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Level Sets and the Distribution
of Zeros of Entire Functions

George Csordas & Wayne Smith

1. Introduction

Let S(A) denote the closed strip of width 2A in the complex planeC symmetric
about the real axis:

S(A) = {z∈C : |Im(z)| ≤ A}, (1.1)

whereA ≥ 0.

Definition 1.1. LetA be such that 0≤ A <∞. We say that a real entire func-
tion f belongs to the classS(A) if f is of the form

f(z) = ce−az2+bzzm
∞∏
k=1

(
1− z

zk

)
ez/zk , (1.2)

wherea ≥ 0, m is a nonnegative integer,c is a nonzero real number,zk ∈ S(A) \
{0}, and

∑∞
k=11/|zk|2 <∞.

We allow functions inS(A) to have only finitely many zeros by letting, as usual,
zk = ∞ and 0= 1/zk (k ≥ k0), so that the canonical product in (1.2) is a finite
product. The significance of the classS(A) in the theory of entire functions is
natural, sincef ∈S(A) if and only if f is the uniform limit on compact sets of
a sequence of real polynomials having zeros only in the stripS(A) [dB, p. 202].
The Gauss–Lucas theorem [M, p. 22] tells us that this class of polynomials is
closed under differentiation, and thus so isS(A). The classS(0) is also called the
Laguerre–Pólya class, writtenL-P, so a functionf ∈L-P has only real zeros.

Forf ∈S(A), θ ∈R, andt ∈R,we are interested in describing the distribution
of zeros of the function

gt,θ (z) = eiθf(z+ t)+ e−iθf(z− t). (1.3)

To motivate our results and to provide some background information, we recall
from the literature (see e.g. [dB]) that iff ∈ S(A) then the zeros of the entire
functiongit,0(z) = f(z+ it)+ f(z− it) (t ∈R) are “closer” to the real axis than
those off. More precisely, de Bruijn [dB, Thm. 8] showed that the zeros ofgit,0

all lie in the stripS
(√
A2 − t 2 ) if |t | < A and thatgit,0 ∈ S(0) if 0 ≤ A ≤ |t |.

The relationship between the zero set ofgit,0 and that off has been studied by
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several authors (see e.g. [dB; K; M, Secs. 17–18; O, p. 271]). In sharp contrast to
de Bruijn’s result, we will show that for a certain subclass of functions inS(A)
(see Definition 1.2), the entire functiongt,θ has infinitely many zeros on the imag-
inary axis whenevert 6= 0.

We begin by explaining the reason for confining our attention to a subclass of
functions,f ∈S(A). In the first place, the results that follow show that the growth
of f has a major influence on the distribution of zeros ofgt,θ . Recall that an en-
tire functionf is said to be ofexponential type[B, p. 8] if there are constantsC1

andC2 such that
|f(z)| ≤ C1 exp(C2|z|), z∈C.

By way of illustration, consider the real entire functionf(z) = cos(z) and note
thatgt,0(z) = 2 cos(z) cos(t) has only real zeros, provided that cos(t) 6= 0. This
example shows that it is possible forgt,0 ∈S(A) whenf ∈S(A) is of exponen-
tial type. Now it follows from our main result (Theorem 1.3) that thisalways fails
whenf ∈S(A) is an even entire function which isnot of exponential type. We
pause for a moment to introduce notation for this class of functions.

Definition 1.2. An even entire functionf ∈S(A) belongs to the classS∞(A)
(writtenf ∈S∞(A)) if f is not of exponential type.

If in the definition of the classS∞(A)we omit the assumption thatf is even, then
gt,θ does not, in general, vanish on the imaginary axis, as the following example
shows. Letf(x) = (x +1)exp(−x 2). Then witht = 1/4 it is easy to check that

g1/4,0(iy) = 2 exp(y2 −1/16){cos(y/2)+ i[y cos(y/2)− sin(y/2)/4]} 6= 0

for any y ∈ R; that is, g1/4,0 does not vanish on the imaginary axis. On the
other hand, iff is an even, real entire function, thenf(iy − t) = f(−iy − t) =
f(iy + t), whence we have the simple but important relation

gt,θ (iy) = 2 Re(eiθf(iy + t)), t, y ∈R.
In particular, the level set{z : Re(eiθf(z)) = 0} determines the zeros ofgt,θ on
the imaginary axis.

Preliminaries aside, we are now in position to formulate our principal result as
follows.

Theorem 1.3. Letf ∈S∞(A). Then, for anyt ∈R \ {0} and for anyθ ∈R, the
entire functiongt,θ (z) = eiθf(z + t) + e−iθf(z − t) has infinitely many zeros on
the imaginary axis.

In Section 2, we will establish some of the fundamental properties of functions in
S∞(A) (Lemma 2.1and Lemma 2.2). Moreover, after a brief review of some facts
about level sets, we obtain some quantitative information concerning the level set
structure of an entire functionf in terms of the growth of the logarithmic deriv-
ative off (Theorem 2.3). This preliminary investigation enables us to show the
existence of at least one purely imaginary zero ofgt,θ (Corollary 2.4). The proof
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of Theorem 1.3 requires additional analysis of the geometric nature of the level
set of a function inS∞(A) (Lemma 3.1 and Lemma 3.2). Theorem 3.3 gives a
lower bound for the number of zeros ofgt,θ on certain segments of the imagi-
nary axis. Since this lower bound is an unbounded function ofr, Theorem 1.3 is a
consequence of Theorem 3.3. The paper concludes with some remarks and open
problems (Section 4).

2. Properties of Functions inSSS∞(A)

Sincef ∈S∞(A) is even, we see from (1.2) thatf(z) can be represented in the
form

f(z) = ce−az2
z2m

∞∏
k=1

(
1− z

2

z2
k

)
, (2.1)

wherec is a nonzero real number,a ≥ 0,m is a nonnegative integer,zk ∈ S(A)\{0},
Rezk ≥ 0, and

∑
1/|zk|2 < ∞. The reader will note thatf(z) may have some

purely imaginary zeros, in which case the representation off(z) in (2.1) is not
unique. The choice of representation is inconsequential. However, to be specific,
we assume that if Rezk = 0 then Imzk > 0. We use the usual notation ofn(r) for
the number of zeros off having modulus at mostr. Thus,

n(r) = 2 card{k : |zk| ≤ r} + 2m,

where the first factor of 2 is required becausef is even and the{zk} account only
for the zeros off in the right half-plane. Here card(E) denotes the cardinality of
the setE.

It is clear that iff ∈S∞(A) and ifa = 0 in (2.1), thenf has an infinite number
of zeros, sinceS∞(A) contains no polynomials. A refinement of this observa-
tion is that iff ∈S∞(A) and if a = 0 in (2.1), thenn(r)/r is unbounded. When
the orderρ of f is 1, this follows from a classical theorem of Lindelöf [B, p. 27],
which implies that an even entire function of order 1 is of exponential type if and
only if n(r)/r is bounded. Sincef ∈S∞(A) is not of exponential type, it remains
to consider the case whenf has orderρ > 1. Recall that the order of a canonical
product is equal to the convergence exponent,ρ1, of its zeros [B, p. 19], and

ρ1= lim
r→∞

logn(r)

logr

[B, p. 15]. Thusρ1 = ρ > 1 again implies thatn(r)/r is unbounded. The next
lemma provides a convenient reformulation of this observation.

Lemma 2.1. Letf ∈S∞(A) and suppose thatf is given by(2.1)with a = 0. Set

σ(r) =
∑

0<Rezk≤r

1

|zk| . (2.2)

Then
lim
r→∞[σ(r)− σ(r/2)] = ∞. (2.3)
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Proof. Let f ∈S∞(A) be given by (2.1) witha = 0, and assume thatr ≥ 4A. If
3r/4< |zk| and Rezk > 0, then

3

4
r < |zk| ≤ Rezk + A ≤ Rezk + r

4
and sor/2< Rezk. Thus,

σ(r)− σ
(
r

2

)
=

∑
r/2<Rezk≤r

1

|zk| ≥
∑

3r/4<|zk |≤r

1

|zk| ≥
1

2

n(r)− n(3r/4)
r

. (2.4)

Proceeding with a proof by contradiction, we assume that (2.3) does not hold.
Then there is a positive numberM such that 0≤ σ(r)−σ(r/2) ≤ M, and by (2.4)
we have

n(r)− n(3r/4) ≤ 2Mr, r ≥ 4A.

Recalling thatr ≥ 4A, letK be the largest integer such thatr(3/4)K ≥ 4A. Then

n(r) =
K∑
j=0

[
n

(
r3j

4j

)
− n

(
r3j+1

4j+1

)]
+ n

(
r3K+1

4K+1

)

≤ 2M
∞∑
j=0

r3j

4j
+ n(4A) = 8Mr + n(4A)

with r ≥ 4A, son(r)/r is bounded. This is the desired contradiction, since it was
observed before the statement of the lemma thatn(r)/r is unbounded. The proof
is complete.

In the sequel, we will require the following elementary preparatory result concern-
ing the behavior of the logarithmic derivative off in S∞(A) in a vertical strip of
the form

Vt(r) = {z = x + iy : 0 ≤ x ≤ t, y ≥ r} (r > 0, t > 0).

Lemma 2.2. Letf(z)∈S∞(A) and letr ≥ 2A+ 1. Then

Im

(
f ′

f
(z)

)
< 0, Im z > A. (2.5)

Furthermore, there is a positive absolute constantB such that∣∣∣∣Im(f ′f (z)
)∣∣∣∣ ≥ 2a(r −1)+B[σ(r)− σ(r/2)], z∈Vt(r −1) \Vt(r +1), (2.6)

wherea ≥ 0 comes from(2.1)andσ(r) is defined by(2.2).

Proof. With f(z) expressed in the form (2.1), letzk = xk + iyk denote the zeros
of f(z) with xk > 0. Then, withz = x + iy, logarithmic differentiation yields

Im

(
f ′

f
(z)

)
= −2ay − 2my

x 2 + y2

−
∞∑
k=1

[
y − yk

(x − xk)2 + (y − yk)2 +
y + yk

(x + xk)2 + (y + yk)2
]
,
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whence (2.5) is clear, sincea ≥ 0 andA ≥ yk. Dropping the second term on the
right side of the display above gives∣∣∣∣Im(f ′f (z)

)∣∣∣∣ ≥ 2ay +
∞∑
k=1

[
y − yk

(x − xk)2 + (y − yk)2 +
y + yk

(x + xk)2 + (y + yk)2
]
.

Using the hypothesis thatr −1≥ 2A, we havey ≥ r −1≥ 2A ≥ 2yk for all z∈
Vt(r −1) \Vt(r +1). Hence, for suchz we obtain the estimate that∣∣∣∣Im(f ′f (z)

)∣∣∣∣− 2a(r −1) ≥ 1

2

∞∑
k=1

y

(x − xk)2 + (y − yk)2

≥ c1

∑
r/2≤xk≤r

y

x 2
k + y2

≥ c2

∑
r/2≤xk≤r

r

x 2
k + r 2

≥ c3

∑
r/2≤xk≤r

1

xk
≥ c4

∑
r/2<xk≤r

1

|zk| ,

wherecj (1 ≤ j ≤ 4) is a positive absolute constant. Since the last term in the
display above is equal toc4[σ(r)−σ(r/2)], this is equivalent to (2.6) and so com-
pletes the proof.

In our next result, we will make use of several fundamental (albeit elementary)
properties of level curves, which we briefly review here for the reader’s conve-
nience (cf. [CSV]). We first recall that iff is a nonconstant real entire function,
then a componentγ of the level set

{z∈C : Re(eiθf(z)) = 0} (2.7)

is a piecewise analytic curve. Such a curveγ is called alevel curveof f. Note
that, by the local mapping properties of an analytic function, every zero off is
on some level curve off. If z0 is a critical point off (i.e., if f ′(z0) = 0) and if
z0 is on the level curveγ, thenz0 is said to be abranch pointof γ. We observed
in Section 1 that iff ∈S(A) thenf ′ ∈S(A) also and hence no branch points lie
outside the stripS(A).

Now, if γ has no branch points, then again it follows from the local mapping
properties off that the restriction off to γ is locally a homeomorphism. Thus, if
there are no branch points onγ (z0, z1), thenf is one-to-one onγ (z0, z1) and the
restriction off to γ (z0, z1) is a homeomorphism. Hence, in this casef can have
at most one zero onγ. (Simple examples show thatf need not have a zero onγ.)
Sincef is nonconstant, by the maximum principleγ cannot be a closed bounded
curve. Moreover, ifγ has no branch points, thenγ is an analytic curve that sep-
arates the plane. Finally, we also note that iff is a nonconstant, even, real entire
function, then its level curves are symmetric about the coordinate axes. By virtue
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of this twofold symmetry of the level curves, we will confine (for the most part)
our analysis to the first quadrant.

The next theorem gives quantitative information on the structure of the level set
(2.7) of an entire functionf in terms of the growth off ′/f. In the next section this
will be used (together with Lemma 2.2) to show that, in a certain sense, the level
curves off ∈S∞(A) in the first quadrant approach the imaginary axis.

Theorem 2.3. Letf be an entire function and letθ ∈R. SetP = {z = x + iy :
Re(eiθf(z)) > 0} andN = {z = x+ iy : Re(eiθf(z)) < 0}. Suppose that the disk

D(z0, δ(z0)) = {z = x + iy : |z− z0| < δ(z0)} ⊂ P ∪N.
Then

δ(z0) ≤ 2

∣∣∣∣ ff ′ (z0)

∣∣∣∣.
Before the proof, consider the simple example wheref(z) = exp(−z2/2) andθ =
0. Then the level set{z : Ref(z) = 0} = {x + iy : cos(xy) = 0} is a family of
hyperbolas. Theorem 2.3 states that if the diskD(z0, δ(z0)) is disjoint from these
hyperbolas, thenδ(z0) ≤ 2/|z0|. It is easy to see that this is the correct order of
magnitude for our estimate ofδ(z0) in the sense thatlim |z0|→∞|z0|δ(z0) > 0.

Proof of Theorem 2.3.We prove the theorem under the assumption that the disk
D(z0, δ(z0)) is contained in the setP. (The proof is the same, mutatis mutandis,
when this disk is contained inN.) For notational convenience, letD denote the
unit disk centered at the origin and letH denote the open right half-plane. Con-
sider the composition,h = ϕ B (eiθf ) B ψ, of the maps

D ψ−→ D(z0, δ(z0))
(eiθf )−−−→ H ϕ−→ D,

where

ψ(z) = zδ(z0)+ z0 and ϕ(w) = w − eiθf(z0)

w + e−iθf(z0)
.

Then,h(z) = ϕ(eiθf(zδ(z0)+ z0)) and a computation yields

|h′(0)| = |ϕ ′(eiθf(z0))||f ′(z0)|δ(z0) = δ(z0)

2

∣∣∣∣ f ′(z0)

Re(eiθf(z0))

∣∣∣∣.
Sinceh : D 7→ D is analytic andh(0) = 0, it follows by Schwarz’s lemma that
|h′(0)| ≤ 1. Therefore, we have the estimate

δ(z0) ≤ 2

∣∣∣∣Re(eiθf(z0))

f ′
(z0)

∣∣∣∣ ≤ 2

∣∣∣∣ ff ′ (z0)

∣∣∣∣,
as asserted.

Additional properties of the level curves of functions inS∞(A) will be needed to
prove Theorem 1.3. These properties will be established in the next section. At
this juncture, we are able to conclude only the following, much weaker, result.
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We include it here to indicate how Theorem 2.3, in conjunction with the preced-
ing lemmas, can be used to establish the existence of a purely imaginary zero of
the functiongt0,θ defined by equation (2.8).

Corollary 2.4. Let f ∈ S∞(A), let θ ∈ R, and lett > 0. Then there is at0
(0< t0 ≤ t) such that the real entire function

gt0,θ (z) = eiθf(z+ t0)+ e−iθf(z− t0) (2.8)

has at least one purely imaginary zero in the upper half-plane.

Proof. Fix t > 0 andf ∈S∞(A). We will show that Re(eiθf ) vanishes at some
point inVt(0). If not, then without loss of generality assume that Re(eiθf ) > 0 in
Vt(0). This means that for ally ≥ t/2 the diskD(t/2+ iy, t/2) is contained in
the stripVt(0), whereeiθf has positive real part. Thus, Theorem 2.3 gives∣∣∣∣f ′f

(
t

2
+ iy

)∣∣∣∣ ≤ 4

t
, y ≥ t

2
,

which contradicts (2.6). Indeed, whena > 0 in the representation (2.1) off, the
contradiction is immediate. Whena = 0, we achieve the contradiction by using
the assertion of Lemma 2.1 thatlim r→∞[σ(r)− σ(r/2)] = ∞. Hence there exists
z0 = t0 + iy0 ∈Vt(0) such that Re(eiθf(z0)) = 0= gt0,θ (iy0), as required.

3. Proof of Theorem 1.3

The proof of Theorem 1.3 requires a deeper analysis of the relationship between
the geometric nature of the level set structure of a real entire functionf ∈S∞(A)
and the distribution of its zeros. We use Arg to denote the principal branch of the
argument and, as in Section 2, we denote byVt(r) the vertical strip

Vt(r) = {z = x + iy : 0 ≤ x ≤ t, y ≥ r} (r > 0, t > 0).

Lemma 3.1. Let t > 0 andA > 0 be fixed. For allε > 0 there exists anM <

∞ such that, ifz∈Vt(M) and±iw ∈VA(M), then∣∣∣∣Arg

(
z

z2 − w2

)
+ π

2

∣∣∣∣ < ε.

Proof. Because|Arg(z) − π/2| < ε/2 whenz ∈ Vt(M) andM is sufficiently
large, and since

−Arg

(
z

z2 − w2

)
= Arg

(
z− w

2

z

)
= Arg(z)+Arg

(
1− w

2

z2

)
,

it suffices to show that|Arg(1− w2/z2)| < ε/2 for largeM. It is clear from the
hypotheses onz andw thatM can be chosen so that

|Arg(−w2/z2)| = |Arg(w2)+Arg(−1/z2)|
≤ |Arg(w2)| + |Arg(−1/z2)| < ε/2.
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The result now follows from the inequality

|Arg(1− w2/z2)| < |Arg(−w2/z2)|.
We associate withf ∈ S∞(A) a sequence of positive numbers{rn} as follow.
Whena = 0 in the representation (2.1) off, we use Lemma 2.1 to choose{rn} so
that

lim
n→∞[σ(rn)− σ(rn/2)] = ∞. (3.1)

Whena > 0 in (2.1), we simply setrn = n. This definition of{rn} assures that

lim
n→∞[a(rn −1)+ σ(rn)− σ(rn/2)] = ∞ (3.2)

for all f ∈S∞(A).

Lemma 3.2. Letf ∈S∞(A) and letε > 0. Then, for alln sufficiently large,∣∣∣∣Arg
f ′

f
(z)+ π

2

∣∣∣∣ < 2ε, z∈Vt(rn − 1) \Vt(rn + 1).

Proof. Let ε > 0 and chooseM as in Lemma 3.1. From the representation (2.1)
for f ∈S∞(A), we have

f ′

f
(z) = 2m

z
+

N∑
k=1

2z

z2 − z2
k

− 2az+
∞∑

k=N+1

2z

z2 − z2
k

,

whereN is chosen so that Rezk ≥ M whenk ≥ N. With N now fixed, the first
two terms on the right in the display above tend to 0 as|z| → ∞. We also have
from (2.6) and (3.2) that

lim
n→∞ inf {|f ′(z)/f(z)| : z∈Vt(rn −1) \Vt(rn +1)} = ∞,

and so ∣∣∣∣Arg

(
f ′

f
(z)

)
−Arg

(
−2az+

∞∑
k=N+1

2z

z2 − z2
k

)∣∣∣∣ < ε

for n sufficiently large andz∈Vt(rn−1) \Vt(rn+1). Lemma 3.1 asserts that each
term in the series above lies in the sector{w : |Argw + π/2| < ε}. Since−2az
also lies in this sector whenn is sufficiently large and since the sector is closed
under addition, the result follows.

Next we examine what these lemmas say about the geometry of the level curves in
Vt(r) of f ∈S∞(A). A level curve in the set (2.7) can be parameterized byz(s)

so that
eiθf(z(s)) = is, s ∈R.

Throughout this section,z(s) will always represent such a parameterization. It is
clear thatz(s) extends to be analytic in a neighborhood of any points0 such that
z(s0) is not a branch point of the level set, and in particular when|Im z(s0)| > A.
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Differentiation of the equation in the display above leads to the relation

z ′(s)
f ′

f
(z(s)) = 1

s
. (3.3)

Thus we see from Lemma 3.2 that, ift > 0 andz(s) ∈ Vt(rn − 1) \Vt(rn + 1),
then Argz ′(s) → π/2 asn → ∞. Geometrically, this says that the tangents to
the level curves in this set approach the vertical forn large. We also observe from
(3.3) and (2.5) that

Arg z ′(s) = −Arg
f ′

f
(z(s)) > 0, Im z(s) > A, (3.4)

and so all level curves inVt(A) are monotone in the sense that their tangents are
never horizontal. These observations are key to the proof of the next theorem.

Forf ∈S∞(A) andt > 0, we introduce the following notation:

(1) l(r; gt,θ ) = card({z : gt,θ (z) = 0} ∩ [0, ir]) denotes the number of zerosgt,θ
on the imaginary axis between 0 andir;

(2) kt,θ (r) = card({z : Re(eiθf(z)) = 0} ∩ [ir, t + ir]) denotes the number of
intersections the line segment [ir, t + ir] has with the level set (2.7);

(3) jt,θ (y1, y2) = card({z : Re(eiθf(z)) = 0} ∩ [t + iy1, t + iy2]) denotes the
number of intersections the line segment [t + iy1, t + iy2] has with the level
set (2.7).

We note that each of these quantities is finite, since distinct analytic curves inter-
sect in a discrete set.

Theorem 3.3. Letf ∈S∞(A), let t > 0, and let{rn} be as in(3.1). Then

l(rn; gt,θ ) ≥ t

10
(2a(rn − 1)+ B[σ(rn)− σ(rn/2)])

for all n sufficiently large, wherea comes from the representation(2.1) of f and
B is the positive absolute constant from(2.6).

Remark 3.4. As noted in (3.2), this lower bound forl(rn; gt,θ ) is unbounded.
Hence it is an immediate consequence of Theorem 3.3 that iff ∈S∞(A) andt >
0, thengt,θ has infinitely many zeros on the imaginary axis. Thus, sinceg−t,θ =
gt,θ , Theorem 1.3 is a consequence of Theorem 3.3.

Proof of Theorem 3.3.For the proof, we analyze how a level curve may enter and
leave a rectangle of the form{x + iy : 0 < x ≤ t, y0 ≤ y ≤ r}. As observed
previously, it follows from (3.4) that all level curves inVt(A) are monotone in
the sense that their tangents are never horizontal. Also, ifeiθ 6= ±i then no level
curve in the set (2.7) can intersect the positive imaginary axis, sincef is real and
nonzero there. Thus the level curves entering the top of the rectangle must all exit
on either the right side or the bottom of the rectangle, providedy0 ≥ A. On the
other hand, ifeiθ = ±i then the imaginary axis is a level curve in the set (2.7). It
again follows that a level curve entering the top of the rectangle must exit on the
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right or bottom of the rectangle, providedy0 ≥ A, sincef has no branch points
outside the stripS(A). Hence, in both cases,

kt,θ (r) ≤ kt,θ (y0)+ jt,θ (y0, r), A ≤ y0 < r. (3.5)

We note that strict inequality is possible since, for example, a curve may both enter
and exit on the right side.

Next, using first Theorem 2.3 and then (2.6), we have that

δ(x + irn) ≤ 2

∣∣∣∣ ff ′ (x + irn)
∣∣∣∣

≤ 2

2a(rn −1)+ B[σ(rn)− σ(rn/2)]
= 1(rn), (3.6)

for all n sufficiently large, if Re(eiθf ) 6= 0 in the diskD(x + irn, δ(x + irn)).
Also, using (3.2), we see that1(rn)→ 0 asn→∞.

Suppose for a moment that the portion of the level curves(
Vt(rn −1(rn)) \Vt(rn +1(rn))

) ∩ {z : Re(eiθf(z)) = 0} (3.7)

are actually vertical lines. Since they divide [irn, t + irn] into kt,θ (rn)+ 1 pieces
and since (3.6) implies that the length of each piece is at most 21(rn), we obtain
the estimatekt,θ (rn) ≥ t/(21(rn))−1.

For the actual level curves, it follows from (3.4) and Lemma 3.2 that

|Arg(z ′(s))− π/2| < 1/100, z(s)∈Vt(rn −1) \Vt(rn +1), (3.8)

for n large. Thus the vertical projection of the set (3.7) onto the line segment
[irn, t + irn] has length less thant/2, providedn is large enough so that1(rn) ≤
t and (3.8) holds. Hence

kt,θ (rn) ≥ t

41(rn)
−1, n ≥ n0. (3.9)

Combining this estimate with (3.5), and recalling the definition of1(rn) given in
(3.6) and that 2a(rn −1)+ B[σ(rn)− σ(rn/2)] →∞ from (3.2), we have

jt,θ (y0, rn) ≥ t

10
(2a(rn −1)+ B[σ(rn)− σ(rn/2)])

for all n sufficiently large. Sincegt,θ (iy) = 0 if and only if t + iy is in the level
set (2.7),jt,θ (y0, rn) represents the number of zeros thatgt,θ has in the interval
[iy0, irn] on the imaginary axis; thus, the proof is complete.

4. Concluding Remarks and Open Problems

We note that the lower bound for the number of zeros ofgt,θ on the positive imag-
inary axis, given in Theorem 3.3, is independent ofθ. The explanation for this is
that the lower bound was established by way of estimates involvingkt,θ (r) in (3.5)
and (3.9), where we recall thatkt,θ (r) denotes the number of intersections the line
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segment [ir, t + ir] has with the level set{z : Re(eiθf(z)) = 0}. The next propo-
sition (which is of independent interest) shows that, outside the stripS(A), the
curves in{z : Re(eiθf(z)) = 0} separate the curves in the level set{z : Ref(z) =
0}. An immediate consequence is that|kt,θ (r) − kt,0(r)| ≤ 1, that is,kt,θ (r) is
essentially independent ofθ.

Proposition 4.1. Letf ∈S∞(A) and assume that

Ref(x1+ iy0) = Ref(x2 + iy0) = 0,

wherex1 < x2 are real andy0 > A. Then, for allθ ∈R, there existsx0 ∈ [x1, x2]
such thatRe(eiθf(x0 + iy0)) = 0.

Proof. Letf ∈S∞(A) andθ ∈R. Because all the zeros off lie in the stripS(A),
there is an analytic branch of logf defined on the set{z : Im z > A}. With argf
denoting the imaginary part of logf, we get

∂

∂x
argf(z) = Im(logf )′(z) = Im

f ′

f
(z) < 0, Im z > A,

from (2.5). Thus, the functionθ + π/2+ argf is monotone on the line segment
[x1+ iy0, x2+ iy0], and its range contains an interval of lengthπ. It therefore as-
sumes on this set a value that is an integral multiple ofπ, which is equivalent to
the assertion of the proposition.

Open Problems 4.2. Special cases of Theorem 1.3 can also be expressed in
terms of some simple infinite-order differential operators. Thus, ifDz = d/dz de-
notes differentiation with respect toz, then for anyf ∈S(A),we haveetDzf(z) =
f(z + t). Therefore, by Theorem 1.3, fort ∈ R \ {0} andf ∈S∞(A), the entire
functions

gt,0(z) = 2 cosh(tDz)f(z) = f(z+ t)+ f(z− t)
and

gt,π/2(z) = 2i sinh(tDz)f(z) = i(f(z+ t)− f(z− t))
have infinitely many zeros on the imaginary axis. Repeated applications of these
operators to a functionf ∈S∞(A) lead to several questions. For example, does
(cosh(tDz))

2f(z) = f(z + 2t) + 2f(z) + f(z − 2t), t ∈R \ {0}, have infinitely
many zeros on the imaginary axis? Another problem—characterizing the func-
tions in S∞(A) such that exp(t 2D2

z/2)f(z) = lim n→∞
(
cosh

(
tDz/
√
n
))n
f(z),

t ∈ R \ {0}, is an entire function having some nonreal zeros—appears to be very
difficult.

Remark 4.3. Letf ∈ S∞(A) and setw(x, t) = f(x + t) + f(x − t), where
x, t ∈R. Thenw satisfies the wave equationwtt = wxx. This suggests the phys-
ical interpretation thatw(x, t) (i.e.,gt,0 restricted to the real axis) represents two
waves traveling in opposite directions with unit speed.

Open Problems 4.4. (a) Characterize the functionsf ∈S∞(A) such that all the
zeros ofgt,0(z) = f(z+ t)+ f(z− t) lie on the coordinate axes.
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(b) Suppose thatf ∈S∞(A)∩L-P, so thatf ∈S∞(A) has only real zeros (cf.
Section 1). Then easy examples show thatgt,0 need not have any nonreal zeros off
the imaginary axis. (Consider, for example,f(z) = exp(−z2)∈S∞(A) ∩ L-P.)
For what functionsf ∈S∞(A)∩L-P is it true thatgt,0(z) = f(z+ t)+f(z− t)
has nonreal zeros other than those on the imaginary axis?
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