partial derivatives ofv up to orderk, written in any order. The
kth osculating space ofv at the pointp ∈ Cn, Osck v(p), is the span of the vec-
torsva(p) for 1≤ |a| ≤ k, translated out tov(p). Hence, Osc1 v(p) is the tangent
space forv at p, and Osck+1v(p) is determined by the first-order infinitesimal
motions of Osck v(p). SinceE0 is included inV, it follows thatv is linearly inde-
pendent from theva with |a| > 0. Hence, rkJkv(p) = 1+dim(Osck v(p)). If this
rank is not as large as possible—that is, if it is less than

(
n+k
k

)
—then we say thatp

is aninflection point.In general, the rank ofJkv will have a generic value—which
might be less than maximal, and sov will be inflected everywhere—but might
drop below this generic value at special points. We call these special pointsproper
inflectionsor just inflections,again. (For an arbitrary mappingv : X → P t of a
smooth variety into projective space, one may define osculating spaces similarly
after taking local coordinates onX and lifting toC t+1. It is a standard result that
the osculating spaces are independent of the choice of local coordinates, and it is
clear that dimensions of the osculating spaces do not change after an affine change
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of coordinates in the target spaceC t . We are choosing to avoid the machinery of
principal parts or jet bundles as an unnecessary complication for the purposes of
this paper.)

As a further measure of inflection, letF i
k v denote theith Fitting ideal ofJkv,

the ideal generated by the determinants ofi × i minors ofJkv. Then there exist
inclusions

F i+1
k v ⊂ F i

k v

∪ ∪
F i+1
k−1v ⊂ F i

k−1v.

The rank ofJkv(p) is the largestr such thatF r
k v(p) = (1). Note that the Fit-

ting ideals are monomial ideals (this can be easily seen by direct computation, or
by appealing to the natural torus action onCn). This means that we can realize all
possible ranks forJkv(p) by looking at only thosep whose coordinates are zeros
and ones. In other words, the rank ofJkv(p) only depends upon the smallest co-
ordinate flat,{xi1 = · · · = xis = 0}, to whichp belongs.

Main Question. What is the relation betweenV (i.e., the set of lattice points
serving as exponents forv) and the inflections ofv?

To start, we can evaluate a partial derivative of a monomialx`:

x`a =
1

a!

∂ |a|x`

∂xa1 · · · ∂xan

=
(
`1

a1

)
· · ·
(
`n

an

)
x`−a

=
(
`

a

)
x`−a, (1)

where the multinomial coefficient is defined to be zero ifai > `i for somei. An
easy consequence is that

rk Jkv(0) = |{mi ∈V | |mi | ≤ k}|. (2)

Remark. The affine version of Theorem 0.1 follows: If thekth osculating spaces
of v : Cn → C t+1 all have dimensiont, then (2) says thatt + 1 = |{mi ∈ V |
|mi | ≤ k}|. If t = (n+k

k

)−1, we are forced to takeV = {m∈Zn≤0 | |m| ≤ k}.

Having determined the smallest possible rank, we now determine the largest.

Proposition 1.1. The generic rank ofJkv is

rk Jkv(1, . . . ,1) = HV (k),
whereHV is the affine Hilbert function ofV. That is,HV (k) is the codimension
in the linear space of polynomials inn variables and of degree≤ k of those poly-
nomials that are satisfied by the lattice pointsV ⊂ Zn ⊂ Cn.
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Proof. From (1), the column ofJkv(1, . . . ,1) corresponding to the monomialxmi

has the form (
mi

a

)
0≤|a|≤k

=
[(
mi,1

a1

)
· · ·
(
mi,n

an

)]
0≤|a|≤k

.

But
{(
x1
a1

) · · · (xn
an

)}
0≤|a|≤k forms a basis for the space of polynomials of degree≤ k

in x1, . . . , xn. Therefore, the linear relations among the rows ofJkv(1, . . . ,1) cor-
respond to polynomials of degree≤ k passing throughV.

Hence, finding a monomial map whose osculating spaces have fixed generic di-
mensions is the same as finding a set of lattice points with a certain Hilbert func-
tion. (For the extension of this result to toric mappings, see Remark 2.3.)

In what follows, we will need to know only the generic rank ofJkv and its rank
at the origin; but for completeness we will extend Proposition 1.1 to determine the
rank at all points. As noted earlier, is suffices to consider only points whose co-
ordinates consist of zeros and ones. We will use the following notation. Given
α ⊂ {1, . . . , n}, let pα ∈ Cn be the point whoseith coordinate is 0 ifi ∈ α and 1
otherwise. Thus, the generic value of rkJkv along the flat{xi = 0 | i ∈ α} is de-
termined by the rank at the pointpα. Let5 denote the lattice of integer points in
this flat. To calculate the rank atpα,we will take slices of the lattice that are paral-
lel to5. For each positive lattice point in the space normal to5 (i.e., for eacha ∈
5⊥ := {b ∈Zn≥0 | bi = 0, i /∈ α}), we take the slice througha, 5a := 5+ a :=
{b ∈ Zn≥0 | bi = ai, i ∈ α}. By forgetting the components they have in common,
we can think of the exponents ofv that lie in a particular slice5a as defining a
monomial map from the smaller space5a⊗C ∼= Cn−|α|. Applying Proposition1.1
to determine the rank of the(k−|a|)-jets of this new map and then summing over
the firstk+1 slices gives the result. To formalize this, letπ be the orthogonal pro-
jection ofCn onto the slice5a ⊗ C ∼= Cn−|α| and consider the exponents for the
new monomial map just described:

Va := π((V ∩5a) ∪ {a}).
We have forcedVa to include the origin, by adding{a}, in order to apply Proposi-
tion1.1. Tocompensate, define

δV (a) :=
{

0 if a ∈V,
1 otherwise.

Proposition 1.2. With notation as before,

rk Jkv(pα) =
∑

a∈5⊥,|a|≤k
(HVa (k − |a|)− δV (a)).

Proof. For eacha ∈ 5⊥ with |a| ≤ k, let Ba be the matrix whose rows are the
partial derivativesvb for b ∈5a such that|b| ≤ k. Hence, up to a re-arrangement
of rows,Jkv consists of the blocks of rows,Ba. Using (1) to take the partial deriv-
ative of a monomial gives
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xma (pα) 6= 0 ⇐⇒ mi = ai for i ∈ α
⇐⇒ m∈5a. (∗)

Hence, each column ofJkv(pα)will be nonzero along at most one of the blocks,Ba;
therefore,

rk Jkv(pα) =
∑

a∈5⊥,|a|≤k
rkBa(pα).

Consider the map̃v associated with the exponentsVa. It follows from (∗) that the
nonzero columns ofBa(pα) come from those components ofv of the formxm with
m∈5a. Hence, disgarding the columns of zeros,Ba(pα) is Jk−|a|ṽ(1, . . . ,1) pro-
videda ∈V. The rank ofBa(pα) is then given by Proposition1.1. If a /∈V, then it
has been added to fromVa. So ṽ has an “extra” component, andJk−|a|ṽ(1, . . . ,1)
has an “extra” row, linearly independent from the others. Thus, in this case,
rkBa(pα) = rk Jk−|a|ṽ(1, . . . ,1)−1. This accounts for the presence ofδV .

Remark 1.3. In the casepα = E0, we have5 = {E0}, 5⊥ = Zn≥0, 5a = {a}, and

HVa (k)− δV (a) :=
{

1 if a ∈V,
0 otherwise.

Thus, Proposition 1.2 reduces to (2).

2. Inflections of Toric Varieties

This section introduces the notation we use to describe toric varieties and defines
inflections for toric mappings. As general references, we use [F; O]. LetX be an
n-dimensional toric variety associated with a fan1 in ann-dimensional lattice
N ∼= Zn. We will use the notation in [C]:M = HomZ(N,Z) is the dual lattice;
1(k) is the set ofk-dimensional cones of1; if σ ∈1(k), thenσ(`) denotes the
`-dimensional cones contained inσ ; for eachρ ∈1(1), let nρ be the generator of
ρ ∩N andDρ the associatedT -invariant Weil divisor; and the set of suchDρ is a
basis for the free abelian group ofT -Weil divisors,Z1(1). To describe the homo-
geneous coordinate ring ofX introduced in [C], recall the exact sequence

0−→ M −→ Z1(1) −→ An−1(X) −→ 0,

m 7−→ Dm =
∑
ρ

〈m, nρ〉Dρ, (3)

whereAn−1(X) is the group of Weil divisors modulo rational equivalence and the
mapZ1(1)→ An−1(X) sends a divisor to its class. For eachρ ∈1(1), let xρ be a
variable. There is a 1–1 correspondence betweenT -Weil divisors and monomials
in thexρ, namely,D = ∑ρ aρDρ ∈ Z1(1) corresponds withxD = ∏ρ x

aρ
ρ . The

homogeneous coordinate ring ofX is S = C[xρ | ρ ∈ 1(1)] with grading given
by the class groupAn−1(X). This means that two monomialsxD andxE have the
same degree if [D] = [E] in An−1(X). For eachT -Weil divisorD, there exists a
coherent sheafOX(D) as well as the polyhedron
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P(D) = {m∈M ⊗ R | 〈m, nρ〉 ≥ −aρ ∀ρ ∈1(1)},
whose elements may be thought of as global sections ofOX(D).

For the rest of this section, assume thatX is smooth and projective; hence, each
OX(D) is a line bundle. Letv : X→ P t be a toric mapping—that is, determined
by globally generating sectionsm0, . . . , mt of aT -line bundleOX(D). We iden-
tify eachmi with a point in the polytope,P(D). The fact that thesemi globally
generateOX(D) means that they include the vertices ofP(D). In homogeneous
coordinates we have

v : X→ P t ,

x → (xDm0+D, . . . , xDmt+D),
(4)

whereDm =
∑

ρ〈m, nρ〉Dρ as before. Each [Dmi ] = 0 in An−1(X), sov is ho-
mogeneous of degreeD.

We define inflections forv by restricting it to the natural affine subsets ofX.
The varietyX comes from gluing theXσ ∼= Cn for each maximal coneσ ∈1(n).
For each suchσ, the 1-dimensional conesρ ∈ σ(1) correspond to variablesxρ in
the homogeneous coordinate ring. Setting the remainingxρ = 1 in (4) determines
an affine map,vσ : Xσ → C t+1, of the sort considered in Section 1. This map is
the restriction ofv toXσ , lifted toC t+1. The lattice points determining this affine
map can be determined from themi ∈P(D) by translating the vertex ofP(D) cor-
responding toσ to the origin and writing themi with respect to the basis for the
lattice, {nρ | ρ ∈ σ(1)}. Restrictingv to another maximal affine subset amounts
to choosing another vertex ofP(D) and writing themi with respect to the corre-
sponding basis for the lattice (cf. Example 2.4).

A point p ∈Xσ is aninflection pointfor v if it is an inflection point forvσ . To
show that this definition is independent of the choice ofσ, we define the matrix of
homogeneousk-jets,taking derivatives up to orderk with respect to the homoge-
neous coordinates:

J hk v := (va)a∈Z|1(1)|≥0 ,|a|≤k.

Proposition 2.1. For eachσ ∈1(n), theC[xρ | ρ ∈ σ(1)]-span of the rows of
the matrix of homogeneous jets restricted toXσ ,

J hk v
∣∣
σ

:= J hk v
∣∣
xρ=1,ρ /∈σ(1),

is the same as that of the affine jets onXσ ,

Jkv
σ := (vσa )a∈Zn≥0,|a|≤k.

Proof. One direction is obvious, since the rows of the latter matrix are a subset of
the rows of the former. To show the opposite inclusion, we use “Euler formulas”
for X to rewrite the derivatives of homogeneous coordinates in terms of deriva-
tives of affine coordinates. As shown in [BC], there is one Euler formula for each
elementφ ∈ HomZ(An−1(X),Z). If f ∈ S is a homogeneous polynomial of de-
gree [E], then the Euler formula corresponding toφ is∑

ρ∈1(1)
φ([Dρ ])xρfxρ = φ([E])f.
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SinceX is smooth,{nρ}ρ∈σ(1) is a basis for the latticeN. It follows from (3)
that [Dρ ]ρ /∈σ(1) forms a basis forAn−1(X). Hence, for eachρ /∈ σ(1), there is an
elementφ ∈HomZ(An−1(X),Z) such thatφ([Dρ ]) = 1 andφ([Dµ]) = 0 for all
otherµ /∈ σ(1). Thus, for any polynomialf of degree [E], after settingxρ = 1 we
can solve forfxρ using the Euler formula corresponding toφ to obtain

fxρ = φ([E])f −
∑
µ∈σ(1)

φ([Dµ])xµfxµ.

In this way, a derivative of any order with respect to the homogeneous variables
can be reduced to an expression involving only the affine coordinates.

As an immediate consequence, we see that our definition of inflection does not
depend on a choice ofXσ .

Corollary 2.2. The Fitting ideals ofJ hk v
∣∣
σ

andJkvσ are the same. In partic-
ular, rk J hk v(p) = rk Jkvσ (p) for all p ∈Xσ .

Remark 2.3. Note that ifV = {m0, . . . , mt } ⊂ P(D) is the set of monomials
definingv, then the dimension of thekth osculating space at a generic point ofX

is again given by the Hilbert function,HV (k). This follows from Proposition 1.1
because the set of monomials defining any restriction ofv to a maximal affine
open set,Xσ , differs fromV by an affine change of coordinates, which does not
affectHV .

Example 2.4 (Togliatti’s Del Pezzo). Consider the affine map

C2→ C6,

(x, y) 7→ (1, x, y, x 2y, xy2, x 2y2),

defined by monomials whose exponents form the vertices of the hexagon pictured
in Figure 1.

Figure 1

The mapping naturally extends to a mapping of the toric surfaceX (with fan1)
determined by the inward normals of the hexagon (see Figure 2).
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Figure 2

The maximal cones are labeledσ1, . . . , σ6. The 1-dimensional cones have gen-
erators(1,0), (0,1), (−1,1), (−1,0), (0,−1), and(1,−1) to which correspond
the homogeneous coordinatesx1, . . . , x6, respectively. Choosing the dual basis for
M andD3, . . . , D6 as a basis forA1(X), the exact sequence (3) becomes

0−→ Z2


1 0

0 1

−1 1

−1 0

0 −1

1 −1


−−−−−−−→ Z6

 1 −1 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

−1 1 0 0 0 1


−−−−−−−−−−−→ Z4 −→ 0.

ChoosingD = D3 + 2D4 + 2D5 +D6, the polytopeP(D) is the convex hull of
the exponents with which we started. The extension of the mapping toX is given
in homogeneous coordinates (cf. (4)) by

v : X→ P 5,

(x1, . . . , x6) 7→ (x3x
2
4x

2
5x6, x1x4x

2
5x

2
6, x2x

2
3x

2
4x5,

x 2
1x2x5x

2
6, x1x

2
2x

2
3x4, x

2
1x

2
2x3x6).

Our original map is the restriction ofv to Xσ1 (lifted to C6) obtained by setting
x3 = · · · = x6 = 1. To restrictv toXσ2, we setx1= x4 = x5 = x6 = 1:

vσ2 : C2→ C6,

(x2, x3) 7→ (x3,1, x2x
2
3, x2, x

2
2x

2
3, x

2
2x3).

The exponents for this affine restriction come from the original exponents by the
following affine change of coordinates: translate the vertex(1,0) to the origin and
use the first lattice points lying along the two edges ofP(D) emanating from this
vertex as a basis for the lattice. Using Proposition1.1,Proposition 1.2, and (2) (or
by direct calculation), we find the dimensions of the osculating spaces. By sym-
metry, we need only considervσ1—the affine map with which we started—and
by the discussion in Section 1 we need only consider the points(0,0), (1,0), and
(1,1) (see Table 1).

The first osculating spaces are all 2-dimensional sincev is an embedding. We
would expect the generic second osculating space to have dimension 5. However,
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Table 1 Dimensions of the osculating spaces
of Togliatti’s Del Pezzo

k Osck vσ1(0,0) Osck vσ1(1,0) Osck vσ1(1,1)

1 2 2 2
2 2 4 4
3 4 5 5
≥ 4 5 5 5

the six exponents happen to lie on a conic, so the dimension is 4. The exponents
place independent conditions on higher-degree curves. By (2), the dimension of
thekth osculating space at the origin is found by counting the numberm of expo-
nents, with|m| ≤ k.

The unusual inflectionary behavior in this example was first noticed in [T]. It
is a special projection—the exponent(1,1) ∈ P(D) is not included—of the Del
Pezzo surface of degree 6 inP6.

3. Characterization of Toric Varieties with
Special Inflectionary Behavior

Using the notation of the previous section, letX be a smooth, projective, toric
n-fold, and letv : X→ P t be a toric embedding determined by sections of a line
bundleOX(D). We identify the sections with a set of lattice pointsV ⊂ P(D) ⊂
M ∼= Zn. Assume thatv spansP t . In this section, we will characterizev with os-
culating spaces of certain dimensions. The idea is to apply the results in Section 1
relating the dimensions with Hilbert functions of lattice points to determineP(D)

andV, from whichX andv can be reconstructed (cf. [F, Sec. 3.4]).

Veronese

First, we have the toric version of Theorem 0.1.

Theorem 3.1. Let t = (n+k
k

) − 1 and suppose thatOsck v(p) = P t for all p ∈
X. ThenX = P n, andv is thek-fold Veronese embedding.

Proof. Translate any vertex ofP(D) to the origin and take the first lattice points
along the 1-dimensional faces emanating from the vertex as a basis for the lattice
(possible sinceX is smooth). As discussed previously, we can think of the points
of V (after the affine change of coordinates) as defining an affine map as in Sec-
tion 1, the restriction ofv to a maximal affine subset ofX. According to (2), we
must include the lattice pointsm ∈ Zn≥0 with |m| ≤ k. However, since there are
t +1= (n+k

k

)
of these, there can be no other lattice points inV. So, up to an affine

change of coordinates,P(D) andV (and henceX andv) are determined.
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Surfaces

Consider now the case whereX is a surface and, at all points ofX, the osculat-
ing spaces forv are as large as possible up through orders−1 and strictly smaller
than possible for orders.

Theorem 3.2. Suppose thatdim(Osck v(p)) =
(2+k
k

) − 1 for k = 1, . . . , s − 1
and thatdim(Oscs v(p)) <

(2+s
s

)−1 for all p ∈X. Up to an isomorphism in the
category of toric mappings to projective space, the following are the only possi-
bilities.

(1) X isP2, v is the(s−1)thVeronese embedding, andP(D) is as shown in Fig-
ure 3; V consists of all lattice points inP(D).

Figure 3

(2) X is a Hirzebruch surfaceFb (including the caseF0 = P1 × P1), andP(D)
is as shown in Figure 4 for integersa ≥ s − 1 andb ≥ 0; V can be any sub-
set of the lattice points ofP(D) containing all points“out to levels − 1,” as
described in the beginning of the proof.

Figure 4

(3) s = 2, the surfaceX is P1× P1 blown up at twoT-fixed points,v is a special
projection toP5 of the Del Pezzo surface of degree6 in P6 (cf. Example 2.4),
andP(D) is as shown in Figure 5; V consists of the vertices ofP(D).

Figure 5
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(4) s = 2, the surfaceX is the blow-up of the preceding example in twoT-fixed
points,v embedsX as a surface of degree14 in P7, andP(D) is as shown in
Figure 6;V consists of the vertices ofP(D).

Figure 6

(5) s = 2, the surfaceX is the blow-up of the preceding example in fourT-fixed
points,v embedsX as a surface of degree48 in P11, andP(D) is as shown in
Figure 7; V consists of the vertices ofP(D).

Figure 7

Proof. Translate a vertex ofP(D) to the origin. SinceX is smooth, the genera-
tors of the two edges emanating from the vertex must form aZ-basis for the lattice
M. With respect to this basis, the condition that rkJs−1v(p) =

(1+s
s−1

)
for all p

implies, by (2) from Section 1, that the sections determiningv must include all
those corresponding to lattice points(a, b) with a + b ≤ s −1. We say thatV in-
cludes all pointsout to levels −1 with respect to the chosen vertex. The fact that
rk Jsv(p) <

(2+s
s

)
for all p means that the lattice points determiningv must sat-

isfy a polynomial of degrees in two variables, sayF. This reasoning allows us to
construct the possibilities forP(D) and the lattice points,V.
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So far, we know thatV (after the affine change of coordinates just described)
must include(a, b) such thata+ b ≤ s −1. To constructP(D), go out along one
of the edges emanating from the vertex(0,0) to the next vertex, say(a,0), where
a ≥ s − 1. SinceX is smooth, the next edge emanating from this vertex passes
through a lattice point of the form(b,1) (see Figure 8). We divide the problem
into four cases as follows.

Figure 8

Case (i):b > a, s > 2. In this case, including all points out to levels −1 with
respect to the vertices(0,0) and(a,0) implies thatV must include(b − 1,1) as
well as(b,1). This means that there are at leasts +1 elements ofV along the line
y = 1. Hence, the curve of degrees containingV must have a linear component:
F = (y −1)G for some polynomialG of degrees −1 passing through the points
V not on the liney = 1. However, there are at leasts points ofV lying along the
x-axis. Thus,G = yH, whereH has degrees−2 and passes through the remain-
ing lattice points. Continuing this reasoning now for the linesy = 2, y = 3, . . .
shows thatv is a mapping of a Hirzebruch surface as described in the statement of
the theorem.

Case (ii): a > s − 1, s ≥ 2. The analysis here is similar to that for case (i).
Since we must have points out to levels−1 with respect to the vertex(0,0), there
are more thans elements ofV along thex-axis and soy must be a factor ofF.
Continue, showing thaty − 1, . . . , y − (s − 1) are factors. The only possibility
(again) is the Hirzebruch surface.

Case (iii): a = s−1, s > 2. Given cases (i) and (ii), we may assume that each
edge ofP(D) contains exactlys lattice points and thatb ≤ a. The edge emanat-
ing from (a,0) is forced to connect with the vertex lying on they-axis,(0, s −1).
The only possibilities areF0 = P1× P1 (if b = a) and the Veronese (ifb < a).

Case (iv): s = 2. This last case is more difficult. First, given the foregoing
cases and that the toric variety is smooth, we can assume that—besides(0,0),
(1,0), and(0,1)—the setV contains lattice points of the form(b,1) and(1, c)
with b, c > 1. Fixingb andc, there is a unique conic passing through these points:

Q = (c −1)x(x −1)+ (b −1)y(y −1)− (b −1)(c −1)xy.

The lattice points onQ are easy to describe. It happens that ifp is a lattice point
onQ then the horizontal line throughp (if not tangent) meets in another lattice
point, and similarly for vertical lines. Starting with(0,0), the horizontal and ver-
tical lines meetQ in (1,0), (0,1), respectively. Repeating for the points(1,0) and
(0,1) gives the points(1, c) and(b,1), respectively, and so on. In this way, we get
all of the lattice points onQ (see Figure 9). We want to show that to buildP(D)
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starting with the initial five points requires that we take all the lattice points onQ;
hence,b andcmust be such thatQ is an ellipse (sinceX is projective,P(D)must
have a finite number of vertices, for instance).

Figure 9

Translating any lattice point ofQ to the origin, we now show that the lattice
points onQ that are adjacent to that point will form a basis for the lattice. Hence,
thinking of the lattice point as vertex of a potentialP(D), the smoothness condition
is satisfied. Consider consecutive lattice points,(x1, y1), (x2, y2), and(x3, y3)

alongQ (Figure 10) and assume the smoothness condition is satisfied at(x2, y2):

det

(
x3− x2 y3− y2

x1− x2 y1− y2

)
= 1.

Figure 10

It is easy to check that the intersection of a vertical line through any point(x, y)

onQ meetsQ again at(x,1+ (c − 1)x − y) and that the intersection of a hor-
izontal line through(x, y) meetsQ again at(1+ (b − 1)y − x, y). Drawing the
vertical lines through the(xi, yi) gives a sequence(xi,1+ (c − 1)xi − yi) with
i = 1,2,3 of consecutive lattice points onQ for which the smoothness condition
is still satisfied:

det

(
x3− x2 (c −1)(x3− x2)− (y3− y2)

x1− x2 (c −1)(x1− x2)− (y1− y2)

)
= det

(
x3− x2 −(y3− y2)

x1− x2 −(y1− y2)

)
= −1.
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Similar reasoning holds for horizontal lines. Since any sequence of consecutive
lattice points onQ comes from repeatedly intersecting with horizontal or vertical
lines starting with the sequence(b,1), (1,0), (0,0)—for which the smoothness
condition holds—the smoothness condition is satisfied for any three consecutive
points alongQ, as claimed.

Letp0, p1, andp2 be adjacent lattice points ofP(D) lying consecutively onQ.
Thinking ofp2 as the vertex, the lattice pointsp3 for whichp3− p2 andp1− p2

form a basis for the lattice lie on a line passing throughp0. This line intersects
Q in at most one other point; hence, it must lie consecutively alongQ with p1

andp2. This shows that, in order to buildP(D) starting from our initial five points,
we must take consecutive lattice points alongQ. The construction can work only
whenQ is an ellipse (i.e., when the discriminant ofQ is less than 0). This means
that(b−1)(c−1) < 4,which implies(b, c)∈ {(2,2), (2,3), (3,2), (2,4), (4,2)}.
The case ofb = c = 2 gives Togliatti’s surface, (3);b = 2 andc = 3 give (4)
(isomorphic tob = 3 andc = 2); andb = 2 andc = 4 give (5) (isomorphic to
b = 4 andc = 2).

Remark 3.3. Restricting to the category of toric varieties, Theorem 0.2 is easily
established as a corollary to Theorem 3.2. Lett ≥ 2, and letv : X→ P2t+1 be an
embedding with dim(Osck v(p)) = 2k for k ≤ t at all pointsp ∈X. Apply Theo-
rem 3.2 withs = 2 to narrow the possibilities. We then look for polytopesP and
a subset of lattice pointsV, including the vertices ofP, satisfying two properties:

(1) translating any vertex ofP to the origin, and choosing the adjacent lattice
points as a basis for the lattice, the number of(a, b) ∈ V with a + b ≤ k is
2k +1 for k ≤ t (cf. Section 1, (2));

(2) HV (k) = 2k for k ≤ t (Proposition1.1,Remark 2.3).

It is straighforward to check that the only possibility is as stated in Theorem 0.2.

The following conjecture can be similarly established for toric varieties.

Conjecture 3.4 [PT]. Let t ≥ 2, and letX ⊂ P2t+2 be a smooth projective
surface not contained in a hyperplane and such that the dimension of itskth os-
culating space is2k at all points ofX and for allk ≤ t. ThenX is isomorphic to
a P1-bundle, the Hirzebruch surfaceF1 embedded as a scroll via the natural map

X = F1
∼= P(OP1(t)⊕OP1(t + 1))

→ P(H 0(OP1(t))⊕H 0(OP1(t + 1))) ∼= P2t+2.

In fact, it turns out that the conjecture does not hold outside of the toric setting. R.
Piene and H. Tai (personal communication) have found special (nontoric) projec-
tions of Veronese embeddings that satisfy the hypotheses of the conjecture. Unlike
our toric examples, the hypotheses hold for these projections withk ≤ t + 1, not
justk ≤ t.

These counterexamples to the conjecture are at least projections of toric vari-
eties, and one might get the impression that placing many restrictions on the oscu-
lating spaces of an embedding at least forces the variety to be rational. However,
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Dye has given examples of embeddings of irrational varieties with very special
osculating spaces [D], including a nonruled surface inP 5 whose second osculat-
ing spaces are all of dimension≤ 4.

3-Folds

We now consider the same problem for 3-folds. Assume that, at all points of the
3-foldX, the osculating spaces are as large as possible up through orders−1 and
are strictly smaller than possible for orders. As in the proof of Theorem 3.2, we
talk about lattice points of a polytope having a certain “level” with respect to a
vertex (cf. V.3 in the proof of Theorem 3.5).

Theorem 3.5. Suppose thatdim(Osck v(p)) =
(3+k
k

)− 1 for k = 1, . . . , s − 1,
and thatdim(Oscs v(p)) <

(3+s
s

)−1 for all p ∈X. Up to an isomorphism in the
category of toric mappings to projective space, the following are the only possi-
bilities.

(1) X is P3, v is the(s − 1)th Veronese embedding, andP(D) is the tetrahedron
shown in Figure 11; V consists of all lattice points inP(D).

Figure 11

(2) X is an equivariant fiber bundle overP1 with fiber equal to one of the toric
varieties appearing in Theorem 3.2. The polytopeP(D) is a truncated cylin-
der over one of the polygons in Theorem 3.2. Hexagons, octagons, and do-
decagons are allowed for the base of the cylinder only in the cases = 2 (cf.
Remark 3.6). V is any subset of the lattice points inP(D) containing all
points out to levels − 1.

(3) X is a P1-bundle of the formP(OS(E) ⊕ OS(E ′)) for some ample divisors
E, E ′ on an arbitrary smooth toric surfaceS (cf. Remark 3.6), andP(D) has
the form shown in Figure 12. The shaded polygon(in the planez = 0) rep-
resentsP(E) and the dashed polygon(in the planez = 1) representsP(E ′);
the top face(in the planez = s − 1) also has the formP(E ′′) for a divisor
E ′′ onS. The setV is any subset of the lattice points inP(D) containing all
points out to levels − 1.
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Figure 12

(4) s = 2, X isP3 blown up in four points, andP(D) is the truncated tetrahedron
shown in Figure 13; V consists of the vertices ofP(D).

Figure 13

(5) s = 2 andP(D) is the join of two hexagons sharing an edge(see Figure 14);
V consists of the vertices ofP(D).

Figure 14
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(6) s = 2, X is P1× P1× P1 blown up in six points, andP(D) is the truncated
octahedron shown in Figure 15; V consists of the vertices ofP(D).

Figure 15

(7) s = 2 andP(D) is constructed from eight dodecagons, six octagons, and
twenty-four triangles(see Figure 16); V consists of the vertices ofP(D).

Figure 16
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(8) s = 2 andP(D) is constructed from four dodecagons, four hexagons, and
twelve triangles(see Figure 17); V consists of the vertices ofP(D).

Figure 17

(9) s = 2 andP(D) is the join of two dodecagons sharing an edge(see Fig-
ure 18); V consists of points out to level2 from the vertices ofP(D) and any
number of the lattice points along the edges joining the dodecagons.

Figure 18
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(10) s = 2 and P(D) is constructed from two dodecagons, six octagons, and
twelve triangles(see Figure 19); V consists of the vertices ofP(D).

Figure 19

(11) s = 2 andP(D) is constructed from six octagons and eight triangles(see
Figure 20); V consists of the vertices ofP(D).

Figure 20

(12) s = 2 andP(D) is constructed from three octagons, two hexagons, and six
triangles(see Figure 21); V consists of the vertices ofP(D).
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Figure 21

(13) s = 2 andP(D) is the join of two octagons sharing an edge(see Figure 22);
V consists of points out to level2 from the vertices ofP(D) and any number
of the lattice points along the edges joining the octagons.

Figure 22

(14) s = 2 andP(D) is constructed from one dodecagon, three octagons, four
hexagons, three quadrilaterals, and six triangles(see Figure 23); V consists
of the vertices ofP(D).
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Figure 23

(15) s = 2 andP(D) is constructed from one dodecagon, seven hexagons, and
six triangles(see Figure 24); V consists of the vertices ofP(D).

Figure 24

(16) s = 2andP(D) is constructed from six octagons, eight hexagons, and twelve
quadrilaterals(see Figure 25); V consists of the vertices ofP(D).
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Figure 25

(17) s = 2 and P(D) is constructed from one octagon, four triangles, four
hexagons, and a square(see Figure 26); V consists of the vertices ofP(D).

Figure 26

Proof. Arguing as at the beginning of the proof to Theorem 3.2, the problem is
equivalent to finding all sets of lattice pointsV in R3 with convex hull a poly-
topeP such that
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(V.1) P is 3-valent (i.e., three edges emanate from each vertex);

(V.2) translating any vertex to the origin, the first lattice points along the three
edges emanating from the vertex form aZ-basis for the latticeZ3 ⊂ R3

(ensuring that the associated toric variety is smooth);

(V.3) V includes all lattice pointsout to levels − 1 with respect to each vertex:
translating any vertex ofP to the origin and lettingx, y, z be the first lattice
points along the three edges emanating from the vertex, the setV of lattice
points must include those points corresponding toax + by + cz for a, b, c
nonnegative integers witha + b + c ≤ s −1; and

(V.4) the lattice points inV must satisfy a nonzero polynomial in three variables
with degree≤ s.

Let F be a (2-dimensional) face ofP. The points ofF ∩ V, thought of as sit-
ting in a 2-dimensional lattice in the plane supportingF, determine a mapping
of a toric surface. We say thatF is proper if, up to a change of coordinates of
the 2-dimensional lattice,F ∩ V has one of the forms of Theorem 3.2 (for the
sames): a certain triangle, a family of quadrilaterals, and a certain hexagon, oc-
tagon, or dodecagon (the last three are possibilities only whens = 2). We say
that P is proper if each of its faces is proper; otherwise,P is improper. We
divide the problem into four cases: (I)P proper,s > 2; (II) P proper,s =
2, but no octagons or dodecagons are allowed as faces ofP ; (III) P proper,
s = 2, andP must include an octagon or dodecagon as a face; and (IV)P

improper.

Case I:P proper,s > 2. SinceP is proper ands > 2, each face ofP must be a
triangle or a quadrilateral. Euler’s formula shows that the only such 3-valent poly-
topes are formed by: (i) four triangles (a tetrahedron); (ii) two triangles joined by
three quadrilaterals (a truncated triangular cylinder); and (iii) six quadrilaterals (a
box). We consider these cases separately.

(i) (four triangles) There is one possibility: a tetrahedron withs lattice points
on each edge. In order to satisfy (V.3), the setV must contain all the lattice points
on or in the tetrahedron. It is then easy to check that (V.1)–(V.4) are satisfied.
This gives (1), the Veronese embedding.

(ii) (two triangles, three quadrilaterals) SinceP is 3-valent, if two triangles
meet then they must share an edge andP is forced to be a tetrahedron. Hence, in
the present case, the two triangles do not touch. We may assume that the coor-
dinate planesx = 0, y = 0, andz = 0 form three of the five supporting planes
for P and that the bottom face (in the planez = 0) is the triangle with vertices
(0,0,0), (s − 1,0,0), and (0, s − 1,0), surrounded by quadrilaterals. The re-
maining triangle must also haves lattice points per side. Using the restriction
from Theorem 3.2 on the quadrilateral faces, the vertices of this triangle must have
the form(0,0, a), (s −1,0, b), (0, s −1, c) for integersa, b, c ≥ s −1. We may
assume thata is no larger thanb andc. Again using the restriction on the shapes of
the quadrilateral faces, it follows thatb = (s −1)e+ a andc = (s −1)e ′ + a for
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some integerse, e ′ ≥ 0. It is straightforward to check that the resulting polytope
satisfies conditions (V.1) and (V.2). The lattice points in the base of the cylinder
satisfy a polynomial of degrees in two variables, and all the lattice points in the
polytope satisfy this same polynomial. Thus, any set of lattice points in the poly-
tope meeting condition (V.3) also meets condition (V.4). There is no restriction on
the height of the truncated cylinder. This example falls under (2) in the statement
of the theorem.

(iii) (six quadrilaterals) We may take one vertex of the box,P, to be the ori-
gin and take the coordinate planesx = 0, y = 0, and z = 0 as three of the
six supporting planes. We may take the vertices of the bottom of the box (in the
planez = 0) to be(0,0,0), (s − 1,0,0), (0, a,0), and(s − 1, (s − 1)e + a,0)
for integerse ≥ 0 anda ≥ s − 1. Ruling out the case of a box withs lat-
tice points per side, assume that the bottom is choosen so thata > s − 1.
The restriction from Theorem 3.2 on the shape of the quadrilateral in the plane
x = 0 forces(0,0, s − 1) to be a vertex ofP and the remaining vertex in this
plane to have the form(0, (s − 1)e ′ + a, s − 1) for some integere ′ such that
(s−1)e ′ + a ≥ s−1. Since the edge along the bottom connecting(s−,0,0) and
(s − 1, (s − 1)e + a,0) has length greater thans − 1, the height of the face at-
tached to the bottom along this edge must bes − 1. This forcesz = s − 1 to be
a supporting plane forP and the remaining vertex in the planey = 0 to have the
form ((s −1)e ′′ + s −1,0, s −1) for some integere ′′ ≥ 0. To make the top of the
box proper, we must take(s −1)e ′ + a = s −1 ore ′′ = 0. In the former case, the
remaining vertex has the form((s − 1)(e ′′ + 1), (s − 1)(e + 1), s − 1); in the lat-
ter,(s −1, (s −1)(e+ e ′)+ a, s −1). In either case, we get a truncated cylinder
over the face supported byy = 0.

It is straightforward to check that the resulting polytopes satisfy conditions (V.1)
and (V.2). As in case (ii), any set of lattice points satisfying (V.3) will also satisfy
(V.4). This example falls under (2).

Case II:P proper,s = 2, but no octagons or dodecagons are allowed as faces
ofP. In this case,P may have faces that are triangles, quadrilaterals, or hexagons.
From Euler’s formula, the possibilities for the number of triangles and quadrilat-
erals are the same as in Case I. However, given an acceptable number of triangular
and quadrilateral faces, there are an infinite number of combinatorially different
3-valent polytopes that can be built by adding hexagons [G, pp. 253–281]. Only
finitely many of these give rise to lattice points satisfying our conditions. We con-
sider three cases, as before.

(i) (four triangles) As argued in Case I(i), if two triangles touch thenP must
be a tetrahedron; so suppose that no two triangles touch. Up to a change of
coordinates of the lattice, we may assume that the polytope contains a trian-
gle surrounded by three hexagons with coordinates as shown in Figure 27 (the
coordinate planes are supporting planes). These lattice points sit on only one
quadric,

Q = −x + x 2 − y + y2 − z+ z2 + xy − xz− yz.
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Figure 27

At each of the vertices labeledα, β, γ we must fit triangles, since a hexagon
added there would not have vertices lying on the quadric (e.g., for a hexagon to sit
at α = (0,0,1) it must also include the adjacent vertices(1,0,2) and(0,1,2)).
Lying in the plane determined by these vertices, the remaining vertices are forced
to be(2,1,4), (1,2,4), and(2,2,5), none of which lie on the quadric. Hence,
the triangle with verticesα, (1,0,2), and(0,1,2) lies on the polytope and, simi-
larly, there are triangles at verticesβ andγ. Now, since the polytope is 3-valent,
z = 2 must be a supporting face, which closes the polytope with a hexagon. The
result is (4), a truncated tetrahedron. The vertices form a set of lattice points sat-
isfying condition (V.3). They lie on a unique quadricQ and thus satisfy (V.4).
None of the remaining lattice points from the polytope—the centers of the four
hexagons—lie onQ. Finally, it is straightforward to check that (V.2) is satisfied.

(ii) (two triangles, three quadrilaterals) Suppose that a triangle touches two
quadrilaterals. Using 3-valency and properness, and considering the supporting
planes of the polytope, we see that the only possibility is a truncated cylinder over
the triangle.

Now suppose that a triangle touches exactly one quadrilateral and hence two
hexagons. We may assume that the configuration is as shown in Figure 28. The
supporting plane determined by pointsα, β, δ forcesβε to be an edge, and the sup-
porting plane determined byβ, γ, ε forcesγφ to be an edge. Thus, the polytope
is what might be called the “join” of two hexagons sharing an edge, (5). It is easy
to check that the smoothness property holds at each vertex. For instance, trans-
lating the vertexα = (0,1,2) to the origin, the adjacent lattice points—including
the point(1,1,1) on the edgeαδ—form a basis for the lattice:

det

(
(0,0,1)− α
(0,2,2)− α
(1,1,1)− α

)
=
(0 −1 −1

0 1 0
1 0 −1

)
= 1.
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Figure 28

For the final possibility, if there is a triangle that does not touch a quadrilateral
then we repeat the argument just given in (i) to get a truncated tetrahedron, (4).

(iii) (six quadrilaterals) There are three cases to consider. First, suppose that
at least three quadrilaterals meet at a point. By considering supporting planes
and using 3-valency, we are reduced to the case of no hexagons, Case I(iii). Sec-
ond, suppose that no three quadrilaterals meet at a point yet there is set of two
quadrilaterals meeting at a point. By 3-valency, the quadrilaterals that meet must
share an edge. Since no three quadrilaterals meet, there is a hexagon at both ver-
tices along this edge. It is straightforward to check that this forces the polytope
to be a truncated hexagonal cylinder, an instance of (2). Finally, suppose that no
two quadrilaterals meet. Since each quadrilateral is surrounded by hexagons hav-
ing two lattice points on each edge, the quadrilaterals must also have exactly two
lattice points on each edge. Starting with a square surrounded by hexagons, we
proceed as in the latter part of Case II(i) and arrive at (6), a truncated octahedron
as stated in the theorem.

Case III:P proper,s = 2, andP must include an octagon or dodecagon as a
face. This case involves a long and tedious search, greatly facilitated by the use
of a computer. The basic idea is that the points ofV must lie on a quadric, and
there are not too many choices for a quadric containing a dodecagon or an octagon.
Trying to construct a polytope one face at a time soon determines the quadric com-
pletely and allows us to specify the possibilities. We will give an outline of the
search as well as examples illustrating all of the techniques needed. The problem
is divided into six cases: (i) two dodecagons meet, (ii) two octagons meet, (iii) a
dodecagon and octagon meet, (iv) a dodecagon and hexagon meet, (v) an octagon
and hexagon meet, and (vi) none of the above.

(i) (two dodecagons meet) First note that—taking any vertex of the dodecagon
of Theorem 3.2 as the origin and the adjacent lattice points as a basis for the lat-
tice—there are two possibilities: the original dodecagon or its flip about the di-
agonal,y = x. Thus, in our case, we consider two possible orientations for the
dodecagons that meet. We may assume that one dodecagon sits in the planez = 0
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and includes the lattice points(0,0,0), (1,0,0), (0,1,0), (2,1,0) (the rest are de-
termined). We may also assume that the second dodecagon sits in the planex = 0
and includes the lattice points(0,0,0), (0,1,0), (0,0,1). However, there are two
possible orientations for the second dodecagon: it can include the vertex(0,2,1)
or its flip, (0,1,2); the former case (see Figure 29) will be called orientation 1.

Figure 29

The quadrics containing these two dodecagons have the form

Q = 9ax 2 − 9axy + bxz+ 3ay2 − 3ayz+ az2 − 9ax − 3ay − az
for a, b ∈ C. What are the possibilities for the remaining face meeting the do-
decagons at vertexα? There are two possible dodecagons (differing by orienta-
tion) that could fit there, but it is straightforward to check that neither of these
would have lattice points lying onQ. Similarly, there are two possible octagons,
neither of which would lie onQ. The same holds for the unique hexagon that
could fit there. Hence, a quadrilateral or a triangle must fit atα.

If a triangle fits atα, 3-valency would require that(2,6,0), (1,4,0), (0,2,1),
and (0,4,4) be co-planar, but they are not. Thus, a quadrilateral is forced at
α. The quadrilateral and the setV of exponents must contain the point(1,5,1),
forcing b = 0 in Q. A priori, there are many possibilities for the shape of the
quadrilateral. Larger quadrilaterals would need to contain the next point out along
either the edge containing(0,2,1) and(1,5,1) or the edge containing(1,4,0) and
(1,5,1), namely: (2,8,1) or (1,6,2), respectively. However, it is easy to check
that these points are not zeroes ofQ

∣∣
b=0. Hence, the quadrilateral has vertices

(0,1,0), (0,2,1), (1,4,0), and(1,5,1), as shown in Figure 30.
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Figure 30

It is now easy to check with a computer that (a) a dodecagon must fit at ver-
texβ, having orientation 1 with respect to the dodecagon it meets along the edge
joining (1,4,0) and(2,6,0), and (b) a quadrilateral must fit at the origin, con-
taining exactly four lattice points. By symmetry, the whole figure must consist of
quadrilaterals and dodecagons, each quadrilateral surrounded by four dodecagons
and each dodecagon surrounded by six quadrilaterals and six dodecagons. If the
figure were to close up to give a polytope then consideration of Euler’s formula
would lead to a contradiction, as we now explain.

Let R be any 3-valent, 3-dimensional polytope, and letpk be the number of
faces ofR havingk edges. A simple consequence of Euler’s formula relating the
numbers of vertices, edges, and faces (taking 3-valency into account) is the fol-
lowing relation:

3p3+ 2p4 + p5 = 12+
∑
k≥7

(k − 6)pk.

(In fact, there is a sort of converse. Eberhard’s theorem [G, p. 254] states that,
given any finite sequence of nonnegative integerspk for k 6= 6, there is a 3-valent,
3-dimensional polytope, possibly containing hexagons, such thatpk is the number
of faces withk edges.) In our case, the formula reads

2p4 = 12+ 6p12.

Combined with the additional fact that 4p4 = 6p12 (a consequence of the arrange-
ment of quadrilaterals and dodecagons), we obtain a contradiction. Thus, orienta-
tion 1 does not produce an acceptable polytope (although it produces interesting
affine mappings).

Now consider orientation 2, shown in Figure 31. As in the case of orientation 1,
there is a quadricQ, with two parameters, containing the vertices of the two do-
decagons. One may check that either a hexagon, a quadrilateral, or a triangle must
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fit at vertexα. The quadrilateral and the hexagon lead to figures that do not close,
as in the case of orientation 1 (using Eberhard’s theorem again). So suppose that
a triangle fits atα. The triangle does nothing to specialize the quadricQ, so we
need to look at vertexβ. A triangle is ruled out by 3-valency, but it turns out that
a dodecagon, an octagon, a hexagon, or a quadrilateral are possibilities (i.e., con-
sistent withQ) atβ. The dodecagon leads to a figure that does not close, but the
octagon, hexagon, and quadrilateral lead to polytopes for which (V.1)–(V.4) hold.
These are (7), (8), and (9), respectively.

Figure 31

(ii) (two octagons meet) Proceeding as in (i), there are two orientations for the
meeting octagons. One produces no examples; the other produces (10), (11), (12),
and (13). As in (i), in the second orientation we fit a triangle at one of the vertices
on the edge shared by the octagons and then find that a dodecagon, an octagon, a
hexagon, or a quadrilateral can fit next to this triangle. Unlike (i), the dodecagon
leads to an acceptable polytope.

(iii) (a dodecagon and octagon meet) Again, as in (i), there are two orienta-
tions. One produces no examples (giving a figure that does not close, as before);
in the other, we can fit a quadrilateral or a triangle next to the meeting dodecagon
and octagon. The quadrilateral leads to a figure that does not close, so we do not
get an example. On the other hand, next to the triangle we can fit a dodecagon,
an octagon, or a hexagon; the dodecagon and octagon lead to examples we have
already seen, and the hexagon produces (14).

(iv) (a dodecagon and hexagon meet) There is only one orientation to consider.
A dodecagon, a quadrilateral, or a triangle must fit next to the meeting dodecagon
and hexagon. The dodecagon was already considered in (i) and did not lead to an
example. The quadrilateral leads to a figure that does not close. Finally, the triangle
yields several possibilities: a dodecagon, an octagon, a hexagon, or a quadrilateral
can fit next to the triangle. The dodecagon and octagon then produce examples
we have already seen. The hexagon produces (15). The quadrilateral does not pro-
duce an example.
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(v) (an octagon and hexagon meet) This case is similar to (iv). An octagon, a
quadrilateral, or a triangle can fit next to the meeting octagon and hexagon. The
octagon was considered in (ii) and did not lead to an example. The quadrilateral
gives (16). Next to the triangle, there can be a dodecagon (reducing to (iii)), an
octagon (reducing to (ii)), a hexagon leading to (17), or a quadrilateral leading to
no example.

(vi) (none of the above) We are left with the case of a dodecagon or octagon
surrounded by triangles and quadrilaterals. Using 3-valency, one may check that
there can be no triangle. We get a truncated cylinder over the dodecagon or oc-
tagon, instances of (2).

Case IV:P improper. Suppose we haveV andP satisfying (V.1)–(V.4). Let
f(x, y, z) be a nonzero polynomial of degree≤ s satisfied by the points ofV, and
let F be a face that is not proper. The lattice points inF ∩ V, sitting in the plane
supportingF (say,5), determine a mapping of a toric surface. Iff restricted to
5 is nonzero, then this surface mapping would satisfy Theorem 3.2 andF would
need to be proper. Hence,f contains the equation for5 as a factor. In fact, we
will see that, up to an affine change of coordinates of the lattice inR3 and a con-
stant factor,f =∏s−1

i=0(z− i).
If s > 2, let Ṽ = V \ (V ∩5), let P̃ be the convex hull of the points of̃V, and

let f̃ be the polynomial of degree≤ s − 1 obtained by removing the equation for
5 from f. We now verify thatṼ andP̃ satisfy conditions (V.1)–(V.4) withs re-
placed bys −1. Making an affine change of coordinates, assume for the moment
that5 is defined byz = 0. Figure 32 labels consecutive verticesα0, β0, andγ0

of F. The first lattice points on the edges leavingF from these vertices areα1, β1,

andγ1, and the vertices at the end of these edges areα, β, andγ.

Figure 32
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Let α0 = (a, b,0), γ0 = (c, d,0), andβ1 = (i, j, k). We may assume that
β0 = (0,0,0). SinceP satisfies (V.1), it follows that∣∣∣∣∣

a b 0
c d 0
i j k

∣∣∣∣∣ = ∣∣∣ a b

c d

∣∣∣ k = ±1.

Hence, we may assume thatk = 1and, similarly, all the first lattice points on edges
emanating fromF lie in the planez = 1. Thus, chopping off the faceF leaves
a new faceF̃ in the planez = 1. Also, note that none of these first lattice points
are vertices ofP (sinces > 2), so the new polytope is combinatorially equiva-
lent toP. Our computation shows that, after an affine change of coordinates, we
can take the edges (of the truncated polytope)β1α1, β1γ1, andβ1β to lie along the
coordinate axes. It is then easy to verify (V.1)–(V.3); of course, (V.4) is satisfied
with s −1 in place ofs, usingf̃ .

RemovingF fromP gives the new polytopẽP . If P̃ is not proper ands −1>
2, then we can repeat the process of chopping off an improper face. Eventually
we are reduced to lattice pointsV ∗ with convex hull the polytopeP ∗, combinato-
rially equivalent toP and satisfying (V.1)–(V.4) for some integers∗ in place ofs.
The polytopeP ∗ is either (i) proper or (ii) improper withs∗ = 2.

(i) (P ∗ proper) IfP ∗ is proper, we have shown that (up to a change of co-
ordinates) it must be: (1), a certain tetrahedron (the numbers here refer to the
statement of the theorem); (2), a truncated cylinder over one of the polygons from
Theorem 3.2; or, in the cases∗ = 2, (4)–(17). To rule out each of these pos-
sibilities, imagine reversing the process of going fromP to P ∗. This would in-
volve taking a face ofP ∗, whose supporting plane we can take to bez = 0, and
extending the edges coming into this face down to a parallel plane, which we
can take to bez = −1. The result is an intermediary polytopẽP, combinatori-
ally equivalent toP andP ∗, and improper. The polytopẽP comes with a corre-
sponding subset̃V of lattice points such that (V.1)–(V.4) are satisfied for ans̃ =
s∗ +1.

In the case of the tetrahedron, (1), reversing the process would imply thatP

was proper, a contradiction. In the case of a truncated cylinder over one of the
polygons from Theorem 3.2, reversing the process one step results in aP̃ that
is either proper, combinatorially inequivalent toP ∗, or for which Ṽ necessarily
violates (V.3). For instance, supposeP ∗ is a truncated cylinder over a quadri-
lateral (see Figure 33). If̃P comes from moving the upper or lower faces out
one unit, thenṼ could not satisfy (V.3) given that the base quadrilateral has not
increased in size. The same argument holds for moving the left or right faces
out one unit, or the back face in the case wherea = s∗ − 1. If a, b, and the
height are large enough, then moving the front or back face out may produce a
proper polytope—a contradiction. In the case wheres∗ = 2, a = 1, andb > 0,
moving the front face out gives a polytope that is not combinatorially equivalent
to P ∗.
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Figure 33

Finally, if P ∗ is one of the polytopes (4)–(17), reversing the process gives a
polytope that is not combinatorially equivalent toP ∗.

(ii) (P ∗ improper,s∗ = 2) This case subsumes the case ofs = 2. Let f ∗ be
the quadric containingP ∗,which is a factor of the originalf. We may assume that
z = 0 is a supporting plane of an improper face ofP ∗. By (V.2), the first lattice
points along the edges emanating from the face inz = 0 lie in the planez = 1. It
follows that, up to a constant factor,f ∗ = z(z−1). Going backwards fromP ∗ to
P, trying to add a face in a plane not parallel toz = 0 at any step would give rise
to a polytope for which (V.3) could not hold. Hence, the edges emanating from
the face inz = 0 terminate in the planez = s − 1 and so, up to a constant fac-
tor, f = ∏s−1

i=0(z − i) as claimed; this determinesP. Its shape is determined by
the face inz = 0 and the convex hull of the lattice points ofV lying in the plane
z = 1. These two polygons give rise to the same toric surfaceS; that is, one poly-
gon can be derived from the other by sliding each edge in a direction normal to
that edge. Another way to say this is that the two polygons have the formsP(E)

andP(E ′) for two ample divisorsE,E ′ on the toric surfaceS (cf. Section 2). The
toric variety determined byP is P(OS(E)⊕OS(E ′)), giving (3).

Remark 3.6. In this remark, we describe more carefully the mappings in The-
orem 3.5(2)—that is, those coming from truncated cylinders. InR3 with coordi-
natesx, y, z, let P be a polygon sitting in the(x, y)-plane. Assume thatP is a
polygon allowed by Theorem 3.2 (i.e., it gives rise to a mapping of a surface with
special osculating spaces). The cylinder overP is C(P ) = {p + (0,0, z) | p ∈
P, z ∈R}. To truncateC(P ) so that the corresponding toric 3-fold is smooth, fix
a vector(e, e ′,1), wheree, e ′ are arbitrary integers, and let5 be the plane normal
to (e, e ′,1). The truncated cylinder corresponding to5 consists of the points of
C(P ) on or betweenP and5. The truncated cylinders in Theorem 3.5 are exactly
those constructed in this way.

The 1-dimensional cones of the fan1 for the 3-fold corresponding to one of
these truncated cylinders are the 1-dimensional cones of the fan1′′ for the toric
surface corresponding toP (sitting in the(x, y)-plane inR3) and two more, gen-
erated by(0,0,1) and−(e, e ′,1). The projection mapR3 → R, forgetting the
first two coordinates, maps1 onto the fan1′ ⊂ R for P1. Let 1̃′ be the subfan of
1 with 1-dimensional cones generated by(0,0,1) and−(e, e ′,1). Then
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1 = {σ̃ ′ + σ ′′ | σ̃ ′ ∈ 1̃′, σ ′′ ∈1′′ }.
Thus, according to [O, Prop. 1.33], the toric variety corresponding to the truncated
cylinder is an equivariant fiber bundle overP1 with fiber isomorphic to the toric
surface corresponding toP. The bundles appearing in Theorem 3.5, (9), can be
analyzed similarly.
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