LZ(G)* as the Second Dual
of the Group Algebrd.'(G)
with a Locally Convex Topology

AJiT IQBAL SINGH*

Isik, Pym and Ulger [8] give a good account of the structure of the second dual
LY(G)** of the group algebrd.}(G) of a compact grou. Lau and Pym [10]
investigate the general case of a locally compact g@uphey introduce a sub-
algebraL ¢, the norm closure of elements Irt(G)** with compact carriers, and
identify it with L°(G)* via restriction on the subspadg’(G) of bounded mea-
surable functions o that vanish at infinity. FOLF (G)*, they are able to re-
cover most of the results obtained fbt(G)** in the compact case. Therefore,
they suggest in [10] that the sensible replacement06)** should bel. 3 (G)*.

The purpose of this paper is to give a locally convex topolegn LX(G) under
which LF (G) (with || - ||») is its strong dual and thus presdiff (G)* as the sec-

ond dual of(LY(G), t). We show that, except for the trivial case@ffinite, there

are uncountably many such topologies, and we discuss various levels of continuity
of multiplication.

As far as possible, we follow [10] in our notation and refer to [5] for basic func-
tional analysis and to [7] for basic harmonic analysis (see also [12]). In particular,
A is the left Haar measure on the locally compact gréufor a Borel measurable
subsetk of G. Moreover, f € L*(G), | fllx = esssup|f(x)| : x € K}, and
LY (G) = {f e L*®(G) : for K compact || fllc.k — 0asK + G }. It follows
that(LX(G), LY (G)) is a dual pair.

Let o and i denote (resp.) the weak topologyL(G), LP(G)) and the
Mackey topology.(LY(G), LY (G)) onLY(G). Leto* denote the weak*-topology
o(LF(G), LYG)) on L¥(G), and letL},(G) be the subalgebra df*(G) con-
sisting of thosef that vanish outside some compact subsef of

Let S andR be (resp.) the sets of increasing sequeriégs in K and(a,) in
(0, 00) with a, — oo. For ((K,,), (a,)) €S x R, let

U((K,), (a,) = {¢ € LXG) : llpxk, |1 < an, n €N}

Thenld = {U((K,), (a,)) : ((K,), (a,)) €S x R} is a base of neighborhoods of
zero for a locally convex topolog§* on LY(G). Itis similar to the strict topology
B defined by Buck [1].
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1. Remarks. (i) If G is o-compact then there exists(&,) € S with [ J{ K, :
n € N} = G satisfying the condition that eadt in K is contained in som&,,.
Therefore, a base of neighborhoods fdris also given by

U={U((Ky), (an)) : (an) €R}.

(i) If G isinfinite then there is &K,,) € S with A(K,\ K,_1) > O for eachn,
whereKo = ¢. It is easy to see this i&; is not compact because, forkain K,
G\ K is a non-empty open subset of the locally compact sgaead thus con-
tains a compact subsétwith non-empty interior. Alternatively, we can use the
proof of [7, item (11.43)(e)]. On the other handdfis compact thet is not dis-
crete, so by regularity of there is a decreasing sequeritg) of open neighbor-
hoods of the identity satisfying O< AU,.1 < AU, for eachn in N. We may take
K, =G\U, forninN,

(iii) The constructionin [7, item (11.43)] can by modified to give the following
stronger form of (ii) to be used later: & is not compact then there exist,,) in
S and sequenca®,) and(C,) in K that satisfy the following conditions.

(@ A,B;1c C,.

(b) TheB, are mutually disjoint.

(c) TheC, are mutually disjoint.

(d) inf, AC, > inf, 2B, 1> 0.

(e) If G is unimodular then, for eaadh

AB, <1 and A(l,A,) = .

Let U andV be compact symmetric neighborhoodsedh G with V2 ¢ U
andAV < 1 SinceG is not compact, for any finite subsgtof G there is & in
G with z not in the set J{ x~UyU : x, y € F}. Hence, takingyo = e, we can
inductively construct a sequen¢e,) in G with

xp ¢ Ulx; U U :0<j, k<2"} for nin NU{0},
Xpeyj =xjxpx for 1< j <2 andkin N.
Forn e N, we put
A, =U{(Vx;:0<j<2"},
B, =V(x»)™% and
C,=U(VxV:2" < j <2vy)

(iv) We can strengthen (ii) in another way by modifiying the construction in
[7, item (11.43)(e)]. Supposé is not compact. Le¥ be a compact symmet-
ric neighborhood ot and let(K,) € S. Then there are sequendgs,) in G and
(L,) € S such that, for each, K, c L, andVx, C L,\L,_1, whereLq = ¢.

(v) If G is compact, thed§(G) = L*(G) andp! = u = | - ||1-topology.

2. THEOREM. The dual of (L1(G), 1) (with the strong topologycan be iden-
tified with L (G) (with || - ) and thus the second dual ¢L*(G), ') can be
identified withL 3 (G)*.
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Proof. Let B = {¢ € LY(G) : ||¢|l1 < 1}. ThenB is g'-bounded. Hence every
B1-continuous linear functional oh'(G) is bounded orB and thus is continu-
ous on(LY(G), || - |l1). Each such functional is therefore given by an element of
L*>(G). We show that such ajiis in LY (G). Sincef is B1-continuous, there is
a((K,), (a,)) €S x R such that

‘fq&(x)f(x)dk(x) <1 foreach¢ in U((K,), (a,)).

Also, there exists g € L (G) with ||gll.c <landgf = |f].
Let j e N. Let A be a Borel subset @ \ K; withO < A A < oo ande > 0 such
that| f|xa > axa. Letd = aj1(AA)"txag. Theng € U((K,), (a,)), and so

1>

/ (1) £ () ()

= /aj+1(kA)‘1(xA|f|)(X)dk(X) > aj10.

Thereforea < 1/a;q and so| fllg\kx; < 1/a;j11. Sincea; — oo, we also have
I fllc\x; — 0asj — oo; hence,f € LF(G).

Now let f € L2 (G). Then there exists &) € S such that| f|lg\x, — O as
n — oo. Putko = ¢ and, forn € N, setb, = | fllg\k, , andB, = /b,. Let
(a,) € R be such that, 8, < 1for eachn. Let¢ € U((K,), (a,)). Forn e N, let

rn = lloxknk, .1 ands, = lejfn ri. Putsg = 0. Then, forp € N, we have
Z bnrn = Z (bn - bn+l)sn + bp+1sp+l
I<n<p+1 l<n<p
= Y (Bu— BusDBu + BusDsn + B2 15p41
l=n=p
< D (Bu = BusD)2Buttn + B2 101
1<n<p

< D 2B —BusD) + Bpin

1<n<p

As aresult,| [ ¢(x) f(x) di(x)| < Y02 bara < 2[ll fll]¥? and sof is -
continuous.

We next show thaB absorbs aljg'-bounded subsets d@f'(G). Suppose not.
Then there is 8!-bounded subset of L1(G) such thatX ¢ pB for eachp >
0. Hence, for each € N, there is ap,, € X with ||¢,|l1 > n and thus &C,, € K
with ||¢, xc, |l1 > n. We can have a sequeng&g in S with C, C K, for eachn.
Puta, = /n for n in N. Then there is @ > 0 such thatX c pU((K,), (a,)).
Therefore, for each,

lpnxk,llL < pa, = p/n.

But ||pnxk,l1 = ll¢uxc,l1 > 1and thus: < p./n for eachn—this gives us a
contradiction. Hence® absorbs everg!-bounded subset af'(G).

Consequently, the strong topology on (LY(G), g*)* identified with L3 (G)
is the topology given by the norm defined by
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Ifl = SUP{ ‘f Jx)p(x)di(x)| e B } = 1 flloo-

Hence the second dual a£X(G), 1) is LY (G)*. O

3. THEOREM. LetG be infinite. Then there are uncountably many locally con-
vex topologieg on LY(G) such thatL3’(G) (with || - [l) is the strong dual of
(LY(G), r) and thusLy (G)* is the second dual ofL*(G), ).

Proof. By Remark 1(ii) there is &K,,) € S with A(K,\ K,,_1) > 0O for eachn,
whereKy = ¢. Let (a,) € R and putV = U((K,), (a,)). ThenV contains the
space generated by grin LY(G) ifand only if f = 0on{J,, K,.. Since{ xxx, ; :

n € N} is a linearly independent set, the spate= { f € LYG) : f = 0 on
eachk, } has infinite codimension in}(G). Everyo-neighborhood of zero con-
tains a subspace @f(G) of finite codimension, s& cannot be a-neighborhood
of zero and thus < L. Hence, by [11], there exist infinitely many locally con-
vex topologiesr lying betweens and 81; in fact, using [9], we have uncount-
ably many such topologies Each one of them had.3°(G), || - |I.) as its strong
dual. 0

4. Remarks. (i) Forany topologyt with (LY(G), t)* = LF(G) (in particular,

if o <t < BY), the set of continuous (nonzero) multiplicative linear functionals
on (LYG), 7) is the set of continuous characters@for empty according a&

is compact or noncompact. This follows immediately from [7, Cor. (23.7)], since
every multiplicative linear functional oA*(G) is || - ||l2-continuous and since a
character is irL°(G) if and only if G is compact.

(if) Gulick [6] considered a locally convex algebra with hypocontinuous multi-
plication and constructed its second dual with Arens product. We recall that mul-
tiplication in a locally convex algebra is said to benypocontinuousdf, given a
neighborhood/ of zero inE and a bounded subsétf E, there exists a neighbor-
hoodV of zeroinE satisfying(VC)U(CV) c U. Interestingly, the Arens product
on Ly (G)* has already been constructed by Lau and Pym in [10, Prop. 2.7] and
the discussion that follows. Take = R, let K,, = [—n, n] for eachn, and take
any (a,), (b,) € R andr € N. We then see thag, = b, x—1,] € U((K,), (b))
andy, = x[—r—r+1 € B, but

(&, * V) x[—1rylls = by

HenceU((K,), (b,)) * B ¢ U((K,), (a,)). Thus multiplication in(L{(R), %)
(anda fortiori in (LY(R, B')) is not hypocontinuous. We shall strenghten this
result in Theorem 5.

(iii) We are not yet able to see {LX(G), p1) has separately continuous mul-
tiplication. However, a dense subalgebra—namely;,(G), B*)—has sepa-
rately continuous multiplication and is thus a locally convex algebra. Further,
(LXG), pt)is alocally convex module oveL.;,(G), B1). To see this, itis enough
to note that, forf € L{,(G) with £ vanishing outside a compact subgetf G
and forg € LY(G) andK in K, we have thaKL~*andL 'K are ink,
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ICf*@xklls < I fllallgxr-1x N1,
and

(g * Hxxlly = IS lgxxr-ll1-

5. THEOREM. LetG be unimodular.
(@) (LY(G), o) and (LY(G), 1) are both locally convex algebras.
(b) If G is infinite then multiplication i L(G), o) is not hypocontinuous.

(c) If G is not compact then multiplication {L(G), ) is not hypocontinuous.
(d) If G is not compact then multiplication considered as a bilinear map on
(L3o(G), BHx (LYo(G), BYH 1o (LYo(G), o) is not hypocontinuoys fortiori,

multiplication is hypocontinuous neither (&1(G), 1) nor in (LY(G), o).

Proof. By [7, Cor. (20.14), item (20.19)], fof € L1(G) andg € L>*(G) we have
that f x g andg x f are INL®(G), || f * gl < [ fll1llglle, @andllg * flleo <
I fllllglles- Let £, g € LYG) andh € LY (G) = (LX(G), 0)*, and letg; be given
by g1(x) = g(x~1) for x in G. Theng, € LY(G). Henceh x g1 andgy = h are both
in L>(G). Also, h(f * g) = (h x g1)(f) andh(g * f) = (g1* h)(f).

(a) To prove that multiplication by is continuous oiiL(G), o) to itself, it is
enough to show that x g1 andg, x i are both inLY°(G). Lete > 0 be arbitrary.
Thenthere is a compact subgeof G suchthat| g1 xc\x l1 < e and||ixc\k lo <
¢. We thus have

I(h * g1) xc\k2lloo = (hxx * 81Xk + hxXK * 81XG6\k + hXG\k * 81) X\ k2llo
= [(hxk * 81xc\k + hxc\k * 81) X\ k2l
< llhxx * g1x6\k lloo + I1hxc\k * g1lloo
< hxklloollgrxe\k lle + 1hxc\k lloo ll g1l
< llhllcoe +ellgalla

= &([|nlloc + llgl)-

Similarly, [[(g1 * 1) xg\k2lloo < e(1Rlloo + lIgll1), SO bOthz * g1 andgy x 4 are in
Ly (G).

Further, to prove that multiplication kyis continuous oiL(G), ) to itself,
it is enough to show that, for a balanced conw&xcompact subset of LY (G),
both A x g1 andgy * A are balanced convex*-compact subsets d@fy°(G). They
are clearly balanced convex subsetd gf(G). We start with a neth,) * g1 in
A x g1. Then (hy) has a subnefyy) in A that converges to & in A in the
o*-topology. Thus, for ary in LYG), (¥ x g1)(f) = ¥5(f * g) converges to
Y(f *g) = (¥ * g1)(f). Hence(h, * g1) has a subnet (vizys * g1)) conver-
genttoy x g1 in A x g1 intheo*-topology. This shows that * g; is o *-compact.
Similarly, we can show this fact fqy; x A.

(b) Let (if possible) multiplication ifZL(G), o) be hypocontinuous. Lét <
L3u(G). By the hypocontinuity of multiplication iLYG), o), we have am-
tuple {f;}}_, in LF(G) = (LYG), 0)* such that, putting/ = { f € LYG) :
|[ fx) fi(x)dr(x)| <1, 1< j <n}, wehave
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V*Bc{feLl(G):

/f(x)h(x)dx(x) <1}_

So ﬂ;.‘:l N(f;) * LYG) C N(h), where, forg € LY (G), N(¢) denotes the null
space of, that is,

{feLl(G):/Gf(x)qb(x)dk(x):O}.

Let ¢ € LY(G) andgi(x) = g(x™1) for x in G. For f in ]_; N(fj), 0 =
h(f *g) = (h*g)(f)and sof € N(h * g1). Therefore, by duality theory in
locally convex spaces, * g1 is in the linear sparF of { f; : 1 < j <n}. Thus
h s« LYG) C F. In particular,i * L1(G) is finite-dimensional.

The proof will be complete if we produce amot having this property. If; is
discrete thert = xy.; works fine. Supposé is not discrete, and let # ¢ be an
element ofG. Then there is a compact symmetric neighborh&@af e such that
KoNxKg=0. LetK = Ko U {x}. SinceG is not discretey is a boundary point
of K. Letid = { U : U is an open symmetric neighborhoodeofvith U C Ko }.
ForU el letKy = KU andVy = xU N (G\ K). ThenVy is a non-empty open
subset ofG and thus.(Vy) > 0. Hencer(Ky) > AK + AVy > AK andAKy <
LK? < oo for all U. Further,{ Ky : U € U} forms a neighborhood base f&.
Thus, by regularity oft, AKy; — AK and so there is a decreasing sequeiite
inU with A Ky, all distinctand\ K, — AK. In particular A(Ky,\ Ky, ,,) > O for
eachn.

Leth = xx and f, = xg,. Thenh € LFH(G) and eachy, is in L (G). Since
Supph * f, = Ky,, we have thaf i « f, : n € N} is alinearly independent set.
Henceh * LY(G) is not finite-dimensional, completing the proof of part (b).

(c) Let (if possible) multiplication inL*(G), 1) be hypocontinuous, and let
(An), (By), (Cy), andV be asin Remark 1(iii). ForeN, letg, = x5, andh, =
xc,. Then theo (L>(G), LY(G))-closed envelopél of {h, : n € N} is the set
{ Y0 ayh, @ a, €Cforeachn and)_o7 la,| <1}, and soH C LF(G).

By Alaoglu’s theorem, the unit bald of (L>°(G), || - ||o) iSo(L>®(G), LY(G))-
compact. Sincéd C D is o(L*(G), LY(G))-closed we have thall is ao*-
compact subset df3°(G). Therefore,

W=HO={feL1(G):

/f(x)h(X)dk(x)

<1lforhin H}

is a u-neigbourhood of zero iLY(G). By hypocontinuity of multiplication in
(LYG), ), there is ac*-compact balanced convex subgetof L (G) with
E%x B c H°. This givest® c (H = B)°, which in turn gives thaHf x B C E;
thus(H * B) is a relatively compact subset 0EF(G), o*). The sequencéy,)
given byy,, = h, * g, therefore has a subnet'-convergent to @ in Ly (G).
But ¢, (x) = A(xB;lm C,) = AV forxin A, (ninN). Hencey(x) = AV for x

in U, A,. Sincer(U, A,) = oo, we have thaty ¢ LY (G). This contradiction
completes the proof of (c).

(d) Consider any((K,), (a,)) € S x R and a compact symmetric neighbor-

hoodV of e in G with AV < 1. Let (x,) and(L,) be as in Remark 1(iv). For
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n €N, we pute, = a,xy,, andy, = Xty Then eachy, isinU((L,), (a,)) C
U((K,), (ay)), and eachy, isin B. But||(¢, * ¥,) xvzll, = a,(A(V))?, so

<1

This finishes the proof. O

U((Kyn). (@) * B ¢ {fGLl(G) : ‘/ J) xva(x) dr(x)

6. REMarks. (i) Forthe case off compact abelian, Theorem 5(b) follows from
[3, Thm. 1] applied to the Banach algeli@a'(G), || - ||1) because its dual in this
case isLy’(G) = L*(G). On the other hand, taking to be noncompact, Theo-
rem 5(b) provides a large set of examples to show that condition (ii) in [3, Thm. 2]
is not necessary for the conclusion to be true.

(i) Since(LY(G), o) has a bounded bornivoi®, it is a boundedly generated
space. So [2] can be used to advantage. For instance, it gives a corollary to Theo-
rem 5 as: IfG is infinite and unimodular the(L1(G), o) is not A-convex.

(iii) Unimodularity is not needed for Theorem 5(b) because our proof can be
easily modified by consideringin L3, (G) only, instead of in the whole dfi(G).

The proof can then be augmented to show tfiatG), o) is not A-convex.

Our next theorem comes as an answer to the following question (posed by the
referee): Does Arens regularity & (G)* imply G is finite?

7. THEOREM.

(i) LF(G)* is Arens regular if and only i€ is finite.

(i) Letz be any locally convex topology dit(G) lying between and L. Then
(LY(G), 7) is Arens regular if and only i€ is discrete.

Proof. (i) By [4, Cor. 6.3], if L (G)* is Arens regular then this implies that the
subalgebrd.(G) is also Arens regular. By the now-classical result from [4] and
[13], G is finite. The reverse implication is clear.

(i) Asprovedin[10, Thm. 2.11(v)], the topological centedf (G)* is LY(G).
Thus(LY(G), 7) is Arens regular if and only iL.X(G) = L (G)*. This follows
whengG is discrete, as has been noted in [10, p. 452]. For the converse, as in [10,
Sec. 2] letr be the natural projection oh'(G)** to LUC(G)*, where LUQG)
is the subspace df*°(G) consisting of functions that are bounded and uniformly
continuous in the left uniformity ofs. For H € LY(G)** = L®(G)*, n(H) is the
restriction ofH to LUC(G).

Further, it has been noted in [10] thatis the identity onZ(G) and, by [10,
Thm. 2.8],7LF(G)* = M(G). Hence(LY(G), 1) is Arens regular implies that
LY(G) = M(G), which in turn gives tha6 is discrete. O
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