Hypersurfaces of E* Satisfying AH = \H

FirLip DEFEVER

1. Introduction

Minimal submanifolds of Euclidean spaces are contained not only in larger classes
of submanifolds—for example, in the class of submamfolds of finite type—but
also in the class of submanifolds satisfying AH = AH, » €R. The study of sub-
manifolds satisfying AH = AH was initiated by B.-Y. Chen in 1988, and arose
in the context of his theory of submanifolds of finite type. For a survey of recent
results on submanifolds of finite type and various related topics, see for example
[8].

Let M" be an n-dimensional connected submanifold of the Euclidean space E".
Denote by x, H,and A (respectively) the position vector field of M", the mean
curvature vector field of M”, and the Laplace operator on M", with respect to the
Riemannian metric g on M", induced from the Euclidean metric of the ambient
space E™. Then, as is well known (seee.g. [1]),

A% = —nH. (1)

This shows, in particular, that M” is a minimal submanifold of E™ if and only if
its coordinate functions are harmonic (i.e., if they are eigenfunctions of A with
eigenvalue 0): L. .

H=0 & Ax=0. (2)
Condition (2) can be generalized in several directions. Takahashi [14] studied and
classified submanifolds in Euclidean space for which

AX =A%, XMeR, 3)

that is, submanifolds for which all coordinate functions are eigenfunctions of A
with the same eigenvalue A. Rephrased in terms of Chen’s theory of submanifolds
of finite type, Takahashi’s condition (3) characterizes the 1-type submanifolds of
[E”. In particular, for hypersurfaces of [E™, Takahashi’s result [14] shows that the
only 1-type hypersurfaces of IE™ are the minimal hypersurfaces (A = 0) and (the
open parts of ) a hypersphere S”~! of E” (A > 0).

Condition (2) was generalized in another direction by Chen, who in 1985 initi-
ated the study of submanifolds of E™ satisfying
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AH =0 < A% =0. 4)

A submanifold M" of E™ satisfying condition (4) is said to have harmonic mean
curvature vector field. Equivalently, submanifolds satisfying (4) are also called
biharmonic submanifolds.

Conditions (3) and (4) may be generalized and combined into the condition

AH =AH, reR. 5)

The study of submanifolds of E™ satisfying (5) was initiated by Chen in 1988. In
[3] it was proved that a submanifold M" of a Euclidean space satisfies the con-
dition AH = AH for some A € R if and only if M" is biharmonic (A = 0) or
of 1-type or of null 2-type. For various results on submanifolds satisfying (5) in
Euclidean spaces and other (also indefinite) space forms, see [5; 6; 8] and the
references therein. However, a complete classification of the surfaces satisfying
condition (5) has been achieved (in [2]) only for surfaces in E3.

Concerning hypersurfaces of E4, [11] classifies the hypersurfaces satisfying (5)
with the supplementary condition of conformal flatness. From this and other par-
tial results (see further), one may remark that all known examples of hypersur-
faces of E* that satisfy (5) have constant mean curvature. The aim of the present
paper is to prove, without any additional assumptions, that this property holds in
general. More precisely, we prove the following.

THEOREM. A hypersurface of E* satisfying AH = AH must necessarily have
constant mean curvature.

2. Preliminaries

Let M3 be a hypersurface of the Euclidean space [E4. Denote by V and V the
Levi—Civita connections of M3 and [E4, respectively. For any vector fields X, Y
tangent to M3, the formula of Gauss is given by

VxY = VxY +h(X,Y)E, (6)

where £ is the scalar-valued second fundamental form and £ is a unit normal vec-
tor. Denote by § the shape operator of £. Then the formula of Weingarten is given
by

Vx & = —S(X), (7

where (S(X), Y) = h(X,Y). The mean curvature vector H = Hg, with H =
% trace S, is a well-defined normal vector field to M3 in E4. The equation of Co-
dazzi is given by

(VxS)YY = (VyS)X. 8

The Gauss equation reads
R(X,Y)Z = S(X)(S(Y), Z) — S(Y)(S(X), Z). &)

We now consider a hypersurface M3 of E* satisfying the condition (5)
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AH =)H, reR.

Introducing a local orthonormal frame {e; }, _,» the Laplace operator A acting on
a vector-valued function V is given by

3
\7_—.2 vV — VeVe V] (10)

With (10), we find the following necessary and sufficient conditions for a hyper-
surface M3 of E# to satisfy (5):

3H
S(VH) = _T(VH)’ (11)
AH+HtuS?=AH, XeR, (12)

where the Laplace operator A acting on a scalar-valued function f is given by

3
Af = Z[Veieff —_ e,-e,-f]. (13)
i=1

3. Hypersurfaces of E* satisfying AH = \H

In the present section, we prove that the mean curvature of hypersurfaces of E*
satisfying condition (5) has to be constant. We first remark that following a result
of Chen [3], a submanifold M" of E™ satisfies (5) if and only if:

(1) M" is biharmonic (A = 0); or

(i1) M™ is of 1-type; or
(iii) M™ is of null 2-type.
Concerning (1), in [12] and (independently, by another method) in [9] it is proved
that the only biharmonic hypersurfaces M3 of E* are the minimal ones. Concern-
ing (it), we note that Takahashi’s result [ 14] completely identifies the 1-type hyper-
surfaces of E*: besides the minimal ones (A = 0), the only 1-type hypersurfaces
of E* are the hyperspheres S° of E4 (A > 0). Concerning (iii), we remark that a
result by Ferrdndez and Lucas [10] implies the classification of all null 2-type hy-
persurfaces of E* with at most 2 distinct principal curvatures: a hypersurface M3
of E* of null 2-type and having at most two distinct principal curvatures is locally
isometric to a generalized cylinder R x S2 or R? x S!.

In view of these results, in order to prove our statement it is sufficient to analyze
the content of condition (5) with A # 0 for hypersurfaces M?> of E* with exacily
three different principal curvatures. We therefore suppose that M3 is a hypersur-
face of E* that does not have constant mean curvature, and then show that this
assumption entails a contradiction.

We supposed that M3 does not have constant mean curvature H. It follows that
VH # 6, and (11) shows that VH is an eigenvector of S with corresponding eigen-
value Ay = —3H/2. We now choose a local orthonormal frame {¢; }3 | consisting
of eigenvectors of S and such that e; is a unit vector in the direction of VH.
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With respect to this local frame, S is diagonal, and its matrix representation

takes the form
—~3H/2

Az : (14)
A3

Moreover, we also have that
eif(H) #0, ey(H)=0, e3(H)=0. (15)

Since we could confine ourselves to the case where, in (14), all three principal
curvatures are mutually different, we have that

3H/2+4 A #0, 3H/2+XA3#0, Az—Ay #0. (16)

Writing V,.e; = w{‘(ej)ek, the Codazzi equations (8) for ((V,,S)e2, 1) and
((V,,S)es, e;) show that

wi(ez) =0, wi(e3)=0. (17)

Next, the Codazzi equations (8) for ((V,, S)es, e2) and ((V,, S)es, e3) readily give
that

a)z(el) — ___fl_()fl_ w3(el) — ____8_1_(}_3_)_ (18)

2 3H/2 + Ay 3 3H/2+ A3

Similarly, the Codazzi equations (8) for ((V,,S)es, e2) and {(V,,S)es, e3) imply

that
5 ez(Ap) 3 €2(A3)
= , = . 19
w3 (e3) e w3 (e2) T — s (19)

Finally, in view of (15), we have that [e;, e3](H) = 0. Together with the Codazzi
equations (8) for ((Ve, S)es, e3) and ((V,, S)es, e2), it follows that

wi(e3) =0, wi(e1) =0, wi(er)=0. (20)
Now, the Gauss equations (9) for (R(e;, e3)e1, e2) and (R(e, e3)e;, e3) show
that
63( e1(A2) ) _ () ( eidz)  ei(hy) ), o
3H/2+ Ay Az — A2 \3H/2+ X3 3H/2+ X,
62( e1(A3) ) _ () ( eids) alw) ) 22)
3H/2 4+ A3 A — A \3H/2+ A3 3H/2+ X,

On the other hand, in view of (13) and (15), equation (12) takes the form

e1(A2) e1(A3) 45H? B
elel(H)_(3H/2+}..2+3H/2+A3)61(H)—H< > —2A2)L3) +AH = 0.
(23)

Acting with e, and with e3 on (23), and combining with the expressions (21) and
(22), we have

. ( e1(A2) )_ _e(A3) ( eid2)  ei(dz) )
\3H/2+ 12/ M —23\3H/2+ Ay 3H/2+ 3
+ 22y - app 22D 24)

ei(H) Ay — A3’
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. ( e1(A3) ) __e3(A) ( ad3)  ea) )
\3H/24+ %3] M —M\3H/2+As 3H/2+ A,
2H 2 83()\,2)
+ o () (A3 — A2) o (25)

We also have the Gauss equations (9) for (R(ey, e2)e;, e2) and (R(es, e1)e, €3),
which yield the following relations:

e1(A2) et } 3
_) ) (LAY ) o, 26
61(3H/2+x2) (3H/2+x2) 277 0
e1(A3) er(hs) )\ 3
- ———= )} = —ZH)a. 27
el(BH/Z—i— Ag) (3H/2+k3) 23 @n
Using (17)—(20), we find that
e1(A2)
o] = —At) 28
[e1, e2] 3SH/Z+ Azez (28)
In addition, we take into account the relation
A A A
61( e2(A3) ) _ e1(A3)ea(As) , (29)
Ay — A3 (BH/2 4 A3)(A2 — A3)

which follows from the Gauss equation (9) for (R(es, e})ea, €3).
Applying both sides of (28) on 5773, and using (24), (26), (27), and (29),
we deduce that

_ ea(M3) e1(A2) ei(03)  \? ,
(b rre [(31—1/2 +i 3H/2+ )Lg) + el(el(H))(’kz — 13)
__H eid)  ei(da) w2
e1(H) ((3 3H/2+ X, 3H/2+ kg)(kz A3)
— 2(12 - )\.3)61()\.2 — )\,3))]. (30)

Equation (30) shows that at least one of the factors e;(A3), or the expression be-
tween square brackets, must vanish.

We now prove that e;(A3) must necessarily be zero, since the assumption that
e2(A3) # O runs into contradiction. Indeed, suppose that e;(A3) # 0. Then the
factor between square brackets must vanish:

. ( H ) __H ((3 a(d2)  e(d3) ) B zel(lz ~ )»3)) 31
NeaH))  ea()\\"3H/2+ 1, 3H/2+ A3 (2 — A3)
1 ey ers) Y
(A2 —A3)2\3H/2+ X, 3H/2+X3)
Acting with e; on both sides of (32), in view of (24), (22), and (28) we have
of 1)  eda)

3H/2+ Ay 3H/2+4 A3

Moreover, applying e, on (33) yields

(32)

__H ERY 4
)—el(H)()"z PEY (33)
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ei(d2)  ei(A3) ) _ 2H
3H/2+X; 3H/24 A3 el(H)
Now, (33) and (34) form a set of equations from which it would follow that A, =

A3; this contradicts (16). Hence, we conclude that e;(A3) = 0.
Analogously, from (17) and (18) we have

(A2 — A3)?. (34)

_ e1(A3)

[es, e1] = 3H/Z+ es, (35)
which we apply on 3—:11/(2}‘—4’_))3 . In view of the Gauss equation (9) for (R(ey, e2)es, €2),
A A A

6’1( e3(A2) ) _ e1(A2)e3(A2) ; 36)
Az — Ay (BH/2 4+ A2)(A3 — A2)
using (25)—(27), we deduce that
e3(A2) e1(A3) et ) ( 2
0= - A3 — A
A3 — As [(311/2 +As  3H/2+ )\.2) te\ qan (hs = A2)
H e1(Az) e1(A2) 2
- 3 - A — A
e1(H) (( 3H/2 + s 3H/2+A2)( 3 M)
—2(A3 — Az)e1(A3 — 12))]- (37)

In a similar fashion, one can show that e3(A;) must necessarily vanish. Indeed,
following the same line of proof, the assumption that e3(A;) # O runs into contra-
diction.

In summary, we have proved independently that e;(A3) and e3(A;) must vanish
separately. Hence, we conclude both that

ez(}~.3) =0 and 63()»2) =0. (38)
In view of (38), the Gauss equation (9) for (R(e3, e3)e2, e3) gives the following
relation: a)er(hs)
e1(rz)ei(As
+ A3 = 0. 39
GH/2+A)BH/2+ A3) 272 59)

Calculating e; e;(H) from (26) and (27) and combining with (23), using (39) gives
the conditions

( eafa) el )el(H)zﬁiHs_?mm_?w, (40)

3H/2+ Ay  3H/2+ A3 8 2 4
369 13 7
ere(H) = —8—-H3 — —2—szA3 — ZAH. 41

Acting with e; on both sides of (40) and using (26), (27), and (39), we calculate
the next expression:

e1(A2) + e1(A3)
3H/2+ A, " 3H/2+ 2

)(4411572 —26A373 — 10M)H

= (432H? — 262,03 — 3V er(H). (42)
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We now apply e¢; on (42). A calculation using (40)—(42) yields the following
algebraic relation between H, AA3, and A:

0 = —6,863,560,515H% 4+ 1,143,208,323 H%\ — 42,663,996 H*)*
4+ 401,436 H2A3 + 2,1601* + 485,815,806 H® (A,13)
— 226,624,230 H*A(AzA3) + 4,883,760 HA>(A2r3) + 23,7841 (A2A3)
+ 59,355,504 H* (A213)% + 11,332,152 H2A(A2A3)? + 26,416A% (A,13)*
— 6,157,008 H2(A2A3)> — 135,200A(A2A3)> + 140,608 (A2A3)%. (43)

From (43), acting twice with e; and using (40)—(42), we obtain a second indepen-
dent algebraic relation between H, A;A3, and A:

= —34,834,534,938,767,774,385 H'* + 5,808,891,661,968,730,851 H'*)
— 379,857,621,779,657,460 H'°A? + 11,998,169,284,652,424 H®)?
— 182,885,218,372,368 H®A* + 1,132,797,170,736 H*X’
— 1,452,914,496 H?2® 4 12,530,840,824,018,014,192 H'2(A,13)
—2,010,178,653,285,140,784 H'°A(A213) + 110,824,454,432,277,468 H¥A* (M 13)
—2,543,059,734,076,368 H A3 (A2A3) + 22,341,826,156,032 H*A*(A213)
— 45,136,605,888 H?A> (AzA3) — 5,137,34425(A213)
— 1,367,090,289,917,896,788 H'°(A213)*
+256,854,808,101,239,388 H A (A223)? — 11,422,286,566,141,896 H A2 (A1)
+16,193,713,852,912 H*A3(A2A3)? — 535,601,789,856 H2A*(AzA3)?
— 114,156,288 (A2A3)% + 21,787,456,623,001,056 H® (A;A3)°
— 15,563,208,968,133,840 H 51 (A213)? 4+ 501,571,375,583,6 16 H*A*(A213)°
— 3,048,670,842,048 H2)3 (A213)* — 836,379,6481*(A213)°
+ 5,888,457,235,428,768 H (A,23)* + 46,075,037,026,668 H*A(A213)*
— 8,228,316,021,120 H%22 (A213)* — 899,891,2004% (A,A3)*
— 444,888,559,320,192 H*(A,A3)° — 5,928,306,059,520 H>A(A213)°
+ 13,878,572,03222(A2A3)° + 12,466,012,815,360H? (A3 A3)°
+21,876,355,0721(A223)® — 124,706,922,496(A2A3)" . 44)

Elimination of A,A3; between (43) and (44) gives a nontrivial algebraic equation
for H with constant coefficients, one that involves the parameter A. We shall not
list this eliminant explicitly because of its length, and since its particular form does
not contain the most important information; it can, however, be recovered quickly
by applying the standard Mathematica command Eliminate[ ] to equations
(43) and (44). The simple fact that H satisfies a nontrivial algebraic equation with
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constant coefficients shows—without having to solve this algebraic equation ex-
plicitly and even in the case of a real solution—that H must be a constant, which
contradicts our assumption.

In summary, we have proved that the assumption H # C for a hypersurface M?
of E4 satisfying (11) and (12) yields a contradiction. Hence, we have proved the
following.

THEOREM. A hypersurface of B* satisfying AH = AH must necessarily have
constant mean curvature.

REMARK. Subsequent to the completion of this paper, it was brought to my at-
tention that the content of the present theorem could be recovered also on the basis
of results in [13]. Indeed, [13] completes a characterization of the null 2-type hy-
persurfaces of E*. A comparison of our method of proof with those in [13] shows
that the latter relies on technicalities of the classification of H-surfaces presented
in [12]; hence [13] is based on explicit parametrizations and choice of special co-
ordinates. Our proof here is entirely independent of coordinates and is also more
self-contained from a structural point of view. It therefore provides better insight
into the structure of the hypersurface and, in particular, may open perspectives for
generalizations to higher (co)dimensions.
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