New Examples of
Homogeneous Einstein Metrics

MEGAN M. KERR

1. Introduction

A Riemannian metric is said to lgnsteinif the Ricci curvature is a constant mul-
tiple of the metric. Given a manifoltl/, one can ask wheth@{ carries an Einstein
metric and, if so, how many. This fundamental question in Riemannian geometry
is for the most part unsolved (cf. [Bes]). As a global PDE or a variational problem,
the question is intractible. It becomes more manageable in the homogeneous set-
ting, and so many of the known examples of compact simply connected Einstein
manifolds are homogeneous. In this paper we give a technique for finding and
classifying all homogeneous metrics on any given homogeneous space, including
those that are not diagonal with respect to the isotropy representation. We also
examine some compact simply connected homogeneous sgalesvhereG is
simple andH is closed and connected. On each space we descriGeiallariant
Einstein metrics. For such spaces, the normal homogeneous Einstein metrics were
classified by Wang and Ziller [WZ1]. Among the metrics we shall find, there is
only one normal metric: the metric o8Y x S induced by the Killing form. In
fact, apart froms” x S7, none of our examples of homogeneous Einstein metrics
is even naturally reductive.

Each of our examples h@sinvariant metrics that are not diagonal with respect
to the isotropy representation &f. Few examples of this type have been previ-
ously examined. Some nondiagonal examples arise as fibrations with Riemann-
ian submersion metrics, where the base and fibre are Einstein—for example, if the
base and fibre are irreducible symmetric spaces. Using this method, we can ex-
pect a product Einstein metric on each of the examples to follow. Jensen does this
to find a homogeneous Einstein metric on Stiefel manif#{d&". He restricts to
a two-parameter family of diagonal $&)-invariant metrics oV, R" [J2]. Using
very different methods, Sagle also considers Stiefel manifolds, showingtRé&t
carries at least one Einstein metric [S]. Sagle first discovered thie)Svariant
Einstein metric onV,R". Neither Sagle nor Jensen observes that the homoge-
neous Einstein metric oW,R” is unique. More recently, Arvanitoyeorgos looks
at a special family of SQr)-invariant metrics oV, R" [A]. None of these methods
exhausts all possible homogeneous Einstein metrics.
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Our examples consist of three symmetric spaces and the unit tangent bundle of
then-sphere. We shall establish the following result.

THEOREM 1.

(1) §7x S” = Spin(8)/G; carries exactly two distinc®pin(8)-invariant Einstein
metrics the product metric and the metric induced by the Killing form.

(2) §7 x §8% = Spin(7)/SU3) carries exactly three distincBpin(7)-invariant
Einstein metricsthe product metric and two others.

(3) S” x G5 (R® = Spin(8)/ U(3) carries exactly two distincBpin(8)-invariant
Einstein metricsthe product metric and one other.

(4) Vo(R"™1) = SO + 1)/SO(n — 1) carries exactly on&O(n + 1)-invariant
Einstein metric, inherited frong} (R"*+1).

The first three examples involve the geometry of the Cayley numbers and the trial-
ity principle. The last example is perhaps the simplest setting in which the space
of all homogeneous metrics includes many “off-diagonal” metrics. For our anal-
ysis it was necessary to develop a scalar curvature formula that does not depend
on an orthonormal, or even orthogonal, basis.

This work extends the classification of invariant Einstein metrics on compact
irreducible symmetric spaces (cf. [DZ; Z; K]) and the characterization of left-
invariant metrics on Lie groups (cf. [J1]).

We want to consider products of compact irreducible symmetric spaces, and we
require that a simple Lie group act transitively. We use QRIS classification
of simple compact Lie algebrgswith Lie subalgebrag’ andg”, such thalg =
g’ + g”. In terms of transitive group actions, létbe the simply connected com-
pact Lie group corresponding tpand letG’, G” be Lie subgroups correspond-
ingtog’, g”, respectively. Thelw/(G'NG") = G/G’ x G/G". Oni&ik’s result
gives the following list of simple groups acting on compact reducible symmetric
spaces [O]:

Spin(8)/G, = 87 x S7, (1)
Spin(7)/SUR) = 7 x S5, 2)
Spin(8)/U(3) = S7 x G5 (R®), )
Spin(8)/S04) = S” x G} (R?®), 4)
Spin(7)/U(2) = S7 x G5 (R"), (5)
SU2n)/Spin — 1) = $*~1 x SU@2n)/Sp(n), (6)
SU2n)/Spin — 1)U(1) = CP?"~1 x SU2n)/Sp(n), (7)
SO2n +2)/Un) = S x SO2n + 2)/Un + 1). (8)

To find the Einstein metrics on each symmetric space, we begin by parameteriz-
ing the space ofi-invariant metrics using the isotropy representation of the space,
which is well known for all the foregoing examples. The second step is to ex-
press the scalar curvature as a function of these parameters. Step three is to find
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M G/H dimMg;  no. Einstein
87 x 87 Spin8)/ G, 2 2
S7x 86 Spint (7)/SU2) 4 3
S7 x G (R®) Spin8)/U(3) 3 2
Vo (R SO +1)/S0n — 1) 2 1

Table 1

the critical points of the scalar curvature functional, which correspond to Einstein
metrics. With the help of Maple, we were able to carry out step three for the first
three of the listed spaces. Given the computational limitations, we focused on the
first five examples. The last three families of products of symmetric spaces are
further complicated by the variabke We summarize our results in Table 1, where
M = G/H is the homogeneous space aht}; is the moduli space of volume one
G-invariant metrics on\/.

In Sections 3—7 we prove Theorem 1. In the Appendix we discuss the geometry
of the G-invariant spaces’ x G3(R®) andS’ x G (R') for G = Spin(8) and
Spin(7), respectively. We also describe their moduli spaces-agfvariant metrics.

2. Preliminaries

A Riemannian manifoldV is defined to b&5-homogeneous the Lie groupG

acts transitively orM by isometries. That is, for any andq € M, there exists an

isometryp with ¢(p) = g. We write H, = {¢ € G | ¢(p) = p} for the isotropy

subgroup corresponding ja Via the mapy — ¢(p) we identify G/H, andM.
We say(M, g) is Einsteinif the Ricci curvature satisfies

Ric, (X, Y) = A(p)g,(X.Y)

for some functior, for all p € M, and for allX, Y € T,M. If dim(M) > 3 then

A must be constant, so one says that Einstein spaces have constant Ricci curva-
ture. AssumeM = G/H is compact, and le§(g) denote the scalar curvature

of g. Einstein metrics can also be characterized as the critical points of the total
scalar curvature functional

T(g):/ S(g)dvol,
M

on the spaceM of Riemannian metrics of volume 1 [Ber; H]. If we restrict to

the G-invariant metrics inM, denotedMg, thenT(g) = S(g). Critical points

of T | pm,, are precisely th&-invariant Einstein metrics of volume 1 [Bes, p. 121].

The variational characterization of Einstein metrics is essential in what follows.
Consider the underlying manifolf = G/H, whereG is compact and{ is

closed. Just as every left-invariant metric@ris uniquely determined by an inner

product ong = 7,G, everyG-invariant metric orG/H is uniguely determined by
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an Ad(H)-invariant inner product og/h = T;5G/H. We can identify the quo-
tientg/h with an Ad(H )-invariant complement to ) in g. For g a semisimple Lie
algebra, the Killing forme is Ad(H)-invariant and—« is positive definite. We
use—« to choose = ht. To describe the moduli space of invariant metrics on
G/H, we must describe the space of all @f)-invariant inner products opn

For G a compact, simple matrix group apd= § @ p on the Lie algebra level,
we will take as our comparison the AH)-invariant inner producQ (X, Y) =
—%tr(XY), which is a multiple ofx. Any other Ad H)-invariant inner prod-
uct satisfieg:, -) = Q(L-, -), whereL is a positive-definite symmetric Ad/)-
equivariant linear map : p — p. We parameterize the space of @&fl)-invariant
inner products op by parameterizing the space of possibke Decomposg into
orthogonal AdH)-irreducible subrepresentations= p; ® --- @ py. It is well
known that if thep; are pairwise inequivalent representations then the decompo-
sition is unique and-, -) = x1Q1y, L -+ L x¢Qlp, With x; > 0 for all i. That
is, L is scalar on each;. In this paper we discuss examples whgre~ p; for
somei # j, so that the decomposition ¢f @ p; is not unique andy;, p;) does
not necessarily vanish.

To parametrize the spaceb$ (positive-definite symmetric Adl )-equivariant
linear maps), we need a positive variakle) for each irreducible representation
and a parameterization of the space of Ad-equivariant maps between each pair
of equivalent representations. We use Schur’s lemma, but with caution. Our rep-
resentations are real; thus, we must first complexify them, and the complexifica-
tion of a real irreducible representation need not be irreducible. If we begin with
Y and complexify, there are three possibilitiesylIf® C is irreducible, we say/
is orthogonal. Otherwisey @ C = ¢ @ ¢. If ¢ 2 ¢, we sayy is unitary. Ifgp ~
@, we sayyr is symplectic. Wheny is an orthogonal representation, the space of
intertwining operatorg, ¥ o p = p o ¥, is 1-dimensional. Wheu is a unitary
representation, the space of intertwining operators is 2-dimensional; when
symplectic, the space of intertwining operators is 4-dimensional.

3. The Scalar Curvature Functional

We will need a formula for the scalar curvature functional that does not assume
we have an orthonormal basis to work with; this will allow us to fix a basis and
vary the metric. Assume that we have a compact homogeneous Gpacwiith

G semisimple, and that= § & p. We choose @-orthogonal decomposition of

into Ad(H)-irreducible subspaces= p1®- - -®p,, and we take g@-orthonormal
basis forp: {X;}. We first rewrite the formula found in Besse [Bes, Sec. 7.39] so
that we will see plainly the result of a change of coordinates (hgrdenotes
projection ontgp andC; = ad, X;, the structure constants):

1 1
§ == D IXi X[Jpl? = 5 3 tr(Ci o C)
ij i

1 1
=3 > 0(CiX;)). my 0 Ci(X))) — > >t (Cio G
i,j ;
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1 . 1
=-7 > 0X;. € o my 0 Ci(X))) — > > tr(CioCh)
i i

1 1
=-3 Z:tr(np oClomyoCy)— > Ztr(C,- o Cy).

If we complete our basis to unity for all gf= h @ p, then

0 0 0 o
7r,,=<0 Id> and C"z(—af )4)’

With respect to thigd-orthonormal basis, we have

1 1 :
S = -5 thr(Ci 0C;) — 2 IZ”(V,‘ °¥i).

Now any other AdH )-invariant inner product can be writtén -) = QO(g-, -)
for g a symmetric positive-definite Ad/)- equwarlant map. Suppose we change
coordinates to obtaing-orthonormal basiéX;}, whereX; = AX;. This changes
the matrices of structure constants in the following way: let

- (Idgmy O - P
A=< %m" A) and Ck=Za,-kA Ic; A

(cf. [J1, p. 1127]). The change of basis mattisatisfiesA A’ = g~1. We can now
express the scalar curvature as a functiog ¢ivhereg/* = (g‘l)‘,»k). We show
how the first sum reduces; the second sum reduces similarly.

Because

6 é = Zaii(ﬁ_lcjﬁ)aki(ﬁ_leA) = Zajiakiﬁ_lchkA,
Jj.k J.k

it follows that
Ztr(C 0Ci) =Y ajiay tr(A'C;CrA)

i,j,k

=Y (AAY(ATIC;CLA) = ) g7 tr(C;Cr).
J-k J-k
Hence

1 ~ o~ 1
S(®) = -3 Ztr(c,- oC)—7 Ztr(% ° )

= ——ngktr(c ock>——2gfktr<y, ogoyiog
ik j.k

=-3 Zg-”‘B(X,-, X =32 g tfegoyiog™. ()
i i

We will use this scalar curvature formula in the following examples.
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4. The Manifold V,(R"™?)

The Stiefel manifoldV/,(R"*+1) of 2-flags in Euclidearin + 1)-space can be writ-
ten homogeneously d&(R"*!) = SOn + 1)/SO(n — 1). Although it is not a

symmetric spacey>(R"*1) inherits an S + 1)-invariant Einstein metric from
the GrassmanniaﬁﬂR”“) of oriented 2-planes via the following fibration:

St — V(R — G (R™).

Consider the 1-parameter family of submersion metgics= gz + tgr (t > 0)

on V(R"*1), where the bas® = GJ(R"*!) with the symmetric metric, and
the fibre F = S*. By scaling the metric in the direction of the fibre, we find one
Einstein metric [Bes, Sec. 9.77]. We show that, up to scaling, this is the only
SO(n + 1)-invariant Einstein metric that,(R"+1) carries.

An element ofV,(R"*1) is a 2-flag: a choice of a line and a 2-plane containing
thatline,F: spar{v} C spar{v, w}. We may assume thatandw are orthonormal.
To see that SQ: + 1) acts transitively, we will sendty: spare;} C sparey, e}

(in the standard basis) t6. We use a matrix withy as the first column vector and
w as the second column vector, then fill in the rest of the columns to complete
andw to an orthonormal basis f@&"*+* with the same orientation as the standard
basis. The isotropy subgroup fixing the flagFy is

Id, 0
0 SQn-1)

On the Lie algebra level, we have

~ (0 0
b= <0 50(n—1)> C so(n+1).

SO(n—l)%( )CSO(n—i—l).

Choose the Ad S@ — 1)-invariant complemeni = so(n — 1)* (with respect to

the inner produc). We decompose into its irreducible subrepresentations of
SQ(n — 1), obtainingp = po ® p1 @ po. Let E;; denote the matrix with 1 in the

ijth entry and-1 in the jith entry. Therpg = spar{E12} andp; = span E; >4, |
1<i<n-1}forj =1 2 The decomposition is not unique;i ~ p, >~ p,_1,

the standar@: — 1)-dimensional representation of &0- 1). Thisis an orthogonal
representation, so the space of intertwining maps is 1-dimensional and generated
by the isometryl : p — p in the form

_ 0 Idn—l
= <Idn1 0 )

with respect to the foregoing natural ordered basipiad p,. This implies that
every Ad S@n + 1)-invariant inner product omp is parameterized by, ) =
Q(g-, -) for someg of the form

X0 0 0
=10 =xild,_1 Ald,_1 for xg, x1, x2 > 0, LeR.
0 Ald,—1 x2ld,_q
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Before we compute the scalar curvature we can simplify. We have the following
Lie bracket relations:

[E1, Ev2+i] = —Ez24i, [E1. E2.24i] = Ev2+i,
[Ev2+i, E22+)] = —8ijEr2,
[Ev2ti, Evotj]l = [E224i, E2.21j] = —E21i2+j €s0(n — 1).

Let N(SO(n — 1)) be the normalizer of S@ — 1) in SO(n + 1). Observe that
N(SQOrn — 1))/SOn — 1) = SO(2) with tangent algebrag. Conjugation by any
element of this SQ) is a diffeomorphism preserving This gives a 1-parameter
subgroup of homothetieg = g(t) = Ad(exptE1) - g. We can find a such that
g(1) is diagonal, so we may assume that 0.

One can check that the Ricci tensor diagonalizes with the metrichen we
use the scalar curvature functional in terms@fx,, x» from [WZ2, (1.3)]:

iptoin()n

i i,j.k

Hered; = dim(p;); —«|,, = b;Ql,, (x denotes the Killing form); thetripléiik) =
> O([Xq, Xg], X,)? summed ovefX,}, {X;z}, {X,}, the Q—orthonorma‘l bases
for p;, pj, p, respectively. We havé, = do =n — 1, do = 1, andb; = 2(n — 1)
fori = 0,1, 2. From the Lie bracket relations we 5(’182) = 1; all other triples
(except rearrangements) are zero. Thus

n—1 n—1 1 n—1 X1 X2 X0
S(g)=@m—1 + +=) - + =2+ :
X1 X2 X0 2 X2X0 X1X0 X1X2

We normalize for volume 1§ = S — k(x} x5~ %xo — 1), wherek is the Lagrange

multiplier. Critical points are solutions to the following equations:

x(z) — xf + x% —2(n — Dxoxo = (n — D((x1 — x2)% — x(z)),
(x2 = x1)(x1+x2 — (n — Dxo) = 0.

Solving, we conclude that if; = x; thenxo = 2(*=2)x;. This was the original
submersion metric. lf; # x», there are no solutions. Thus there is exactly one
SQO(n + 1)-invariant Einstein metric o, (R"+1).

5. The ProductS’ x S7

Just as we think of” as the unit sphere iR® = O (the Octonians, or Cayley
numbers), the product of two 7-spheres is a natural submanifalll »fO. Be-
cause it is a product of symmetric spacgsx S’ is homogeneous; the simple Lie
group Spirn8) acts transitively ors” x S7 with isotropy subgroup & We expect

at least two distinct Spi8)-invariant Einstein metrics: one is the product met-
ric, and the other is induced from the Killing form [WZ1, p. 575]. We find that it
carries exactly these, and no others.



122 MEGAN M. KERR

We begin by describing the homogeneous presentatic8f of S”. Then we
can determinéM spine), the space of invariant metrics, and consider it for Einstein
metrics. We have a natural matrix group representation for(8pin

Spin8) = { (A, B, C) € SO8)® | A(x)B(y) = C(xy) ¥x,ycO}.

The triality principle gives us a way to see that Si8inis indeed a double cover

of SQO(8), since a choice ofi € SO(8) determines the correspondimyandC,

up to sign [M]. The Moufang identities give us three families of triples generating
Spin(8): (R;, L;R:, R,), (L,Rz, L, L;),and(L., R,, —L;R:), whereL, andR,
denote (respectively) left multiplication and right multiplicationdfor eachz €
Im(Q) with ||z]| = 1. We note some of the subgroups of S¢@n

Spint(7) = {(A, B,C) e Spin8) | B=C} generated by{(L.R:, L., L.)},
Spin (7)) ={(A, B,C)eSpin(8) | A=C} generated by{(R;, LRz, R,)},
G, =1{(A,B,C)eSpinB) | A= B = C} = Spin"(7) N Spin (7).

To see that the subgroup SpifY) is a double cover of S@), notice that for a
triple (A, B, C) in Spint(7), B = C; henceA(1) = 1, and we think ofA €
SO(7). OnceA is determinedB andC are also determined, up to sign. A similar
argument shows Spir(7) is another double cover of SO .

We define the action of SpiB) onS” x S”via(A, B, C): (x, y) — (Ax, By).
To show that this action is transitive we take any painty) € S’ x S’ and con-
struct a map frontx, y) to (1, 1). We can first find(A, B, C): (x,y) — (1, ")
for somey’, sinceA can be any element of §8). Next, we use that Spin7)
fixes the first component ¢, ) and acts transitively o’ in the second compo-
nent to know there exists an elemént, B’, B’) of Spin*(7) mapping(1, y’)
(1, 1). The composition takegr, y) to (1, 1).

Next we determine the isotropy subgrotpc Spin(8) fixing the point(1, 1).
Just as Spih(7) fixes the first component dfl, ), Spin (7) fixes the second
component ofx, 1). HenceH C G, = Spin*(7) N Spin (7), the group of auto-
morphisms of0. Every element of Gtakes(1, 1) to itself, so G C H and thus
H = G,. This shows that Spif8)/G, = S" x S’.

Under the double-covering homomorphise, B, C) — C from Spin(8) to
SQO(8), the subgroups Spin(7) and Spir(7) are isomorphic to their images
in SO(8). We use this homomorphism to identify the Lie algebsam(8) =
50(8). If we order our basis for the Octonians in the following wdy; j, ¢, je,
i,k,ig, —ke}, then

Gzc(l 0 )CSO(S).
0 sSq7)
Thengs, is invariant under the triality automorphismsaf(8), which interchanges
the Lie subalgebras(7), spin™ (7), andspin™ (7).

We decomposeo(8) into g, & p, wherep = g with respect to the inner prod-
uct Q. Using any of the three following fibrations, we see thi the sum of two
equivalent copies of the standard orthogonal 7-dimensional representation of G
denotedy:
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S7 = Spint(7)/G, — Spin(8)/G, — Spin(8)/Spirt(7) = S,
RP’ = SO(7)/G, — SOB)/G, — SO8)/SO(7) = §".

We have three natural ways to decompps#\Ve can choose; so thatg, @ p; is
spint(7), spin~ (7), or so(7), then seb, to be theQ-orthogonal complement to
p1in p. We choose = p; @ p» so thatspin®(7) = go & p1.

We now describeM sping, for S7 x §'. The representatiop is orthogonal;
hence, by Schur’s lemma, the space of intertwining maps is 1-dimensional. For
an appropriately ordere@-orthonormal basis far; ® p», every Ad G,)-invariant
inner product orp is represented by a linear map of the form

_ X1|d7 A |d7
§= A |d7 X2 |d7 ’
wherexy, xo > 0 anda is any real numbefg = (g;;) is the metric). That is,
(s M = x:Qlp, and(p1, p2) = AQ(Jp1, p2) for J an isometry

(0 Idy
/= (Id7 0 )
Using (x) and Maple, we obtain the scalar curvature functional in terms of
entriesg;;:

7(x3 — 12x2xp — 9122 + 6x122 + 18x,12)

S(e) = 2(x1x0 — )2)2

We normalize to restrict to volume $,= S — k(x1x2 — A2)7, wherek is the La-
grange multiplier. Then we can solve for the critical points (again using Maple)
as follows:

aS . —7(18x1x202 — 6AY + 9x1xg - 27x§k2 + xfxz — 3xfk2)
axl a 2()C1X2 - AZ)S

— Tkxa(x1x2 — 238,

S T(—6xdxp + 94+ xf
D5 _ 1O O H ) s (ees — 225,

0xo (x1x2 — A?)3

3S  —14xn(—9x? 30122 + a2 4 13

_ (=9ixa 4 30h” + 927+ D) g p (ens — 22)5.

oA (X1XQ — K2)3

We find three solutions:
X1 = X2, A =0; (9)
x1 = 3xo, A=0; (10)
3 1
= —xop, A=+—x1. 11

X1 5)C2 \/:-_))xl ( )

The first solution is the metric induced by the Killing form (recall tidais a mul-
tiple of the Killing form). We show that the third solution is a pair of metrics that
is homothetic to the product metric and in which the tangent spacg o{1}
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and{1} x S” are orthogonal. The tangent spac&fox {1} is p}, wherep’ denotes

the (Q-orthogonal) complement tg, in spin~ (7); the tangent space {d} x S’

is p1. With respect taQ, the tangent spaces to the two spheres meet at arigle

so we expect that the product metric will be a nondiagonal solution. We can write
50(8) = g2 @ p1 @ p3. The product metric is

{((p1, p1)) = x1Q(p1, p1), (P2, P3)) = x30(p3, p3),
((p1, p3)) =0, and xj = x3.
When we project the subspaggto p1 @ p,, we see that the product metric in-

deed corresponds to the nondiagonal metric. Here is a ty@iaalit vector inp?,
decomposed with respectjio ® po:

1 1
——=(3E18 — E27+ E3s — E45) = —=(3E18+ E27 — Eze + Eus)

23 43
V3
+ T(E18 — Ey7+ E3g — Egs).

Whereas] = x1 (sincep; is projected to itself), we have} = x1/4+ V3r/2+
3x2/4. The equalityx; = x} inducesx; = x1/4 + +/31/2 + 3x2/4, which sim-
plifies tox; = x2 + 21 /+/3. This is our third metric exactly.

The second metric is not a new metric but rather the product metric in an unex-
pected form; it is conjugated b®(sr/3), the map that rotates by/ 3:

V3 V3
(5 )G D D0 4)
V31 VR v 2
2 2 0 A% 3 V3
This rotation is the action of the triality automorphism: a homothety of our space.

Notice that conjugating a second time Byr/3) gives us( *_‘/f 5;/%) , Which

shows that the third solution is a pair of metrics homothetic to the product metric.
Thus there are exactly two distinct Sp@-invariant Einstein metrics o’ x S7.

6. The ProductS® x S7

Our next product of symmetric spacess&x S’, the unit spheres in IiD) x O,
where IN{Q) denotes the purely imaginary Octonians. We will show that Sgin
acts transitively with isotropy subgroup 8). The product metric is one invariant
Einstein metric; we find there are exactly two others.

We know Spirt (7) from the previous example, and we describe two subgroups
of Spin*(7):

Spin*(7) = { (A, B, B) € SO8)® | A(x)B(y) = B(xy) Yx,y €0},
G, ={(A,B,B)eSpint(7) | A= B},
SU@4) = {(A, B, B) e Spin"(7) | A(i) =i }.

We begin by showing how Spit7) acts onS® x S’. For any point(x, y) in
58 x S7, the action iS(A, B, B): (x, y) — (Ax, By). To see that Spin(7) acts
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transitively, we mag(x, y) to (i, 1). We know SU4) acts transitively or§’, so
we can find a magA, B, B) € SU(4) such that(Ax, By) = (x’, 1) for some
x’ € §8. Note that the definition of Spin(7) implies the first component @i, )

is fixed, hencer € Im(Q) impliesx’ € Im(Q). Next we use that Gacts transi-
tively on S® c Im(0), leaving 1 fixed, to find a mapA’, A’, A") € G, satisfying
(A, A, A")(x', 1) = (i, 1). The composition takeér, y) to (i, 1).

We next determine the isotropy subgrotpfixing (i, 1). For any element of
H, we have(A(i), B(1)) = (i, 1). We seeA(i) = i implies (A, B, B) € SU(4),
soH c SU(4). ThenB(1) = 1 impliesA(x) B(1) = B(x) for all x. HenceA =
B, and we havéd C G,. One knows that any subgroup of @xing an imaginary
Octonian is isomorphic to S@3), and in our cased = SU(3) is the subgroup of
SU(4) fixing the complex line spanned Y, i}.

We identify Spint (7) with its image under the double-covering homomorphism
from Spin(8) to SQ(8) mapping(A, B, B) to B. Giving the Octonians our usual
ordering,{1, j, ¢, je, i, k, is, —ke}, we know that G is a subgroup of

1 0
(o som)cso(g)’

and that SW@4) c SO(8) is embedded to respect the complex structure

Li: X +iY (’; _XY)
Onthe Lie algebra level, we can tgkéeo be the orthogonal complementsto(3) in
spin™ (7) with respect taQ, so thatspint (7) = su(3) ®p. We have three fibrations
of our product space, which we use to decompose

§8 = G,/SUB) — Spin™(7)/SU3) — Spin* (7)/G, = §7,
S7 = SU4)/SU3) — Spin*(7)/SU3) — Spin*(7)/SU4) = S8,
$1 = U(3)/SUB) — Spin*(7)/SUR) — Spin*(7)/U(3).

In the first fibration, the isotropy representation of the fibreuig] g, whereuy
is the standaré-dimensional complex representation of @\ The isotropy rep-
resentation of the baseds the orthogonal representation of d SO(7); we re-
strict it to SU3), ¢|su@ = [1s]r @ Id. In the second fibration, the isotropy rep-
resentation of the fibre isuz @ Id]g = [us]r @ Id, the sum of two irreducible
subrepresentations. The isotropy representation of the base spaGéris dnd
[nalrlsue = [ms]r. In the third fibration, the isotropy representation of the fi-
bre is trivial. The base space is the symmetric spac8g0 (4) (see[K]), with
isotropy representationg]r ® [A%uz]r. When we restrict from (B) to SU(3),
we findA%u3 = pa. Thus we conclude = p1@®p.®po, With two equivalent repre-
sentationg; >~ po >~ [us]r andpo = Id, a trivial, 1-dimensional representation.
The decomposition gf; @ p, is not unique; we will choose our decomposition so
thatsu(3) & p1 D po = su(4).

We would like to consider all S{3)-invariant inner products op. We know
that any such inner product satisfies) = Q(g, -) for any Ad SU3)-equivariant
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symmetric positive-definite linear operatgr p — p. We use Schur’s lemma
to determine the possible entries @f Since [us]r iS a unitary representation,
[us]lr ® C = n3 @ uj, the sum of two inequivalent irreducible complex represen-
tations. Thus the space of intertwining maps frprio p is 2-dimensional. We
take aQ-orthonormal basis fay respecting the decompositipn= p1 & p> ® po
and the complex structure @a & p», so that intertwining maps are linear combi-
nations of
0 0 0 g
0 Idg 0 0 -Ildg O
h= (Id6 0 ) and =19 _id; 0 o0
Idz O 0 0

onp; @ po. Any SU(3)-invariant inner product op corresponds to g of the form

x11d3 0 Alds  Asldz O
0 x1lds —Xolds3 Aqlds O
g=| Mlds —Xxldz x,lds3 0 o1,
)\2 |d3 )\1|d3 0 x2|d3 0
0 0 0 0 X3
x1,Xx2,x3 >0 and Ay, Ao eR.

Via (%), we obtain the scalar curvature equation $8rx S°®:
—6)6%)63 + XJZ_(GO)CQ)CQ, — x%) + 6)61(8)(%)(3 —3(x2 + 2)@))\%)
2(x1x2 — A%)2x3

18()»% — 4)62)(3))\.% + 4()& — x%)x%
+)»22(2x§ + 9(A22 + 2)»% — X1X2 — 2x1x3 — 4x2Xx3))
2(x1x2 — A%)2x3 '
Before searching for critical points, we can simplify. The normalizer of3U
in Spint (7) is U(3), with Lie algebrasu(3) & po (sincesu(3) andpy commute).
Thus, conjugation by any element 8f(SU(3))/SU(3) = U(1) is a diffeomor-
phism preserving. This gives us a 1-parameter family of homothetie$ b S7.
We use these homotheties to reduce the number of parametegrdfaf is our
Q-unit vector spanningo and if{X,»}l.li1 is a basis fop1 @ p» as described before,
we have

S(g) =

(7. X] { (2/v/3)Xi4s for 1<i <3

—(2/v/3)X;_3 for 4<i <6

(2. %] = { —(1/v/3)Xj13 for 7<j <9,
(1/v/3)X;_3 for 10<j <12

Settingg(r) = Ad(exptZ) - g, we see thap andg(z) are homothetic; choose

so thath, = 0. Next, consider the normalized scalar curvature functional (i.e., re-
stricted to those metrics of volume 1§:= § — k(x1x2 — A3 — 12)®x3, wherek

is the Lagrange multiplier. Notice thatis a function ofA2, so in settingh, = 0

we do not miss any critical points. Using Maple, we obtain the following results:
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13 1
X2 = X1, X2 = 5X1, X2 = {x1,

3 9 —72{2 + 120¢ — 33
X3 = Exlv X3 = ?-xls X3 = < 7 )xla
Klzixl A =0 rMm=0

ﬁ 5 5 s

where¢ is a real, positive solution to 24 — 28:2 4+ 5¢ — 5 = 0. (This givesx, ~
1.144x, andxz ~ 1.43%;.)

We find that the first metric is the product metric: we show that it is the only
metric of the three with the symmetric metric 6A. SinceS’ = SU(4)/SU(3)
is not a symmetric pair, we must project to determine what the symmetric met-
ric is. Recall we chose; so thatsu(4) = su(3) ® p1 @ po; we will project a
typical element inp; and a typical element ipg to p, the Q-orthogonal com-
plement toso(7) in s0(8). In p1, (1/v/2)(E1w + Esg) — (1/v/2)Ex; in po,
(1/2+/3)(3E1s — Ezs — Es7— Esg) > (3/2v/3)Eys. Thusxy > 5 andxz — 3,
so the symmetric metric satisfiésl = x3; this is the first metric exactly.

We show the second metric is a fibration metric, coming from the fibration

$1=U(3)/SUB) — Spin"(7)/SUR) — Spin*(7)/U(3).

Consider the 1-parameter family of metrigs= g + tgr (for + > 0) obtained
by scaling in the direction of the fibre and keeping the metric fixed in the hor-
izontal directions. Recall tha8 = Spin"(7)/U(3) = SO8)/U(4). There are
two Spint (7)-invariant Einstein metrics on the base space; we will show that the
symmetric metric induces an Einstein metrichx S7 and the other does not.
The symmetric metric satisfias = %xl; for X a unit vector inp,, for Y a unit
vector inp,, and forA the O’Neill tensor (of our Riemannian submersion),
AxP= =5 and JAyP= D= =
3x; 1265 12x7  3x§
Thus the O’Neill tensor is a constant multiple@f A constant O’Neill tensor im-
plies there is an Einstein metric in the 1-parameter fangjly(Since the fibre is
flat, the Einstein metric is unique.) Proposition 9.70 in [Bes, p. 253] implies it
occurs when = %xl, which is exactly our second metric.
It is reasonable to ask why the other Spi#)-invariant Einstein metric on
Spint (7)/ U(3) does not induce an Einstein metric $fHix S7. The answer lies in
the O’Neill tensor. This time we substitute = %xl:

1 1 4
AxI?P= -5 and |Ay[P= —5 = ——:
3x7 12x5  27x7
we do not obtain a constant multiple 6f Hence, by [Bes, Prop. 9.70], there can
be no Einstein metrics arising from this fibration.
Our three metrics are not isometric. We compare a scale-invariant constant

and show that the constants, and thus the metrics, are distinct. Our constant is
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($)¥2(v)¥2 whereS is the scalar curvature and is the volume for each met-
ric. The first metric yieldgS)'¥?(V)¥? = 1.245982x 10". The second metric
yields (5)1¥2(v)¥2 = 1.0350064x 10Y; the third metric yield$S)*¥2(V)¥2 =
9.308607x 101°.

7. The ProductS’ x G} (R®)

The next product of symmetric spaces we considef’isc G5 (R®), the prod-
uct of the 7-sphere with the Grassmannian of oriented 2-plan®&S.itwe can
write this space homogeneously as SBjrU(3). We know the product metric is
one homogeneous Einstein metric. We will show that there is exactly one other
Spin(8)-invariant Einstein metric o8’ x G, (R®). We again identifyR® = O.

Recall that

Spind) = { (A, B, C) € SO8)% | A(x)B(y) = C(xy) ¥x,ycO}.

For (x, P) € S7(1) x G5 (R®) the action iS4, B, C): (x, P) = (A(x), B(P)).
We show that this action is transitive and find the isotropy subgroup; then we can
describe the space of homogeneous metric§'or G (R®). To see that the ac-
tion is transitive, we take any elemeqt, P) in S7(1) x GJ(RB) and then con-
struct a map in Spi(8) taking (x, P) to (1, Py), wherePy is the oriented 2-plane
spar{l, i}. We will use our knowledge of the subgroups of §i8in Since Spin (7)
acts transitively or§’ x {1}, there is an elemertd, B, A) in Spirr (7) mapping
(x, P) to (1, P"). Similarly since Spifi(7) acts transitively or{1} x Gg(RB),
Spin'(7) acts transitively or{1} x G5 (R®). Hence there is a map in Spit7)
taking (1, P’) to (1, Pp). Their composition yield$x, P) — (1, P') — (1, Po).

Next we show that the isotropy subgrofpof Spin(8) fixing (1, Py) is U(3) =
S(UQ)U(3)) c SU4) c Spin™ (7). For (A, B, C) € Spin(8), A(1) = 1 implies
that B = C and henceld C Spin™ (7). ThenB(Py) = Py means that, for some
angled, B(1) = ¢ andB(i) = ie'?; henceA(i) = i andH C SU(4). In fact,
we have showrHH C S(U(1)U(3)). By a dimension countld = S(U(1)U(3)).

As in the previous examples we identidyin(8) with so0(8) via the differen-
tial of the map takingA, B, C) to C. On the Lie algebra level we have(8) =
u(3) @ p, wherep is the orthogonal complement #43) with respect to our usual
comparison metriQ (X, Y) = —% tr(XY). We have three fibrations of our space;
using them, we decomposgénto its irreducible representationsof3):

CP3 = SU4)/U(3) — Spin8)/U(3) — Spin(8)/SU4) = V,(R®),
G4 (R®) = Spin*(7)/U(3) — Spin(8)/U(3) — Spin(8)/Spin™(7) = 7,
S7 = U(4)/U(3) — Spin8)/U(3) — Spin(8)/ U(4) = G (R?).

Let p, denote the standard representation of(§0Dand letu; denote the
standard representation of(A). In the first fibration, the fibre is an irreducible
symmetric space with isotropy representatian= [u1 & us]r. The base space
is isomorphic to S@)/SO(6); we know that the isotropy representation of the
base isps D pe ® Id. When we restrict this to (B), we obtainp, @ p3 ® po =
[uslr @ [1s]r @ 1d.
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In the second fibration, although the fibre is an irreducible symmetric space,
Spint(7) is not the full isometry group. Hence the isotropy representation is re-
ducible: via U3) c SU(4) c Spin*(7) the isotropy representationjigs @ p, =
[111® uslr @ [us]r. The base space, $8)/SQ(7), is also a symmetric space;
its isotropy representation js;. When we restricp; to U(3) ¢ SO(6) c SO((7),
we getps @ po = [ua]r @ Id.

Inthe third fibration, the fibre is symmetric but not a symmetric pair; the isotropy
representation ig; @ po = [u1® uslr @ Id. The base space is isomorphic to
SO(8)/SO(2)SO(6), an irreducible symmetric space with isotropy representation
02 ® ps; When we restrict the action to(B) this givesp, @ p3 = [us]r ® [u3]r.

We conclude that = p1®po®p3Ppo. This decomposition is not unique, singe
andps are equivalent representationsugB). We choose the decomposition to be
Q-orthogonal so thatu(4) = u(3) @ p1, u4) = u(3) ® p1 P po, andspin®(7) =
ud) © p1 D p2.

Any U(3)-invariant inner product, -) must satisfy-, -) = Q(g-, -), whereg is
an Ad U(3)-equivariant positive-definite symmetric linear operator. Sincés
p3 = [us]r is a unitary representation, we have two dimensions of intertwining
maps. Take &@-orthonormal basis, ordered to respect the complex struéture
onp; @ p3. Any intertwining map is a linear combination of

0 0 0 Ids
0 Ids 0 0 —Ild; O
= (Ide 0 ) and J=19 _g 0 o0
Ids 0 0 0

Then
x11dg 0 0 0 0 0
0 xold3 0 Alds  Aslds O
_ 0 0 x2lds  —Aslds Aqlds O
&= 0 )\.1|d3 —)\2 |d3 X3|d3 0 0
0 )»2|d3 )\1|d3 0 X3 |d3 0
0 0 0 0 0 x4

with scaling factorscy, x2, x3, x4 > 0 andij, A, € R. This parameterizes the
space of SpiB)-invariant metrics, but without loss of generality we can simplify
as in the previous sections. The normalizer ¢8JUn Spin(8) is U(1) - U3) C
U(4); its corresponding Lie algebraiig3) & po (sinceu(3) andpo commute). As
in the previous example, conjugation by any element @)U= N(U(3))/U(3)
is a diffeomorphism fixing; this gives a 1-parameter group of isometries of ho-
mogeneous metrics. With any bagk }°_, for p, and{Y;}_, for ps that satisfies
the preceding description, these Lie bracket relations holdAfarQ-unit vector
spanningo):

[Z,Xi]IYl' and [Z, YJ]Z—XJ

Hence, via AdexptZ) - g, any homogeneous metric is homothetic to one with
A1 = 0. From (%) we derive the following scalar curvature functional:
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S 3<fo4(2k22 - (x% + x%)) + 8)64(2)»22 — X2X3) (Azz —x2x3)+4(x1+ 2)64))\‘}_
x1x4(X2x3 — )»i — k22)2

x1(12x4(x2 + x3) (A5 — x2x3) + A5(x3 — (x2 — x3)?)
+xpx3(x5 4 (x2 — x3)2))
)C]_)C4()C2)C3 — )»i — )»22)2

(xl(xg + x% + xi — 3(x2x3 + 4xox4 + 4x3X24))
—2x4(x? + 8xpx3 + 1223))22
)C1X4(XZ)C3 — )\:ZL — )»22)2 ’

+

We normalize for volume 1 to get = S — k(x8(x2x3 — 22 — 23)%x4). Since
S is a function ofxi, we can sek.; = 0 and know that we will not omit any crit-
ical points of the scalar curvature. We find, using Maple, that there are two real
solutions such that each > 0:

. 2X3 X3 _ 2X3 do — X3

X1 = 3 x2—37 X4 = 3 2_3’
914 + 542 -1 oLt —2¢2+7

a=\——g — J¥» Xo=X3 X=|(—7F |5 A2 = Cxs,

where¢ is a real solution to 91 + 131:% 4 4122 — 7 = 0. (Approximately,x; ~
0.853¢3, x4 ~ 1.154x3, andi, >~ 0.3473.)

We check that these are not isometric by comparing a scale-invariant constant
($)1¥2(V)¥2. For the first metric that constant is (approx.3401636x 10%; the
second metric yields (approx.)8743704x 10'8. We show that the first metric is
the product metric. With that metric the Grassmannian is a symmetric space. In
our fibration, we do not have the symmetric pair presentation; we project the tan-
gent space t6 5 (R®), which isp; @ p», ontof, the Q-orthogonal complement to
50(2) @ s0(6) in s0(8). We see thap; C p, so that a unit element ipy projects
to a unit element ip. On the other hand, writing a basic elemenpeto respect
the decompositione(8) = p @ s0(2) ® s0(6), we have

3(E16 — Egs+ Eag — Eu47) = 3(E16 — E25) + 3(E3s — Ea).

A unit element inp, projects to an element of Ieng%1 Hence the symmetric
metric is the metric in which 2, = xq; this is the first metric.

Appendix

We describe of the geometry of tiehomogeneous metrics @ (R7) x S” and

S” x G§(R®), and we give their moduli spaces GFinvariant metrics. In each
case, the critical points of the scalar curvature functional will be Einstein met-
rics. The differential equation was unmanageable, however, even with the help
of Maple.
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The ProduciG; (R") x S’
We identifyR® = O, the Octonians, an®’ = Im(Q), the imaginary Octonians.
Our Grassmannia@, (R”) is the space of oriented 2-planes through the origin in
Im(Q), andS” is the unit sphere i). Recall that

Spint(7) = { (A, B, B) e SO8)® | A(x)B(y) = B(xy) Vx, ycO}.

The action of Spin(7) is (A, B, B): (P, x) =~ (AP, Bx). To see that this action
is transitive, we will send anyP, x) to (Py, 1), where Py is the oriented 2-plane
spar{/, k}. We will use the subgroups £zand SU4) (G, is the group of auto-
morphisms ofD and SU4) is unitary with respect to left multiplication by of
Spint (7). We know that S\¢4) acts transitively or$’, so there exists af¥, B, B)
taking (P, x) to (P’, 1), for someP’ in G;(R7). Then, since G acts transitively
on G5 (R’) (and fixes 1inS’), we can find som&A’, A’, A’) taking (P, 1) to
(Po, 1).

The isotropy subgrougl fixing (Po, 1) satisfiesH C G,. This is because ele-
ments ofH take 1 toitself, so that(x) B(1) = B(x) forall x € Q. Elements ofd
also takePy toitself andi = jk, soi is fixed by the isotropy subgroup. This shows
(cf. [K]) that the isotropy subgroup of Gixing Pp is U(2) = S(U(1)U(2)) C
SU@3) c Gy, where SU3) is the subgroup fixing.

As in the previous examples, we consider the Lie algebepiaf (7) as a Lie
subalgebra ofo(8). We use the Ad R)-invariant inner produc to choose an
invariant complement = u(2)* tou(2) in spin™ (7). There are many fibrations of
our space; we give three here (and use one to determine the isotropy representation
of U(2) onp):

$° = U(3)/U(2) — Spint(7)/U(2) — Spin*(7)/U(3),
GF(R") = Gp/U(2) — Spin"(7)/U(2) — Spin*(7)/G, = §7,
SU4)/U(2) — Spin™(7)/U(2) — Spin*(7)/SU4) = s°.

In the first fibration, the isotropy representation of the fibredis 2] @ Id,
wherey is the standarél-dimensional representation of 8). The base space is
a symmetric space but not a symmetric pair; its isotropy representateg) is
[A%u3]r (cf. [K]). We must restrict the representations of the base (@) Uno-
tice that [us]r and [A\2us]r are equivalent representations of @Y so their re-
strictions both give fu1 ® Id]g @ [Id & 2] . Thus our total isotropy representa-
tion decomposition ip = p1® po ® p3 D pa D ps D po, the sum of six irreducible
real represenatations of(R), where:p; ~ po ~ [u1 ® Id]r; p3 =~ [pn1 ® wo]r;
pa =~ ps ~ [Id ® uo]g; and, finally,po is a 1-dimensional trivial representation.
The decomposition gf; @ p» andp, @ ps into irreducuble representations is not
unique. We haveu(3) = u(2) & p3 andu(3) = su(3) @ po. If we require that
su(4d) = u(3) @ p1 D p4, this determines a choice pf andp,. Choosep, andps
to be theQ-orthogonal complement tu(4).

Each of [u1 ® Id]z and [Id® 2] is a unitary representation; there are two
dimensions of intertwining maps for each pair. Hence the space of (Bd U
equivariant symmetric positive definite mapss 10-dimensional. Let; > 0 for
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i=20,...,5 andk_,- € R for ] =1...,4 Theng = diag(Al, X3 |d4, A, x9),

where
X1 0 )»]_ )»2

0 X1  —A2 Aq

Ar= M —h2 x2 O
Ao A 0 X2
and
X4|d2 0 )\3 |d2 )\4|d2

0 )C4|d2 —)»4|d2 )»3|d2
Azlds  —Aglds  xglds 0
Aalds  Azld; 0 xs5lds

We can simplify by using the extra isometries from the normalizer ) ih
Spint (7). We find N(U(2)) = U(3), and soN(U(2))/U(2) = U@)/U(2) =
U(1). The tangent space to the quotienpis and if Xq is a Q-unit vector span-
ning po then adXy) takesp to itself. Thus, for all reat, Ad(expr Xo)(g) is iso-
metric tog. Because the action of &&ly) in fact rotateg, @ p, and alsq4 & ps,
we can find a such that one of our off-diagonal terms is zero. That is, any
Spint (7)-invariant metric is isometric to one given by nine (instead of ten) pa-
rameters. Nevertheless, the scalar curvature formula is cumbersome; we were not
able to find its critical points.

Ay =

The ProductS” x G5 (R®)

Identify R® = O, the Octonians, so that’ is the unit sphere ifd andG3 (R®) is
the set of 3-planes ifd through the origin. Recall that

Spin8) = { (A, B, C) € SO8)3 | A(x)B(y) = C(xy) ¥x, ycO}.

The action of Spi8) is (A, B, C): (x, P) — (Ax, BP) for anyx € S” and
anyP e Ggf(]RB). To see that this action is transitive, we will send d@ny P) to
(1, Py), wherePy = sparli, j, k}, using the subgroups of Sgi8). Since Spin (7)
acts transitively or$”, there exists a tripléA, B, A) taking (x, P) to (1, P') for
someP’ in G5 (R®). Then, since Spih(7) acts transitively orG 3 (R®) (cf. [K]),
there exits affA’, B’, B’) sending(1, P’) to (1, Py). The composition is the de-
sired map.

The isotropy subgroup fixing (1, Pgy) satisfiesH C Spint(7): sinceA(1) =
1, we haveB(x) = C(x) for all x € ©. Then the subgroup of Spiii7) fixing Py
is SQ4), the subgroup of gfixing the associative subalgebra@fgenerated by
i andj (cf. [K]).

As in our previous examples, we identify the Lie algefyran(8) with so(8) via
the double-covering homomorphisfd, B, C) — C. We use the Ad-invariant
inner product) to choose an invariant complement so(4)* to so(4) in s0(8).
There are several fibrations of our space, we give two here, using their geometry
to decomposeg into a sum of irreducible real representations ol &0

G (R®) = Spin*(7)/SO4) — Spin(8)/SO4) — Spin(8)/Spin*(7) = 57,
G,/SO4) — Spin(8)/SO(4) — Spin(8)/G, = S’ x S'.
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Before we describe the isotropy representation, we notestiid} is not sim-
ple: so(4) = su(2) ® su(2). Denote byp; the standard orthogonal representation
of SO3) in R3, and denote by, the unique irreducible unitary representation of
SU(2) of dimensiom. In the second fibration, the fibre is an irreducible symmetric
space with isotropy representatiah [ 04] z. The base space has isotropy repre-
sentationy @ ¢, wherey is the standard orthogonal representation i O(7).
When we restrict eaci to SQ4), we get [1d® ps]r @ [02 ® 02]r. The isotropy
representation of the total space decomposegiat@; @ pr B p3 @ ps ® ps, with
p1 > p2 ~ [Id ® p3lr, p3 = [02 ® Oa]r, andps =~ ps =~ [62 & O] . As before p
does not compose uniquely. If we choastn™ (7) = s0(4) @ p1 D p3 ® pa, this
fixes a choice of; andp4. Then we can chooge andps to be the corresponding
Q-orthogonal complements.

Since bothp; >~ py >~ [Id & p3]r andps =~ ps =~ [62 & O]k are orthogonal,
each pair has a 1-dimensional space of intertwining maps. The space of(Ag SO
invariant symmetric positive-definite mapss 7-dimensional. Fox; > 0 (i =
1,...,5) andiq, Ao €R,

x1ld3  Aqlds
)L1|d3 )C2|d3
g = X3|d8
X4|d4 )\2|d4
)»2|d4 )C5|d4

The scalar curvature is a function of these variables; it can be obtained from
equation(x) using anyQ-orthonormal basis satisfying the decomposition just
described.
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