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Invariant VVector Bundles of Rank 2
on Hyperelliptic Curves

CHANCHAL KuMmaAR

1. Introduction

In classical projective geometry, the Segre cubic 3-Blthas been extensively
studied in Baker [1] and Coble [4]. It is the GIT quotigit')®//PGL(2, C) of
(P18 by the diagonal action of PGR, C) for the natural linearization on the line
bundleX?® , Opi(1). It has been shown in Baker [1] and Coble [4] that the Segre
cubic 3-fold arises on considering the linear system of quadri@s’ithat pass
through five points in general position. The vari@ythus embedded i®* as

a cubic hypersurface is actually the blow-upRf at these points, but with the
proper transform of all lines joining any two points blown down to the ten nodes
of X. A general pointw € X of the Segre cubic 3-fold can obviously be inter-
preted as a curv€ = C, of genusg = 2 with level 2-structure. Indeed, Van
der Geer [12] showed that the variety duaBtowhich is a quartic 3-fold, can be
identified with the Satake compactification of the moduli spa¢g, of smooth
projective curves of genug = 2 with level 2-structure.

A beautiful classical theorem (see [1; 4]) states that & X is a general point
then theapparent contou—namely, the locus of points of contact of tangenkto
from this pointw—is the Kummer surface Ku') of the curveC = C, asso-
ciated tow € X. In other words, the projection from the poiatmapsX as a
2 :1 covering ofP3 with Kummer surface KuC) as its branch locus and the ap-
parent contour as its ramification locus. The composition of the birational map
P23 --» X andthe 2 :1rational map --» P3yields a2 :1rational map® --» P3,
which is induced by the quadrics passing through six poin&’im general posi-
tion. The ramification locus of this rational map is called\Weddle surfaceThe
Weddle surface with six nodes is a birational model of the Kummer surface. A
nice modern account of these results may be found in the book by Dolgachev and
Ortland [8].

The aim of this paper is to generalize all this beautiful geometry to higher di-
mensions. Fog > 2, we consider the GIT quotienP!)?¢+2//G of (P1)2s+2
by the diagonal action of = PGL(2, C) for the naturalG-linearization on the
line bundleL = X282 Op1(1); we call it ageneralized Segre variety theSegre
g-variety X,. We show that the Segrevariety X, is obtained by the linear sys-
tem Q of g-forms onP2¢~1 that vanish with multiplicityg — 1 through Z + 1
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pointsey, ..., ez,+1 in general position (cf. Theorem 4.1). In other words, the ra-
tional mape, induced by mapsP2-1 birationally ontoX,.

A general pointv € X, represents a hyperelliptic curve of gegusgether with
a special level-2 structure—namely, those given rise to by an ordering of the Weier-
strass points (whep = 2, all level 2-structures arise in this way). d§ € P61
such thatq(eg) = w, then we consider the partial linear systenof g-forms in
Q that vanish with multiplicityg — 1 at all the 2 + 2 pointsey, ..., exe11, €0 =
e2q+2. The projection ofZ, into |A[* yields a rational map of degree 2 onto its
imageS', a connected component of the moduli space of semistable vector bun-
dles of rank 2 with trivial determinant ovér = C,, which are invariant under
the hyperelliptic involution. Also, this rational map is branched precisely along
the Kummer variety KurgC) in S’ (see Theorem 4.2). This is the precise general-
ization of the classical relationship between the Segre cubic 3-fold and curves of
genusg = 2 to higher dimension. Moreover, it establishes a connection between
Y, and certain moduli spaces of invariant vector bundles of rank 2 on hyperelliptic
curves.

A part of this generalization was carried out by Coble in his two papers [5; 7]
and a survey article [6]. His aim was to find a higher-dimensional analog of the
Weddle surface and study its geometry relative to the geometry of Kummer vari-
ety. Coble showed that the linear systans the Z-linear system on the Jacobian
of the hyperelliptic curve” = C,, and that it induces a rational map of degree 2
onto its image, which is branched precisely along the Kummer variety; the ram-
ification locus of this rational map is what Coble calls ¥Weddle manifold We
have given a modern account of the work of Coble and hope that this will lead to
a better understanding of his work.

We now give a brief overview of this paper. First we discuss certain moduli
spaces of semistable vector bundles of rank 2 on a hyperelliptic cuofegenus
g > 2. Let K = K andh be thecanonicalandhyperelliptic line bundlesn C,
respectively. LeW = {wy, ..., wa,42} be an ordered set of all Weierstrass points
of C. Setwo = wy,42. Then all extensions of the form & O(—wp) — E —

K (wo) — 0 are parameterized by'(C, K *® A1) and hence there is a rational
extensionmap: P = PHYC, K*®@ h™) --» SUc(2, K), where SY(2, K) is
the moduli space of semistable vector bundles of rank 2 and deterninamthe
curveC. Bertram [3] showed that the rational mapeven forC nonhyperelliptic,
is induced by the linear systef®(P, I§’1® Op(g)), which is canonically iso-
morphic to the 2-linear system on the Jacobian Pi&C), whereZ is the ideal
sheaf ofC in P and Pi¢~%(C) is the space of all line bundles of degree- 1 on
C. Since the line bundl& ~*® » ' is invariant under the hyperelliptic involution
i: C — C, there is an involution on the cohomology groHp(C, K *® h™t) ~
HO(C, h?~1)*. Let P* be the linear subspace Bfcorresponding to the positive
eigenspace for this involution. The®t" is of dimension 2 — 1, that is,P* ~
P2¢-1 Restricting the rational mapto P+ yields a rational mapt: Pt --» SV,
whereS™ is thei-invariant locus in SY(2, K). We showed that* is generically
2:1 onto its images’, a connected component 81", and it is branched along
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the Kummer variety KurtC) = Pics~1(C)/+ in S’ (see Corollary 2.1). Then in

the next section we give another proof of a result of Coble that the linear sys-
tem A is isomorphic to the 2-linear systemH °(Pics—1(C), O(20)). In the last
section, we established a relationship between Sggariety and hyperelliptic
curves of genug that generalizes the relationship between the Segre cubic 3-fold
and curves of genus = 2.

ACKNOWLEDGMENT. The author is grateful to his thesis advisor Professor S. Ra-
manan for suggesting this problem and for giving valuable help in the preparation
and revision of this paper. Without his help, this paper could not have been writ-
ten. We were not aware of [5] or [7] and thank the referee for drawing our attention
to these works. The referee also made many useful comments that helped improve
the exposition of this paper.

2. Invariant Vector Bundles of Rank 2

Let E be an invariant vector bundle of rank 2 on a hyperelliptic cutvef genus
g > 2 Letj: E — E be alift ofi-action toE. Then(E, j) is called avector
bundle pair. Two vector bundle pair§E, j) and(E’, j’) are said to bequiva-
lentif there is a vector bundle isomorphisfn E — E’suchthatj’o f = foj.

We say that the vector bundle patft, j) is semistabldresp. stablg if, for every
Jj-invariant line subbundlé& of E,

deqgE)
degF) = pu(F) < p(E) = ———  (resp.,u(F) < u(E).
Let W = {wy, ..., wae+2} be the ordered set of all Weierstrass pointsCof
Consider a vector bundle pdiE, j). Then, foreveryw e W, j,: E, — E, isan
involution on the fibe&,,. Let Sg be the moduli space of semistable vector bun-
dle pairs(E, j) of rank 2 on the hyperelliptic curv€ with det(E) = K and trace
Tr(j,) = O for allw € W. The existence of the moduli spagk follows from the
work of Seshadri [11] orr-vector bundles.
Let p: S) — S™ be the map given by((E, j)) = E and letS' be the image
of p. Then we show tha), is a ramified double cover &'.

THeoreM 2.1. The mapp: S| — S’ given byp((E, j)) = E is generically2 : 1
with the Kummer varietkum(C) in S’ as its branch locus.

Proof. If (E, j) and(E, j’) are two vector bundle pairs ové € S/, thenj’ =

Aj for someA € Aut(E). If E is stable, then AutE) >~ C*. Thus;’ = 4+ and

so, for every stable bundig € S', there are two nonequivalent vector bundle pairs
(E, j), (E,—j) overE. This shows thap is generically 2 : 1Now the Kummer
variety Kum(C) of the curveC is embedded ir§' by the mape — o @ i*a,

and it corresponds to strictly semistable (i.e., semistable but not stable) bundles
inS". If E = a @ i*« for somex € Pics~1(C), then any two lifts ofE in S} are
equivalent. O
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We claim that the rational extension map: P™ --» S lifts to the rational
mapz: PT --» S. Forv € P*, the two extensions 6> O(—wg) — E, —
K(wg) — 0and 0— O(—wg) — i*(E,) — K(wo) — 0 are isomorphic, so
E, comes with a liftj, of i-action. Thus(E,, j,) is a vector bundle pair. Also
the trace T¢(j,),,) = O for eachw € W. Since a generic extension is semistable,
(E,, jy) € S} for a genericw € P*. Thus we define a rational map P+ --» S
byé(v) = (Eva Jv)

THEOREM 2.2. The rational mag: P+ --» Si is birational.

Proof. It suffices to prove that, for a gener&, j) e Si, there exists a unique
v € PT such thate(v) = (E, j). Let ®f be the generalized theta divisor on
Si; that is, Supp®y) = {(E,j) € S : HAC,E) # 0}. If (E,j) ¢ O}
then, from the short exact sequence-0E — E(wo) — E(wo)’wo — 0, we
have dim(H%(C, E(wg))) < 2. Since the Euler characteristig E(wg)) = 2,
we have dintH °(C, E(wg))) = 2. Then involution; on E induces an involution
jon HOC, E(wo)). Now, by the Atiyah—Bott fixed point theorem (see [2]), the
trace TIj) = 0. Thus dim(H%C, E(wo))t) = dim(H%C, E(wg))~) = 1 and
so, for each(E, j) ¢ ©f, there exists a unique extensior- O(—wo) - E —
K(wp) — 0, where the inclusiol®(wg) — E is induced by the unique invariant
nonzero section of (wg). Clearly, E andi*E are the same as extensions. Hence
there is a unique € P* such thak (v) = (E, j). O

COROLLARY 2.1. The rational mape*: PT --s S is generically2 : 1 with the
Kummer variety)Kum(C) in S as its branch locus.

Proof. Sinces™ = p o ¢, the proof follows from Theorems 2.1and 2.2. [

3. 26-Linear System

In this section, we identify the@linear system on the Jacobian Pi&(C) of a
hyperelliptic curveC with the linear systen\c = A onP+ ~ P22~ From the
canonical isomorphisn# °(Pics—1(C), O(26)) ~ HO(P, I§_1® O(g)), we ob-
tain a linear map

res: HO(P, Z57'® O(g)) — HO (P, O(g))

by restricting the sections @i °(P, Ié’l® O(g)) to PT. We recall that the lin-
ear systemA¢c = A consists of all theg-forms onP*+ ~ P21 that vanish
with multiplicity ¢ — 1 at the Weierstrass pointey, ..., wa,.2 in P*. We will
prove that the mapping res induces an isomorphism betweemthieear system
HO(P, Igfl@) O(g)) and the linear system. But first we prove the following
results.

Lemma 3.1. LetQ e HOYPY, O(n)), and letA and B be any two distinct points
onP". Suppose the-form Q vanishes with multiplicity andm at A and B, re-
spectively. The® vanishes along the lingB with multiplicity at least +m —n.

If I +m —n < 0, then the conclusion is vacuous.
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Proof. Letr = I + m — n. We need only consider the case<Or < I, m. Let
8"=%Q be a partial derivative of) of orderr — 1. Then degd"~4Q) =n—r +1
andd'"~YQ vanishes with multiplicity — r +1 andm — r +1atA andB, respec-
tively. Sincel —r+D)+(m—r+1) =n—r+2>n—r+1=degd”1Q), the
line AB intersects)”~¥Q = 0 in a divisor greater than its degree d&g Q).
Henced %@ vanishes identically oA B. O

COROLLARY 3.1. Let Q € HYPN, O(n)). Let {u; : i € A} be a collection of
finitely many points if®" in general position such thap vanishes with multi-
plicity n — 1 at theu;. ThenQ]P(I) =0, whereP(I) = (u; :i e I) c PV is the
linear subspace spanned bywithi e I c A and#(I) <n—1

Proof. Let #(1) = r < n — 1. Then we claim that the-form Q vanishes with
multiplicity n — r on P(1). Using Lemma 3.1, this claim can be proved by induc-
tion onr. O

REMARK. With notation as in Corollary 3.1, i@|P(]) = 0O for everyJ C A with
#(J) =n, thenQ|P(A) = 0. By induction, one proves th@|P(H) =0forH C
A with #(H) > n. For instance, if #4) = n + 1, then by assumptioQ|P(]) =
O foreveryJ C H with#(J) = n. ThusQ|P(H) is a product of: + 1 hyperplanes
in P(H). SinceQ is an-form, it is absurd unIesQ]P(H) =0.

LemMa 3.2. The linear mapes: HO(P, I§_1® O(g)) — HOYP*, O(g))isin-
jective, and its image is contained i

Proof. Let Q € HO(P, I§_1® O(g)) be such that ré®) = Q|,, = 0. Let
71, ..., Zg De any genergd points on the hyperelliptic curv€ in P. Consider the
g-secantP¢~! = (z4,..., z,) spanned by the;. Since theg-form Q vanishes
on the curve with multiplicityg — 1, by Corollary 3.1 it follows that the-form
Q|]P,g,l is (up to a constant factor) a productgohyperplanes of the forms—2 =
(21, ey 2y oy 2g) INPE7L BUutPE~1N P+ # ¢ and, for a generaj-secants—,
we may assume th@&* does not meet any of these hyperplaf#és? in Ps—L
SinceQ|P+ = 0 andP* meetsP¢~1 in the complement of the hyperplanes just
described, we must ha\@|w = 0. Thus, theg-form Q vanishes on a general
g-secant to the hyperelliptic curnv@in P. SinceC is nondegenerate iR, by the
remark to Corollary 3.1 we have thé is identically zero. This proves that the
mapping res is injective. Als6 NP+ = W, the set of all Weierstrass points 6f
in P. Thus resQ) € A. O

ReEmARKS. (i) Since dim(HO(P, I§’1® O(g))) = 2% and res is injective, we
have dim(A) > 2¢. Thus, to show that res is an isomorphism ontdt is enough
to prove that dinjA) < 23.

(i) Every Q € A vanishes with multiplicityg — 2 on the rational normal curve
S in P* besides vanishing with multiplicity — 1 at the Weierstrass points (see [7,
Thm. 1.4]).
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Lemma 3.3. Let{u; : i € A} be a finite collection of points i~ in general
position. LetQ be an-form onP?~for n < g. Suppose& vanishes at;; with
multiplicity n — 1 fori e A. Let P(I) = (u; ;i el) forl Cc A. LetP%~" pe
a linear subspace oP?%¢~1 such thatP?s—" N P(I) = @ for I ¢ A with#(I) =
n—211f Qs , =0, thenQ|,,, =0.

Proof. From Corollary 3.1, we may assume that§ > n. Also, in view of the
remark to Corollary 3.1, it is enough to prove tr@tm) = 0 for J C A with
#(J) = n. But again by Corollary 3.1Q vanishes on hyperpland¥[) in P(J),
I CJ,with#(I)=n-1 ThusQ|P n is a product of: hyperplanes. Sindg2—"
intersectsP(J) in the complement of the hyperplangs¢/ ) and smceQ|Hm =
0, we must haveQ|, ,, = 0.

LeEmMa 3.4. LetQ € A. Supposéw; : i € A}is asubsetoW andP¢*" isalin-
ear subspace 0P+ ~ P26~ 1suchthafPs*" NP(I) = @ forI C {w; : i € A}with
#(I) = g—r—11f Q|,,,, = OthenQ sr(a) = 0, WhereS’(A) = Sec(S) P(A)
is the join ofrth-order secant variety to the rational normal cungein P* and
the linear spaceP(A). Forr = 0, S%(A) = P(A).

Proof. We proceed by an induction on Forr = 0, it follows from Lemma 3.3
thatQ|P(A) = 0. Thus, by induction we assume tI“Ql{S,‘,l(A) = 0. Now con-
siderr general pointgy, ...,z onS. Let P(zq, ..., 2,, A) = z1%-- - %z, % P(A).
Then, by induction assumptioQ,| Plaa....20.A) is a product of hyperplanes of the
form P(z4,...,2i, ..., 2., A) and a(g — r)-form Q' in P(zy, ..., z,, A). Since
every Q € A vanishes with multiplicityg — 2 along the rational normal cuns
(see [7, Thm. 1.4]), thég — r)-form Q’ vanishes with multiplicityg — » — 1 at
71, ...,z andw; (i € A). Becausey, ..., z, are general points df, it follows
from Lemma 3.3 thaQ”P(ZL._”zhA) = 0. This implies thatQ =0. O

S7(A)
We now proceed to show that the dimension of the linear systera= A is 2.

Letl, ={1,...,n}forn < 2g and letP(l,) = (w; e W :iel,) C PT. Then
P(I,) ~ P"~'and we have a complete flag

P(l) C P(Ip)) C--- C P(Igg) ~ Pt
for the projective spacB* ~ P?~1 We define a decreasing filtration anas
follows. Let A = {Q €A : Q|P(1+ =0}forO<k <g+1 SinceQ e A
8
vanishes with multiplicityy — 1 atw € W, We haveQ|P(1 = 0. Thus,FoA = A;
also,Fx A D Fy1aA andF,, 1A = 0. Hence we have a fmite decreasing filtration

A=FADFAD --DFADFA=0

ofthe linear system\. The associated graded linear space for thisfiltration is given
by B;_o Gre A = B;_o(FkA/FiyaA). Therefore, dinA) = 0 dim(Gry A).

Let Ay = {Q\P(l Q€ FyA}. Then we have a short exact sequence>0
FipiA - F A — Ak — 0, whereFy, A — A, is the natural restriction map.
Thus dimGr, A) = dim(Ay).

Lemma 3.5, dimGr, A) < (,%).
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Proof. Since dim(Gr, A) = dim(A), we show that dimA) < (,%;). For’
I, = {1, ..., g} with #(1) = g — k, we define linear subspacé#XI; g — k) of
P(Ig41) by P(I; g — k) = span offw; : i e I} and{wg41, ..., wetr}. Then each
P(I; g—k) isisomorphic to &2~1, and the number of suck(I; g —k)-subspaces
is precisely(,* ;). Let Apgg—i) = {Q|P(1;g_k) : 0 € A} and consider the natu-
ral restriction map : Ax — @)=, i (Apru;g-1), Where the direct sum is taken
over alll C I, with #(I) = g — k. We claim that- is injective. LetQ € A, be
such tha (Q) = 0. ThenQ € A, Q\P(,Hkil) =0, andQ\P(,;g_k) = 0 for every
I CI,with#(I) =g —k.

We need to show tth|P(IM) = 0. Fork < 1thisis trivial, so assume that>
2. SinceP(ly44-1) =~ Petk-2 andQ|[P>g+k72 = 0, we deduce from Lemma 3.3 that
Q|SH(W,) =0, whereW’ = {w; e W i ¢ I, _1}. Now consideiPs = span of
{wj; j e J}yand{wgy1, ..., weik}, WhereJ C I, with#(J) = ¢ —k + 1. By as-
sumption,Q| ., ,, = 0forl C J with#(1) = g —k, and Q| ., ., =0
becaus@|P(1g+kil) = 0. This shows tha|,, is a product ofg — k + 2 hyper-
planes and &k — 2)-form Q' onP¢. Also, Q' vanishes with multiplicityk — 2
at the pointsw,+x, w; (j € J) whereas it vanishes with multiplicity — 3 at
the remaining points, 1, ..., weir—1. This implies thatQ’ must be a cone over
a (k — 2)-form Q” onP*~2 = (w41, ..., wesx—1). Now, for a generak — 2
pointszy, ..., zx—2 € S we haveP® N P(zy, ..., zkr2, W) # 0, whereW” =
W' — {weii} @nd P(zy, ..., 242, W) = P81 SinceQ\Sk,l(W,,) = 0, it follows
thatQ|W = 0 contains gk — 2)-dimensional subvariety df$. The same is true
for Q’|Pg = 0 and hence also fap” = 0 in P¥~2, sinceQ’ is a cone ove”.
Thus we must hav@” = 0, and soQ|]P,g =0.

On similar lines, we can deduce tr@jw = 0, whereP¢* = span of{w; :
jeJyand{wgqq, ..., weik}, and that/ C I, with#(J) = g—k+1+i. Thus, for
i=k—-1 we haveQ|P(1gm = 0 and hence is injective. Now, in view of Corol-
lary 3.1, dim(Apq.e—1) < 1and so diniAy) < dim(@#,:g_k(Ap(,;g_k))) <
(50 D
TueoreM 3.1 (Coble). The linear systenhc = A on P is isomorphic to the
26-linear system on the Jacobidtics~1(C) of the hyperelliptic curve.

Proof. Since din(H°(P, I§_1® O(g))) = 2¢ and the linear map resH (P,
zg*1®0(g)) — Aisinjective, it follows that dinfA) > 2¢. But from Lemma 3.5
we have dintA) = Y §_odim(Gry A) < >%_o(,%+) = 2¢. Thus dimA) = 2¢
and res induces an isomorphism of thelhear systenmH °(P, I§_1® O(g) ~
HOPics~X(C), O(20)) with A. O

REMARK.  Since din{A) = 2¢, we have diniGr, A) = (,%,).

THEOREM 3.2. The rational map,: P™ --» |Al* induced by the linear system
Ac = A is generically2 :1onto S, and its branch locus is the Kummer variety
Kum(C) in S'.

Proof. From Theorem 3.1, the pull-back of the linear systdf(S’, ®'), which
is isomorphic to the @-linear systemH °(Pics~1(C), ©(26)) under the rational
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mape™: P+ --» S, is isomorphic to the linear system, where®' is the gen-
eralized theta divisor o8'. SinceS' is embedded in the linear syste¢@’|*, the
rational map*: P* --» S’ isinduced by the linear system Now the theorem
follows from Corollary 2.1. O

4. Higher-Dimensional Segre Varieties

In this section we discuss a higher-dimensional analog of the Segre cubic 3-
fold. As in Section 1, we consider the GIT quotigfitt)?¢+2//G of (P1)2+2 by
the diagonal action of; = PGL(2, C) for the naturalG-linearization on{ =
X282 Op1(2) and call it theSegreg-variety X,.

Using the theory of associated point sets [8], we have a duality isomorphism

(P1)2g+2//G ~ (Pzg—l)zg-‘rZ//G/’

where G’ = PGL(2g, C) acts diagonally onIP?6~1)2¢+2 for the naturalG’-
linearization on the line bundldt = X272 Op2-1(g). Moreover, we have
HOL)S ~ HYM). Now letey, ..., ex41 be any 2 + 1 points in general
position inP2¢~1, Without loss of generality, we may assume tha&= [0 : - - - :
1:-..:0]forj=1...,2gandey1 =[1:---:1]. Then we define an inclusion
fiP2l 5 (P25 12842 by e 1> (e, ..., €2411, €). ON composingf with the
GIT quotient map and using the preceding duality isomorphism, we derive a ratio-
nal mapf: P21 --s ¥,. Any two general points = (t1, ..., 2,4 2) € (P1)26+2
andz = (z1, ..., 22¢+2) € (P?~1)2+2 are associated to each other under the above
duality isomorphism if and only if there is a rational normal cupveP? — P2s—1
suchtha/ (t;) = z; forl < j < 2g+2(see [8]). Any 2 +1 points in general po-
sitions inP%~1 can be mapped tay, ..., e2,.1 by an automorphisri of P21,
SO IfT(y(t2e+2) =€ then f(e) is the image of = (14, ..., t244+2) under the GIT
quotient map. For a general pointe P2~ there is a unique rational normal
curve througte,, ..., ez, 11, e. This shows that the rational maf P21 --» X,
is birational.

Let Q be the linear system qf-forms onP2¢~1 that vanish with multiplicity
g —lat 2 +1pointsey, ..., eze41in P%~1 We then show that the rational map
f is induced by the linear systefa.

THEOREM 4.1. The linear syster® onP?¢~1 is isomorphic toH °(£)¢, and the
rational mapug: P?¢~1 --» |Q*| induced by the linear systef is birational
ontoX,.

Proof. We consider the birational maf: P21 --» Y., induced by the above du-
ality isomorphism. By the Hilbert-Mumford numerical criterion for semistability
(see [10]), we check that the indeterminacy locug @nsists of all theég — 1)-
planes(e;,, ..., e;,) spanned by; (j =1,...,2g + 1). The Segrez-variety X,
embeds inP(H °(£)“)* and so, for a sectione H%(Z,, Oz, (1)) ~ H%(L), the
pull-back sectionf*(s) € HO(P?¢~1, Op2-1(g)) is ag-form that vanishes on the
indeterminacy locus of . In other words, the-form f*(s) vanishes on all the
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(g — D-planes spanned by tleg. But these conditions are equivalent to the con-
dition that f*(s) vanish with multiplicityg — 1 at the Z + 1 pointsex, . ..., €2¢+1.
Thus the pull-backf* yields a linear map: H%(£)¢ — . Since f is bira-
tional, p is nontrivial. Hence, to complete this proof we need only show ghat
an isomorphism.

We now compute the dimension ©f. LetN; = {1, ..., k}, R = {I C Ny, :
#(I) = g}, andC = {J C Ny, : #(J) = g — 2}, and letx; denote the monomial
Xiy ... Xi, if I ={iy, ..., i,}. Theg-form Q vanishes with multiplicity; — 1 at the
pointses, ..., ey, if and only if itis expressed a@ = >, 5 a;x; with a; € C. If
Q also vanishes with multiplicitg — 1 ate,,,1 then we have the condition that,
foreachJ €C, )", ;. ar = 0. Therefore

Q:{wa;: Z a1:0VJeC}.

IeR JCIeR

The incidence matrixi;;);cr.jec, givenbyr,; =1if J c Tandr;; =0if J ¢
I, is of maximal rank, so all conditions among the generateys I € R} of the
linear systens2 are independent. Thus di) = #(R) —#(C) = (%) — (*%,)-
Now let W, be the symmetric group oh symbols. We recall that °(£)¢
is an irreduciblelV,,, ,-module corresponding to the Young tableau consisting
of 2-rows and(g + 1)-columns; by the Hook length formula, di# °(£)¢) =
% (see [8]). Forgetting the last symbai,%(£)¢ is also an irreducible
Wo,11-module. For every € Wa, .1, there is a unique automorphisfy of P21
suchthatl,(e;) = e,jyforj =1,..., 2¢+1 Nowthe map) — 7.5(Q)foro €
W, 11 define an action ofV,,.11 0on 2, and it can be checked thais equivariant
for theselV,,1-actions. Since?%(£)¢ is an irreduciblé/, 1-module,p must
be injective. Also, since ditH °(£)%) = dim(Q), p must be an isomorphism.
O
A general point on the Segrevariety w € X, represents a hyperelliptic curve
C = C, with a special level 2-structure as mentioned in Section &y & P%¢1
such thatg(ep) = w, then we consider the linear systetnof g-forms onP2¢—1
that pass with multiplicityy — 1 through 2 + 2 pointsey, ..., e241, €0 = €242
Then A is a partial linear system aR2. We can identifyP2¢~1 with P+ by a
unique projective transformation takiagto w; fori =1, ..., 2¢ + 2. In view of
Theorem 3.2, we now have our main theorem.

THEOREM 4.2. The Segreg-variety X, embeds in the projective spa¢e|*.
ProjectingX, into the linear syster\|* yields a rational map of degrezonto its
imageS’, and it is branched precisely along the Kummer variétym(C) in S'.

Proof. By Theorem 4.1, the Seggevariety X, embeds int¢2|*. Also, the linear
systemA corresponds to the linear systexg under the foregoing identification
of P21 with P*. The result then follows from Theorem 3.2. O

As an application of Theorem 4.2, we give an alternative proof of a result of
Narasimhan and Ramanan [9].
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THEOREM 4.3 (Narasimhan—Ramanan)The moduli spac8Uc (2, K) is isomor-
phic tolP® for a smooth projective curv€ of genusg = 2.

Proof. Forg = 2, i*E = E for all E € SU¢(2, K); thusS' = SU¢(2, K). The
Segre cubic 3-fol is a cubic in|Q|* ~ P4, and projecting away from a general
pointw € ¥ yields a rational map of degree 2 framonto|A|* ~ P2. Thus, from
Theorem 4.2, we derive th& ~ P3. O
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