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Level Sets and the Distribution
of Zeros of Entire Functions

GEORGE CSORDAS & WAYNE SMITH

1. Introduction

Let S(A) denote the closed strip of widthd2in the complex plan€ symmetric
about the real axis:
S(A) ={zeC:[Im(z)| < A}, @1

whereA > 0.

DerFiNiTION 1.1.  LetA be such that < A < co. We say that a real entire func-
tion f belongs to the clas$(A) if f is of the form

f(z) = Ce—a12+bzzm H(l_ i)ez/u’ (1.2)
k=1

Tk

wherea > 0, m is a nonnegative integet,is a nonzero real number, € S(A) \
{0}, and 72, 1/]z4|% < oo.

We allow functions inS(A) to have only finitely many zeros by letting, as usual,
zx = oo and 0= 1/z; (k > ko), so that the canonical product in (1.2) is a finite
product. The significance of the claSgA) in the theory of entire functions is
natural, sincef € G(A) if and only if f is the uniform limit on compact sets of
a sequence of real polynomials having zeros only in the $iti) [dB, p. 202].
The Gauss—Lucas theorem [M, p. 22] tells us that this class of polynomials is
closed under differentiation, and thus s@iéA). The classS(0) is also called the
Laguerre—Polya classwritten £-P, so a functionf € £-P has only real zeros.

For f € 5(A), 6 € R, andr € R, we are interested in describing the distribution
of zeros of the function

go() =e’fz+ 1)+ e f(z —1). (1.3)

To motivate our results and to provide some background information, we recall
from the literature (see e.g. [dB]) that ff € G(A) then the zeros of the entire
functiong; o(z) = f(z +it) + f(z —it) (r € R) are “closer” to the real axis than
those off. More precisely, de Bruijn [dB, Thm. 8] showed that the zerog;0f

all lie in the stripS(v/A2 —12) if |t| < A and thatg;, 0 € 6(0) if0 < A < 1.

The relationship between the zero setggfy and that off has been studied by
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several authors (see e.g. [dB; K; M, Secs. 17-18; O, p. 271]). In sharp contrast to
de Bruijn’s result, we will show that for a certain subclass of functionS (A)
(see Definition 1.2), the entire functi@n, has infinitely many zeros on the imag-
inary axis whenever # 0.

We begin by explaining the reason for confining our attention to a subclass of
functions,f € G(A). Inthe first place, the results that follow show that the growth
of f has a major influence on the distribution of zerogof. Recall that an en-
tire function f is said to be okéxponential typéB, p. 8] if there are constants,
andC» such that

[f(@)] = Crexp(Calz]), zeC.

By way of illustration, consider the real entire functigitiz) = cogz) and note
thatg; o(z) = 2cogz) coqr) has only real zeros, provided that ¢gs# 0. This
example shows that it is possible faro € G(A) when f € G(A) is of exponen-
tial type. Now it follows from our main result (Theorem 1.3) that thiways fails
when f € &(A) is an even entire function which it of exponential type. We
pause for a moment to introduce notation for this class of functions.

DEeFINITION 1.2.  An even entire functiof € G(A) belongs to the clas$,(A)
(written f € G, (A)) if f is not of exponential type.

If in the definition of the clas& ., (A) we omit the assumption thgtis even, then
g:.¢ does not, in general, vanish on the imaginary axis, as the following example
shows. Letf(x) = (x + 1) exp(—x?). Then withr = 1/4 it is easy to check that

g14,0(iy) = 2exp(y? — 1/16){cosy/2) + i[y cos(y/2) — sin(y/2)/4]} # O

for any y € R; that is, g1/40 does not vanish on the imaginary axis. On the
other hand, iff is an even, real entire function, theftiy — ) = f(—iy — ) =
f(@y +t), whence we have the simple but important relation

gro(iy) = 2Re(e“f(iy +1)), t,yeR.

In particular, the level sef: : Re(e?f(z)) = 0} determines the zeros gf 4 on
the imaginary axis.

Preliminaries aside, we are now in position to formulate our principal result as
follows.

THEOREM 1.3. Let f € G, (A). Then, for any € R\ {0} and for anyv € R, the
entire functiong, ¢(z) = ef(z + t) + e~ (z — t) has infinitely many zeros on
the imaginary axis.

In Section 2, we will establish some of the fundamental properties of functions in
S (A) (Lemma2.1and Lemma2.2). Moreover, after a brief review of some facts
about level sets, we obtain some quantitative information concerning the level set
structure of an entire functioyi in terms of the growth of the logarithmic deriv-
ative of f (Theorem 2.3). This preliminary investigation enables us to show the
existence of at least one purely imaginary zerg,qf (Corollary 2.4). The proof
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of Theorem 1.3 requires additional analysis of the geometric nature of the level
set of a function iNS,,(A) (Lemma 3.1 and Lemma 3.2). Theorem 3.3 gives a
lower bound for the number of zeros gf, on certain segments of the imagi-
nary axis. Since this lower bound is an unbounded functiof ©heorem 1.3 is a
consequence of Theorem 3.3. The paper concludes with some remarks and open
problems (Section 4).

2. Properties of Functions inG,,(A)

Sincef € 6 (A) is even, we see from (1.2) th#{z) can be represented in the
form

2 ad 2
£(2) = ce 22" H(l— Z—2> (2.2

k=1 Zk

wherec isanonzeroreal number,> 0, m isanonnegative integes;, € S(A)\{0},

Rez; > 0, and)_1/|zx|?> < oo. The reader will note thaf(z) may have some
purely imaginary zeros, in which case the representatiofi(of in (2.1) is not
unique. The choice of representation is inconsequential. However, to be specific,
we assume that if Rg = 0 then Imz;, > 0. We use the usual notation afr) for

the number of zeros of having modulus at most Thus,

n(r) =2cardk : |zi| <r}+ 2m,

where the first factor of 2 is required becayses even and thé¢z,} account only
for the zeros off in the right half-plane. Here ca¢d) denotes the cardinality of
the setE.

Itis clear thatiff € S,,(A) andifa = 0in (2.1), thenf has an infinite number
of zeros, sinceS . (A) contains no polynomials. A refinement of this observa-
tionis that if f € G,,(A) and ifa = 0 in (2.1), them(r)/r is unbounded. When
the orderp of f is 1, this follows from a classical theorem of Lindel6f [B, p. 27],
which implies that an even entire function of order 1 is of exponential type if and
only if n(r)/r is bounded. Sincg € G, (A) is not of exponential type, it remains
to consider the case wheghhas ordep > 1. Recall that the order of a canonical
product is equal to the convergence expongntpf its zeros [B, p. 19], and

—— logn(r)

1= lim
L r—00 |Ogr

[B, p. 15]. Thusp; = p > 1 again implies that(r)/r is unbounded. The next
lemma provides a convenient reformulation of this observation.

LemMma 2.1. Letf € 6,(A) and suppose that is given by(2.1)witha = 0. Set

1
= . 2.2
a(r) 0<RGZW|Z” (2.2)
Then
@[a(r) —0(r/2)] = co. (2.3)
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Proof. Let f € G, (A) be given by (2.1) wittu = 0, and assume that> 4A. If
3r/4 < |zx| and Reg; > 0, then

3 r
i lze]l < Rezp + A < ReZk+Z

and sor/2 < Rezy. Thus,
S N T

2 r/2<Rezx<r |Zk| |Zk| 2 r

Proceeding with a proof by contradiction, we assume that (2.3) does not hold.
Then there is a positive numb&f such that 0< o(r) —o(r/2) < M, and by (2.4)
we have

3r/d<|zi|<r

n(r) —n@@r/4) <2Mr, r > 4A.
Recalling that > 4A, let K be the largest integer such th@8/4)X > 4A. Then

K . .
r3/ r3/t1 r3K+1
0= 3] (5) (=) 4 ()
j=0
© 3
<2M X; 7 Tn(4A) = 8Mr +n(4A)
iz

with r > 4A, son(r)/r is bounded. This is the desired contradiction, since it was
observed before the statement of the lemmasl@yr is unbounded. The proof
is complete. O

In the sequel, we will require the following elementary preparatory result concern-
ing the behavior of the logarithmic derivative ¢fin G,,(A) in a vertical strip of
the form

Vi)={z=x+iy:0<x<t,y>r} (r>0,1>0).
LEMMA 2.2. Let f(z) € 6 (A) and letr > 2A + 1. Then

Im<f7(z)> <0, Imz > A. (2.5)
Furthermore, there is a positive absolute const&rguch that

‘Im(?(z))

wherea > 0 comes from(2.1)and o (r) is defined by2.2).

>2a(r—=1+Blo(r) —o(r/2)], zeVir=D\Vi(r +1), (2.6)

Proof. With f(z) expressed in the form (2.1), let = x; + iy, denote the zeros
of f(z) with x; > 0. Then, withz = x + iy, logarithmic differentiation yields

f! 2my
() =20 -

_i[ Y=k " Y+ ]
LG —x)?+(—y)?  +x?+ G +y0? ]
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whence (2.5) is clear, sinee> 0 andA > y,. Dropping the second term on the
right side of the display above gives

I - Y — Yk Y+ Vi
Im| — 2 .
’m<f(Z)>' - ay+§[<x—xk)2+(y—yk>2 " (x+xk)2+(y+yk>2}

Using the hypothesis that—1 > 2A, we havey > r —1 > 2A > 2y, forall z €
V:(r — D \V:(r +1). Hence, for such we obtain the estimate that

I .
|m<—(z)>‘ —2a(r —
’ f X; (x — xp)? + (y = yo)?
y
= Z 2. 2
r/2<xy<r xk + y
r
= €2 Z 2.2
r/2<xy<r xk +r
1 1
> C3 Z — =C4 Z —
r/2<xy<r Y r/2<xp<r |Zk|

wherec; (1 < j < 4) is a positive absolute constant. Since the last term in the
display above is equal @ [o (r) — o (r/ 2)], this is equivalent to (2.6) and so com-
pletes the proof. 0

In our next result, we will make use of several fundamental (albeit elementary)
properties of level curves, which we briefly review here for the reader’s conve-
nience (cf. [CSV]). We first recall that if is a nonconstant real entire function,
then a component of the level set

{z € C : Re(e”f(z)) = 0} (2.7)

is a piecewise analytic curve. Such a cugpvés called alevel curveof f. Note
that, by the local mapping properties of an analytic function, every zerpisf
on some level curve of. If zg is a critical point off (i.e., if f'(zo) = 0) and if

zo is on the level curve, thenzg is said to be dranch pointof y. We observed
in Section 1 that iff € 6(A) then f' € G(A) also and hence no branch points lie
outside the strigf(A).

Now, if y has no branch points, then again it follows from the local mapping
properties off that the restriction of to y is locally a homeomorphism. Thus, if
there are no branch points iz, z1), then f is one-to-one oty (zo, z1) and the
restriction of f to y (zo, z1) is @ homeomorphism. Hence, in this cgsean have
at most one zero op. (Simple examples show thgtneed not have a zero gn)
Sincef is nonconstant, by the maximum principlecannot be a closed bounded
curve. Moreover, ify has no branch points, thenis an analytic curve that sep-
arates the plane. Finally, we also note thaf i§ a nonconstant, even, real entire
function, then its level curves are symmetric about the coordinate axes. By virtue
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of this twofold symmetry of the level curves, we will confine (for the most part)
our analysis to the first quadrant.

The next theorem gives quantitative information on the structure of the level set
(2.7) of an entire functiorf in terms of the growth of’/f. In the next section this
will be used (together with Lemma 2.2) to show that, in a certain sense, the level
curves off € G, (A) in the first quadrant approach the imaginary axis.

THEOREM 2.3. Let f be an entire function and léte R. SetP = {z = x + iy :

Re(e?f(z)) > O}andN = {z = x +iy : Re(e?’f(z)) < 0}. Suppose that the disk
D(z0,8(z0)) ={z=x+1iy:|z—z0l <8(z0)} C PUN.

Then

5(z0) < 2‘%@0)

Before the proof, consider the simple example whete = exp(—z%/2) andd =

0. Then the level sefz : Ref(z) = 0} = {x + iy : cogxy) = 0} is a family of
hyperbolas. Theorem 2.3 states that if the digk, 5(z)) is disjoint from these
hyperbolas, thed(zp) < 2/|z0|. It is easy to see that this is the correct order of
magnitude for our estimate 6{zo) in the sense thdﬁko‘_)ooleI(S(zO) > 0.

Proof of Theorem 2.3We prove the theorem under the assumption that the disk
D(zo, 8(z0)) is contained in the s&k. (The proof is the same, mutatis mutandis,
when this disk is contained iV.) For notational convenience, I8t denote the
unit disk centered at the origin and [Etdenote the open right half-plane. Con-
sider the compositiork; = ¢ o (ef) o v, of the maps

eib"
DY D(zo.8(zo)) 2 H % D,

where )
W(2) = 28(z0) + 20 and g(w) = 2¢O
w+ e f(z0)
Then,h(z) = ¢(ef(28(z0) + z0)) and a computation yields
’ _ 1¢ 00 ’ _ S(ZO) f/(ZO)
[R'(O)| = lp'(e”f(zoNIl f'(z0)]8(z0) = > |Reerren) |

Sinceh: D — D is analytic andz(0) = 0, it follows by Schwarz's lemma that

|h'(0)| < 1. Therefore, we have the estimate
Re(ef(z0)

5(20) < 2 #(Zo) =2/

as asserted. OJ

f

3

Additional properties of the level curves of functionsdi,(A) will be needed to
prove Theorem 1.3. These properties will be established in the next section. At
this juncture, we are able to conclude only the following, much weaker, result.
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We include it here to indicate how Theorem 2.3, in conjunction with the preced-
ing lemmas, can be used to establish the existence of a purely imaginary zero of
the functiong,, » defined by equation (2.8).

COROLLARY 2.4. Let f € G (A), letd € R, and letr > 0. Then there is ag
(0 < tg < 1) such that the real entire function

8r0.6(2) = €“f (2 + t0) + e f (z — to) (2.8)
has at least one purely imaginary zero in the upper half-plane.

Proof. Fix ¢t > 0 and f € G (A). We will show that Rge?f) vanishes at some
point in V,(0). If not, then without loss of generality assume that®&¥) > 0in
V;(0). This means that for ay > ¢/2 the diskD(z/2 + iy, t/2) is contained in
the stripV;(0), wheree”f has positive real part. Thus, Theorem 2.3 gives
4
<=, ¥z

flft . t
‘F(T’y) : 2’

which contradicts (2.6). Indeed, when> 0 in the representation (2.1) ¢gf the
contradiction is immediate. When= 0, we achieve the contradiction by using
the assertion of Lemma 2.1 tHah , _, ..[0 () — o(r/2)] = co. Hence there exists
z0 = to + ivo € V;(0) such that Ré&?f(z¢)) = 0 = g,,.0(ivo), as required. [J

3. Proof of Theorem 1.3

The proof of Theorem 1.3 requires a deeper analysis of the relationship between
the geometric nature of the level set structure of a real entire fungto® ., (A)

and the distribution of its zeros. We use Arg to denote the principal branch of the
argument and, as in Section 2, we denoté/ly) the vertical strip

Vi)={z=x+4+iy:0<x<t,y>r} (#>0,1>0).

LEmMA 3.1. Letr > OandA > 0 be fixed. For alle > O there exists aM <
oo such that, if; € V,(M) and iw € V4(M), then

z T
Argl —— —=
g<z2 - w2) 3

Proof. BecausgArg(z) — n/2| < ¢/2 whenz € V,(M) and M is sufficiently
large, and since

2 2
—Arg(%) =Arg(z — w—) = Arg(z) +Arg(1— w—z)
ZF—w Z Z

it suffices to show thatArg(1 — w?/z?)| < ¢/2 for largeM. It is clear from the
hypotheses op andw thatM can be chosen so that

|Arg(—w?/z?)| = |Arg(w?) + Arg(—=1/z%)|
< |Arg(w?)| + |Arg(=1/z%)| < &/2.

<Eé&.
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The result now follows from the inequality
|Arg(L — w?/z%)| < |Arg(—w?/z%)|. U

We associate witlf € G,,(A) a sequence of positive numbdrg} as follow.
Whena = 0 in the representation (2.1) ¢f we use Lemma 2.1 to choo$e } so
that

Jim [o(r) — 0(r2/2)] = oo. (3.1)
Whena > 0in (2.1), we simply set, = n. This definition of{r,} assures that
Nim [a(ry = 1) + o) = 0(r,/2)] = 00 (3.2)
forall f € 6, (A).

LEMMA 3.2. Let f € 64(A) and lete > 0. Then, for alln sufficiently large,

I T
Arg 7(2) + E

Proof. Let ¢ > 0 and choos@/ as in Lemma 3.1. From the representation (2.1)
for f € 6 (A), we have

N
%()——+Z ZZZ —2az + Z

o= Z =N1% T /<
whereN is chosen so that Rg > M whenk > N. With N now fixed, the first

two terms on the right in the display above tend to Qzas—> oco. We also have
from (2.6) and (3.2) that

Jim. inf{l f'@)/f (@ z€Vilra =D \Vi(r, + D} = o0

<2 zeVirn —D\Vi(rn + 1.

and so

<é&

f/
Arg<7(z)>—Arg( 2az + Z 2 —Zk)

k=N+1

for n sufficiently large and € V,(r, — 1) \ V,(r, +1). Lemma 3.1 asserts that each
term in the series above lies in the sedtor: |Argw + /2| < ¢}. Since—2az
also lies in this sector whemis sufficiently large and since the sector is closed
under addition, the result follows. O

Next we examine what these lemmas say about the geometry of the level curves in
Vi(r) of f € 65(A). A level curve in the set (2.7) can be parameterized @y
so that

ef(z(s)) =is, seR.

Throughout this section(s) will always represent such a parameterization. It is
clear thatz(s) extends to be analytic in a neighborhood of any pseirguch that
z(so) is not a branch point of the level set, and in particular wHerz (so)| > A.
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Differentiation of the equation in the display above leads to the relation

! 1
z’(S)f7(z(S)) =
Thus we see from Lemma 3.2 thattif> 0 andz(s) € V,(r, — D \Vi(r, + 1),
then Argz’(s) — /2 asn — oo. Geometrically, this says that the tangents to
the level curves in this set approach the verticakftarge. We also observe from

(3.3) and (2.5) that

(3.3)

Argz'(s) = —Arg ?(z(s)) >0, Imz(s) > A, (3.4)

and so all level curves i;(A) are monotone in the sense that their tangents are
never horizontal. These observations are key to the proof of the next theorem.
For f € 64 (A) andr > 0, we introduce the following notation:

(1) I(r; gr.o) = card{z : gr.0(z) = 0} N[O, ir]) denotes the number of zergs,
on the imaginary axis between 0 aid

(2) k;.9(r) = card{z : Re(e?f(z)) = 0} N [ir, t + ir]) denotes the number of
intersections the line segmeiat,[r + ir] has with the level set (2.7);

() jre(y1, y2) = card{z : Re(ef(z)) = 0} N [t + iy1, ¢ + iy2]) denotes the
number of intersections the line segmemni-{iyy, ¢ + iy,] has with the level
set (2.7).

We note that each of these quantities is finite, since distinct analytic curves inter-
sect in a discrete set.

THEOREM 3.3. Let f € G (A), letr > 0, and let{r,} be as in(3.1). Then

I(ry; gr0) = 1t—0(2a(rn —1) + Blo(r,) —o(r,/2])

for all n sufficiently large, where comes from the representati¢®.1) of f and
B is the positive absolute constant fr¢gh6).

REMaRrk 3.4. As noted in (3.2), this lower bound foir,; g:.¢) is unbounded.
Hence it is an immediate consequence of Theorem 3.3 thifat i, (A) andt >
0, theng, » has infinitely many zeros on the imaginary axis. Thus, sjce =
g0, Theorem 1.3 is a consequence of Theorem 3.3.

Proof of Theorem 3.3For the proof, we analyze how a level curve may enter and
leave a rectangle of the forfx +iy : 0 < x < ¢, yo < y < r}. As observed
previously, it follows from (3.4) that all level curves W (A) are monotone in

the sense that their tangents are never horizontal. Aled, i +i then no level
curve in the set (2.7) can intersect the positive imaginary axis, ginseeal and
nonzero there. Thus the level curves entering the top of the rectangle must all exit
on either the right side or the bottom of the rectangle, provigegd A. On the

other hand, it = +i then the imaginary axis is a level curve in the set (2.7). It
again follows that a level curve entering the top of the rectangle must exit on the
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right or bottom of the rectangle, provided > A, since f has no branch points
outside the strigf(A). Hence, in both cases,

kio(r) <kio(yo) + jro(yo,r), A=<ypo<r. (3-5)

We note that strict inequality is possible since, for example, a curve may both enter
and exit on the right side.
Next, using first Theorem 2.3 and then (2.6), we have that

8(x +iry) < 2’%@ +iry,)

2
= 240, — D + Blo(rn) — 0/ 2]
for all n sufficiently large, if Rge?f) £ 0 in the diskD(x + ir,, 8(x + iry)).

Also, using (3.2), we see thal(r,) — 0 asn — oo.
Suppose for a moment that the portion of the level curves

(Vi(rn — AGr) \Vi(ra + A@r))) N {z 1 Re(ef(z)) = 0} (3.7)

are actually vertical lines. Since they divide,|, ¢ + ir,,] into k, 4 (r,,) + 1 pieces
and since (3.6) implies that the length of each piece is at mt6t,2, we obtain
the estimaté, 4(r,) > t/(2A(r,)) — L

For the actual level curves, it follows from (3.4) and Lemma 3.2 that

|Arg(z'(s)) — /2| <1/100,  z(s) € Vi(rn =D \Vi(rs +1D,  (3.8)

for n large. Thus the vertical projection of the set (3.7) onto the line segment
[irn, t +ir,] has length less thatf 2, providedn is large enough so that(r,) <
t and (3.8) holds. Hence

= A(ry,), (3.6)

1 n=no. (3.9)

kt,G(rn) > 4A(}’n) -
Combining this estimate with (3.5), and recalling the definitiom\of,) given in
(3.6) andthat2(r, — 1) + B[o(r,) — o(r,/2)] — oo from (3.2), we have

Jro(yo.r) = ﬁ)@a(rn — 1) + Blo(r) — 0(ra/2)])

for all n sufficiently large. Since; »(iy) = 0 if and only ifr + iy is in the level
set (2.7),j:.0(yo, r») represents the number of zeros thas has in the interval
[iyo, ir,] on the imaginary axis; thus, the proof is complete. O

4. Concluding Remarks and Open Problems

We note that the lower bound for the number of zerog, @fon the positive imag-
inary axis, given in Theorem 3.3, is independenf.oT he explanation for this is
that the lower bound was established by way of estimates involying) in (3.5)
and (3.9), where we recall that, (r) denotes the number of intersections the line
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segmentir, ¢t + ir] has with the level sefz : Re(e??f(z)) = 0}. The next propo-
sition (which is of independent interest) shows that, outside the Stdp, the

curves in{z : Re(e?f(z)) = 0} separate the curves in the level et Re f(z) =

0}. An immediate consequence is thaf o(r) — k. o(r)| < 1, that is,k, »(r) is

essentially independent 6f

ProposiTiON 4.1. Let f € 6,,(A) and assume that
Ref(x1+iyo) = Ref(x2+iyo) =0,

wherex; < x; are real andyy > A. Then, for alld € R, there exists € [ x1, x2]
such thatRe(e’f (x¢ + iyg)) = O.

Proof. Let f € 6,,(A) andd € R. Because all the zeros gflie in the stripS(A),
there is an analytic branch of Iggdefined on the sdt : Imz > A}. With arg f
denoting the imaginary part of lofy we get

/

iargf(z) =1Im(log f)'(z) = Im L(z) <0, Imz> A,
ox f

from (2.5). Thus, the functiof + /2 + arg f is monotone on the line segment
[x14iyo, x2+iyo], and its range contains an interval of lengthlt therefore as-
sumes on this set a value that is an integral multiple ofvhich is equivalent to
the assertion of the proposition. O

OPEN PrROBLEMS 4.2. Special cases of Theorem 1.3 can also be expressed in
terms of some simple infinite-order differential operators. ThuB, i d/dz de-
notes differentiation with respecttothen for anyf € G(A), we havee'”: f(z) =
f(z + t). Therefore, by Theorem 1.3, fore R \ {0} and f € G,,(A), the entire
functions
g0(z) = 2costeD,) f(z) = fz+ 1) + f(z —1)

and

8r.n/2(z) = 2i sinh(tD,) f(z) = i(f(z+1) — f(z — 1))

have infinitely many zeros on the imaginary axis. Repeated applications of these
operators to a functionf € G.,(A) lead to several questions. For example, does
(coshtD,))?f(z) = f(z +2t) + 2f(2) + f(z — 2t), t € R\ {0}, have infinitely
many zeros on the imaginary axis? Another problem—characterizing the func-
tions in & (A) such that exp?D?/2) f(z) = lim,_.(coshtD./y/n))" f(2).

t € R\ {0}, is an entire function having some nonreal zeros—appears to be very
difficult.

REMARK 4.3. Letf € 6,(A) and setw(x,t) = f(x +1) + f(x —t), where
x,t € R. Thenw satisfies the wave equatian, = w,,. This suggests the phys-
ical interpretation that (x, ¢) (i.e., g.o restricted to the real axis) represents two
waves traveling in opposite directions with unit speed.

OreN ProBLEMS 4.4. (@) Characterize the functiofiss G,,(A) such that all the
zeros ofg; o(z) = f(z + 1) + f(z — 1) lie on the coordinate axes.
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(b) Suppose that € G, (A) N L-P, so thatf € G,,(A) has only real zeros (cf.
Section 1). Then easy examples show ghatneed not have any nonreal zeros off
the imaginary axis. (Consider, for exampfz) = exp(—z2) € G4 (A) N L-P.)
For what functionsf € G,,(A) N L-Pisittrue thatg, o(z) = f(z+1)+ f(z—1)
has nonreal zeros other than those on the imaginary axis?
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