Structural Stability of Kleinian Groups

KATSUHIKO MATSUZAKI

0. Introduction

A dynamical system is called structurally stable if in general its topological struc-
ture is invariant under small perturbation. In the theory of complex dynamics of
Kleinian groups and iterated rational maps, problems on structural stability have
played an important role. Sullivan [17] proved that, if a finitely generated torsion-
free Kleinian group is structurally stable, then its action on the limit set is expand-
ing; however, this problem is still open for iterated rational maps. Expanding cn
the limit set means convex cocompactness of the Kleinian group. In this paper
we remove the assumption “torsion-free” from Sullivan’s result; we characterize
structural stability of finitely generated Kleinian groups that may contain elliptic
elements. The precise definition of structural stability and the statement of our
main theorem are given in the next section.

We say a Kleinian group is quasiconformally stable if its small perturbations pre-
serving the parabolic elements are all induced by quasiconformal automorphisms
of the Riemann sphere. This property has been considered in the quasiconformal
deformation theory of Kleinian groups. From the so-called A-lemma, we see that
if small perturbations are all isomorphic then they must be quasiconformal defor-
mations. Hence quasiconformal stability follows from structural stability. Marden
[9] proved that geometrically finite Kleinian groups are quasiconformally stable.
The converse is also true for torsion-free groups, which is a corollary to Sullivan’s
theorem just mentioned. Namely, geometric finiteness and quasiconformal sta-
bility are equivalent in the torsion-free case. In the last section of this paper, the
assumption “torsion-free" is removed also from this equivalence.

1. Preliminaries and the Statement of the Main Theorem

Let G be a finitely generated group with a fixed system of generators G =
(81, ..., 8&m). Wedefine Hom(G, PSL(2, C)) as the set of all PSL(2, C)-represen-
tations of G. It is regarded as an algebraic subvariety of Vg = PSL(2, C)™ by the
identification

Hom(G, PSL(2,C)) 3 p = (p(g1), ..., p(gm)) € V;.
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We say that p (or p(G)) is structurally stable if there exists an open neighbor-
hood U (C Vi) of p such that each representation in Hom(G, PSL(2, C)) N U is
faithful.

Our main theorem is a generalization of Sullivan’s result [17] about structural
stability of torsion-free groups. The statement is as follows.

THEOREM 1. Let G be a finitely generated nonsolvable group ( possibly with tor-
sion) and let p: G — PSL(2, C) be a faithful representation (not necessarily dis-
crete). Then p is structurally stable if and only if either p is rigid or p(G) is a
geometrically finite Kleinian group all of whose cusps are rigid.

Here we should define the terms that appear in the above theorem. A faithful rep-
resentation p: G — PSL(2, C) is called rigid if there is a neighborhood U C Vg
of p such that all elements of Hom(G, PSL(2, C)) N U are given by conjugations
of PSL(2, C).

A discrete subgroup I' of PSL(2, C) is called a Kleinian group. It is identified
with an isometry group acting properly discontinuously on the upper half space
model (H?, ds) of the hyperbolic space, where

H®={(x,y,) eR®|t >0}, ds? = (dx* + dy* + dt*) /2.

Thus the quotient space Nt = H?/T" admits hyperbolic orbifold structure. When
I" contains elements of finite order, N1 has an exceptional set (branch loci) where
the hyperbolic structure is singular.

Let us denote by € (I') the region of discontinuity, which is the maximal open
subset of C = 9H? where T acts properly discontinuously. It may be empty. We
define the limit set A(I") of I" as the complement of Q(I") in C. If the limit set
consists of more than two points, we say that I" is non-elementary. Otherwise, I'
is elementary. The assumption in Theorem 1 that G is nonsolvable implies that
most discrete faithful representations are non-elementary. For a non-elementary
Kleinian group, the limit set is the minimal non-empty invariant closed set in C.

We define Hull(A (T")) (C H?) as the convex hull of the set of all the geodesics
Jjoining any two points of the limit set A (I"). It is the minimal invariant contractible
closed convex set in H>. The convex kernel of Nr is Cr = Hull(A(T")) JT. We
say that a finitely generated Kleinian group I' or a hyperbolic orbifold Ny is geo-
metrically finite if the convex kernel Cr has finite volume.

We should also define the notion of cusps. Let x be a fixed point of a parabolic
element of a Kleinian group I'. The stabilizer

Stabr(x) ={y €I' | y(x) = x}

is an elementary subgroup of I' containing the parabolic element. By conjuga-
tion, we may assume that x = oo and that Stab(x) contains a primitive parabolic
transformation a(z) = z 4+ 1 (cf. [10, Chap. I, B1]). Then it is known that

Po={(x,y,)eH*|t> 1}
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is I'-equivariant and Staby (x)-invariant. We regard parabolic fixed points x and
x" as equivalent if there is y € I" such that y(x) = x’. By this relation, we de-
fine an equivalence class [ x] of parabolic fixed points, and associate a subregion
Plx] = ~x/ Stabr(x) of Nr with each class [x]. We call Stabr(x) a cusp of ['
and P[x] a cusp of Nr.

The types of cusps are completely classified as follows (cf. [10, Chap. V, D]).
We say a cusp is of rank 2 if it contains an abelian group of rank 2 (= Z @& Z). Oth-
erwise, itis of rank 1. We say a 2-dimensional orbifold is of (g, n; vi, va, ... ,v,)-
type if it is a closed surface of genus g having n-singular points with the branch
orders 2 < vy < --- < v, < oo (the order co means that it is a puncture).

Rank 1

(i) P[x] = annulus x I (open interval); Stab(x) = infinite cyclic group.
(i) P[x]1=(0,3;2,2, 00)-surface x I; Stab(x) = infinite dihedral group.

Rank 2

(iii) [torus cusp] P[x] = torus x I;
Stab(x) is conjugate to {(a(z) = z+ 1,b(z) = z+ 1) Im 7 > 0).

(iv) [pillow cusp] P{x] = (0, 4; 2, 2, 2, 2)-surface x [;
Stab(x) is conjugate to (a(z) = z+1,b(z) = z+1,e(z) = —z) (Imt > 0).

(v) [rigid cusp 3] P[x] = (0, 3; 3, 3, 3)-surface x I;

Stab(x) is conjugate to W3 = (a(z) = z + 1, e3(z) = *™/37).
(vi) [rigid cusp 4] P[x] = (0, 3; 2, 4, 4)-surface x I;

Stab(x) is conjugate to Wy = (a(z) = z + 1, e4(z) = 2™/4z).

(vii) [rigid cusp 6] P[x] = (0, 3; 2, 3, 6)-surface x I;
Stab(x) is conjugate to W = (a(z) = z + 1, es(z) = €*>™/%z).

We say that a cusp W is rigid if the identity representation ¢: W — PSL(2, C)
is rigid in the sense just described. The following proposition implies that cusps
of types (v), (vi), and (vii) are rigid.

PROPOSITION 1. Let « and € be elements of PSL(2, C) not of order 2. If « and
g oo o =1 commute but do not coincide, then « is parabolic with the fixed point
in common with €.

Proof. Let L be the set of fixed points of «. It consists of one or two points. Since
o and € o o £~! commute and « does not have order 2, L is also the set of fixed
points of £ o o 0 £7! (cf. [10, Chap. I, D3]). This implies that L is invariant un-
der &, and since it is not of order 2, each point of L must be fixed by ¢. If « is nct
parabolic then L consists of two points. Then L is also the set of fixed points of
¢, and thus o and € commute. But this contradicts our assumption. Therefore we
know that « is parabolic. We have already seen that the fixed point of « is fixed
by e. O

We take a representation p of W, (n = 3, 4, 6) so close to ¢ that p(a) is not of
order 2, p(e,) is elliptic of order n, and p(e, o a o ;! o a~1) is not the identity.
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From Proposition 1, we see that p(a) is parabolic with a fixed point in common
with p(e,). By conjugation, we can transfer the common fixed point to oo and
the other fixed point of p(e,) to 0. This implies that the elliptic element is z >
e?™i/m 7, Further, we can conjugate p(a) to a(z) = z + 1. Therefore p is obtained
by conjugation. Hence the cusps of types (v), (vi), and (vii) are rigid.

On the other hand, cusps of types (1), (ii), (iii), and (iv) are not rigid. We prove
this only for the cusp W = (a, b, e) of type (iv). Let

@@ =TI gy = R T

ayz) = sy P )= )
' r2z+V1+4r? ' r’rz + 14 r?z?
for any constant 7 in a neighborhood of 0. We can see that such correspondence ex-
tends to a homomorphism p, of W and that p, converges to the identity representa-
tion ¢ as r — 0. Since the traces tr p, (@) = 2+/1 + r% and tr p, (b) = 2+/1 4+ r212
vary as r does, W is not rigid. Notice that W contains cusps of types (i), (ii),
and (iii) as subgroups; one can similarly check that the restriction of { o, } to these
subgroups demonstrates that these cusps are also nonrigid.

pr(e)(z) = —z

2. Sullivan’s Result

We shall show Theorem 1 by improving Sullivan’s argument [17]. He proved that
under the extra assumption that G is torsion-free, if p is structurally stable and
nonrigid then p(G) is convex cocompact—in other words, p(G) is a geometri-
cally finite Kleinian group without cusps. However, a part of his proof does not
require that G be torsion-free. We can abstract the following result in general, not
only for torsion-free groups. A similar result was also obtained by Riley [14].

LEMMA 1 (Sullivan). If a PSL(2, C)-representation p of a nonsolvable finitely
generated group G is structurally stable and nonrigid, then p(G) is Kleinian with
non-empty region of discontinuity. Moreover, any representation p’ close to p is a
quasigonformal deformation of p; that is, there is a quasiconformal automorphism

f of C such that p'(g) = f o p(g) o f~! forevery g € G.

Although this lemma was not stated in [17] exactly as it is here, we can easily ver-
ify it as follows. For an arbitrary representation p’ € Hom(G, PSL(2, C)) close to
p, there exists a complex disk with center at p containing p’ and contained in the
analytic set Hom(G, PSL(2, C)) (cf. [18, Chap. 3, Thm. 3D]). We identify this
disk with the unit disk D. Since p is structurally stable, we have a holomorphic
1-parameter family of isomorphisms of G defined over D. Then we have Lemma 1
from Theorem 2 in [17].

By this lemma, we see that the dimension of Hom(G, PSL(2, C)) at p is equal
to that of the space of quasiconformal deformations of p(G). It is known that the
quasiconformal deformation space has dimension that is three greater than the di-
mension of the Teichmiiller space of the orbifold 2(p(G))/p(G) (see e.g. [7]).
We shall next estimate the dimension of Hom(G, PSL(2, C)) by using a core of
the Kleinian orbifold.



Structural Stability of Kleinian Groups 25

3. Relative Cores of Indecomposable Kleinian Orbifolds

In order to investigate 3-dimensional topological manifolds with finitely generated
fundamental groups, we often utilize their cores. Here a compact submanifold is
called a core if the inclusion induces an isomorphism between the fundamental
groups. Feighn and Mess [4] showed the existence of an orbifold core under a cer-
tain assumption on the orbifold fundamental group. In this section, we construct
a so-called relative core of a Kleinian orbifold under an assumption that is similar
to theirs.

First of all, we consider borders of finite ends of the orbifold by using the re-
gion of discontinuity in the sphere at infinity. This means that we attach Q(I")/T
to the orbifold and regard M = (H> U Q(I"))/T as a topological orbifold with
boundary. Its orbifold fundamental group is the same as Nr. We will find a core
in M r.

We remove all the cusps of Nr. Further, when a cusp determines punctures of
Q(TI")/T", we also remove neighborhoods of the punctures from M. Precisely,
the removed regions are described as follows. For an equivalence class [ x] where
Stabr(x) is of rank 2, we do nothing; we just set P*[x] = P[x]. But in certain
cases where Stabr(x) is of rank 1, we need an expansion of P[x]. Let x = co
and let a(z) = z + 1 be a primitive parabolic element of Stabr(c0). A cusped re-
gion for a is a subregion of Q(I") of the form {z | Imz > M; or Imz < M, } that
is precisely invariant under Stabr(co). When we can choose such M; and M; to
be finite, we always do so. Then the cusped region for co consists of two com-
ponents. When we cannot choose M| or M> to be finite, we define M; = oo or
M, = —oo. In this case, the cusped region consists of only one component or it
may be empty. We define

Pr={(x,y,) e B |t >1}U{(x,y,1) e HUC |y <Myor M; <y}

This set is equivariant under I". Put P*[x] = 13; /Stabr(x), which we call an
extended cusp of Mr. Now we remove | J P*[x] from M, where the union is
taken over all the equivalence classes { x], and denote the resulting orbifold with
boundary by (Mr)y.

We consider a finite-sheeted branch covering manifold of the orbifold (Mr ).
By Selberg’s lemma [16], a finitely generated group I' C PSL(2, C) contains a
torsion-free normal subgroup I'’ of finite index. There corresponds the covering
diagram

W

H3 U Q(TN) Myp: -1 Mr.

Thus we can consider a manifold (My)o := n~'((Mr)) that covers (Mr)o, as
well as the covering transformation group H, which is isomorphic to the finite
group I'/T’. The fundamental group of (Mr)¢ is isomorphic to I'’. Since I’
contains no elliptic elements, its cusps are of type (i) or (iii) of the classifica-
tion in Section 1. The cusps of N/ have a one-to-one correspondence with the
components of M, — (M) that are homeomorphic to (annulus) x (interval) or
(torus) x (interval).
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In the manifold (M) with boundary, we will construct an H-invariant core.
Then, taking the quotient by H, we obtain an orbifold core in (My)y. We further
require that the core contain a certain compact subset of 3(Mry/)g. Such a core is
called a relative core.

The compact subset T of d(Mr/)q that should be contained in our relative core
is taken as follows. By the finiteness theorems due to Ahlfors (cf. [8]) and Sul-
livan (cf. [3]), we know that 3(Mr/)¢ consists of a finite number of components
of finite topological type; they are closed surfaces or they have infinite cylinders
coming from cusps of rank 1. Also, 3(Mr)o = n(3(Mr)) is a finite union of
2-dimensional orbifolds. Let {ﬁ, f"g, cee f’k} be the set of the components of
o(Mr)p. If f", is not closed, we choose a compact suborbifold 7; with boundary
such that the inclusion 7; <> 7; induces an 1somorphism between the orbifold
fundamental groups. If f’, is closed, we just set T; = f} Then we define T :=
Ule n~1(T;), which is an H-invariant, finite union of compact surfaces.

McCullough [11] proved the relative core theorem in general; however, it is not
easy to make such a core H-invariant. Here we will follow an argument due to
Kulkarni and Shalen [8, Prop. 2.12], applying it to the indecomposable case in the
following sense. ‘

DEFINITION. We say a finitely generated Kleinian group I' is decomposable if
I" splits as a nontrivial amalgamated free product (case I) I' = I'y *¢ ', or HNN
extension (case II) I = I'g ¢ over a finite cyclic group C (possibly trivial) that
satisfies the following two conditions:

(*) each parabolic element of I' is contained in a conjugate of I'; or I'; in case [
* and in a conjugate of I'g in case II;
(**) for each connected component A of the region of discontinuity Q2(T"), the
component subgroup Stabr(A) is contained in a conjugate of I'; or I'; in
case I and in a conjugate of I'g in case II.

We say I' is indecomposable if it is not decomposable.

REMARK. The condition (*) was introduced by Bonahon [1, p. 73]. Marden [9,
Sec. 12] called I' reducible if it satisfies the condition (**). According to a defini-
tion by Kulkarni and Shalen [8, p. 161], T" is decomposable relative to the cusps
and the component subgroups if it is decomposable in our sense.

Foreachi = 1,2, ... ,k, the inclusion 7; < (Mr)¢ induces a homomorphism
of the orbifold fundamental group g;: th’b(T,-) — I'. We denote the image of ¢;
by G; (C I'). Then all component subgroups and all parabolic elements of I" are
contained in conjugates of G1, G, ... , G. Hence, if I" is indecomposable, then
there is no nontrivial decomposition of I" such that G, G, ... , G} are contained
in conjugates of the factors.

Now we precisely state the result we will prove in this section.

LEMMA 2. Let I' be a finitely generated indecomposable Kleinian group. Then
there is a compact suborbifold MCr of (Mr)g such that the inclusion map induces
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an isomorphism of the orbifold fundamental group, MCr N 3(Mr)o = n(T), and
MCr = (n o W)"Y(MCYy) is contractible.

Proof. First we construct an H-ample submanifold L in (Mr+)o. Here we say L is
H-ample if it satisfies the following properties:

(a) L is compact, connected, and H-invariant;

(b) LNa(Mr/)o=T;

(c) the inclusion n(L) < (Mr)o induces a surjective homomorphism of the
orbifold fundamental group «: nfrb(n(L)) — I';

(d) there is an injective homomorphism g:I" — nf‘b(n(L)) such that ¢ o 8 =
id; and

(e) foreachi = 1,2,...,k, the composite 8 o ¢; coincides with a homomor-
phism induced by the inclusion 7; < n(L).

We can show the existence of an H-ample submanifold by changing the proof
of [8, Lemma 2.14] into the H-equivariant version. For the reader’s convenience
we include a sketch of the proof.

It is known that a finitely generated fundamental group of a 3-manifold is
finitely presented by Scott’s theorem [15], and a finite index extension of a finitely
presented group is also finitely presented. Hence we know I' is finitely pre-
sented, and we can choose a finite 2-complex K and an isomorphism J: 7 (K) —
I'. Considering the universal covers of K and (Mr)y, we can construct a map
f: K — (Mr)o that induces J. We can also take a finite 2-complex K;, an iso-
morphism 6;: m(K;) — thrb(T,-), and a map g;: K; — T; inducing 6; for each
i=1,2,...,k Moreover, there is amap f;: K; — K thatinduces J~! o ¢; 0 0;.
Let K be the union of K and {K; x [0, 1]};=1,... x by identifying (x, 1) for x € K;
with f;(x) for each i. Then f extends to a map g: K — (Mr)g inducing J. Since
glk; induces @; o 6;, we see that g|g, is homotopic to g;: K; = T; (< (Mr)o).
Thus we may assume glg, = g; and g(Ie) No(Mr)y = ULI T; after modifying
g by a homotopy.

Let R be a regular neighborhood of g(I% ) suchthat RNo(Mr)y = Ule T;, and
let L = p~'(R). Then we can see that L is an H-ample submanifold of (Mr/).
Indeed, setting B = g4 o J —1 where g,: m(l% ) — Jrfrb(R) is a homomorphism
induced by g: K — R, we see that B is a right inverse to a surjective homomoi-
phism a: 7™ (R) — T induced by the inclusion R < (Mr)o. By construction,
the other conditions (a), (b), and (e) are easily seen.

Next we find an H-ample submanifold L such that the frontier

FrL=LN(Mr)—L

is incompressible. Then «: 71(L) — I'/ is injective, and since « is also surjec-
tive, it is an isomorphism—namely, L is a core of (Mr/)¢ (and hence n(L) is an
orbifold core of (Mr)g).

If Fr L is compressible, then by the equivariant loop theorem due to Meeks and
Yau [13] there exists an H -invariant family of mutually disjoint compressing disks
{D;}i=1,.. n in (Mps)o such that D; N Fr L = aD; and dD; does not bound a disk
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in Fr L for each i. The stabilizer Staby (D;) of each D; is finite cyclic or dihedral.
In case Staby (D;) contains an element e of order 2 that maps one side of D; to an-
other, we slightly move D; to a disk D; parallel to D; and replace D; with the two
disks D; and e(D;). By such a change, we may assume that, for each D; in the
H -invariant family, Stabg (D;) is finite cyclic (possibly trivial) and D; /Staby (D;)
is a disk with at most one branch point. Let D be one of the compressing disks
D;. 1t is contained either in (Mr/)}o — L or in L. Let E be an equivariant regu-
lar neighborhood of D in (My/)g — L or in L respectively. In the first case, we
attach the images {h(E)}nen to L. The resulting compact submanifold is clearly
H-ample. In the second case, we remove {h(E)}cy from L and take the closure.
The resulting submanifold Lg is not necessarily connected. We will show that a
component of Lg is H-ample.

First we consider the case where L is not connected. Let L; and L, be the
components of L adjoining E. All the components of Ly are equivalent to either
L, or L, under H. Consider the orbifolds n(L), n(L1), and n(L,). The orbifold
fundamental group splits as the amalgamated free product

PP (n(L)) = 7™ (n(L1)) %z 7™ (1(L2))

over C, where C is isomorphic to Staby (D). The fact that D is disjoint from T
combined with property (e) of the H-ample submanifold implies that the 8(G;)
(C B(TI')) are contained in conjugates of either n{’rb (n(Ly)) or Jrf'rb(n (L3)).Bythe
Kurosh subgroup theorem generalized to the amalgamated free product (cf. [5]),
we see that the subgroup B(T") of Jr{”b (n(L)) 1s represented by either an amalga-
mated free product A x¢ B or an HNN extension A *¢, where C is a finite cyclic
subgroup, and that the 8(G;) are contained in conjugates of either A or B. How-
ever, B(I') = T is indecomposable by hypothesis, which implies that the decom-
position of B(I') is trivial; that is, 8(I") is conjugate to a subgroup of nfrb(n (L)
or nf‘b(n(Lg)), say of n{”b(n(Ll)). This provides the required homomorphism
B: — N{)rb(ﬂ(Ll)), making L; H-ample.

Next we consider the case where L is connected. Then L is H-invariant. Con-
sider the orbifolds (L) and n(Ly). In this case, the orbifold fundamental group
splits as the HNN extension

™ ((L)) = n™((Lo)) *¢-

We apply the Kurosh subgroup theorem generalized to the HNN extension (cf.
[6]) to the subgroup B(T"). As in the first case, we can see that 8(I") is conjugate
to a subgroup of Jr{’rb(n(Lg)). This provides g: " — nfrb(n(Lo)), and thus Ly is
H-ample.

Finally we produce an irreducible H-ample submanifold with incompressible
frontier. We define complexity for an H-ample submanifold L as

c(L) =) {1+ (genus 5)*},
S

where S runs over the components of d L. Let L, be an H-ample submanifold with
the least complexity. If L, contains embedded non-trivial spheres, they bound
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balls in (My-)g since (My/) is irreducible. By joining all the balls to L,, we have
an H-ample submanifold whose complexity is less than ¢(L,). This is a contra-
diction, and hence L, is irreducible. If Fr L, is compressible, then by thickening
or cutting along disks we can obtain a new H-ample submanifold as before. It is
easy to see that such surgery decreases the complexity. This again contradicts the
least complexity of L,, and thus Fr L, is incompressible.

As we have noted, this L, turns out to be an irreducible core of (Mr/)g. Take
the quotient MCr := n(L,). This is an orbifold core of Mp, that is, a compact
suborbifold of My such that the inclusion induces an isomorphism of n'frb(M Cr)
onto I'. Since L, 1s irreducible, MC r = W~Y(L,) is contractible. This completes
the proof of Lemma 2. O

REMARK. From the preceding argument or from Section 1.6 of the preprint of [1°
(Prépublication Orsay no. 85T08, 1985), we see that if I" is indecomposable then
its torsion-free normal subgroup I'’ of finite index is also indecomposable. Hence,
by the main theorem in [1], we know that N is homeomorphic to the interior of
a compact 3-manifold, not only the existence of the relative core.

4. Branch Loci

In this section, we investigate singular loci in the orbifold. For a maximal ellip-
tic cyclic subgroup (e) of I', the fixed point set of e in H is called the axis of (e).
We consider the image of the axis by the projection o W: H> — Np. We call it a
branch locus associated with {e). The branch loci are in a one-to-one correspon-
dence with the conjugacy classes of maximal elliptic cyclic subgroups in I". Each
branch locus is either a circle, a segment, a ray, or an infinite line in the hyper-
bolic orbifold Nr. The end points of rays and segments are always shared by other
branch loci. These singularities are caused by dihedral or polyhedral finite sub-
groups, which are completely classified (cf. [10, Chap. V, C]). The shared points
are always trivalent; there three branch loci join or one locus connects with a circle
locus. We call them Y-singularities.

We observe the branch loci in the orbifold core MCr. By considering the inter-
section of the axes with MC r, the following claim is apparent.

LEMMA 3.

(a) The intersection of every branch locus with MCr is non-empty. Hence the
total number of the branch loci in Nr is finite.

(b) The intersection of every branch locus with MCr is connected. Moreover,
any point shared by two branch loci is always contained in MCr.

(c) Any branch locus which is a circle or segment lies entirely in MCry.

Proof. (a) Suppose there is an axis of {¢) in the complement of MC r. Since A’/[\ér
is connected and I'-invariant, there is a curve o joining a point p and e(p) in
MC V(Cr, and the union of the images of « under ( e) constitutes a nontrivial loop in
MC r. But this contradicts the contractibility of MC r. If there were infinitely many
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branch loci in N, they would accumulate to a point in MCr. But this contradicts
the proper discontinuity of the action of I" at a lift of the point.

(b) Suppose there is an axis of {e) whoseLijltersection with MCr is not con-
nected. Then there is a simple curve g in MCr joining an end point of a com-
ponent of the axis in MCr and an end point of another component. Consider a
simple closed curve g U e(B) in MCr. Itis spanned by a disk D in MCr, and the
union of the images of D under (e} constitutes a nontrivial sphere in MCr. But
this contradicts the contractibility of MCr. If a common point p of two axes is not
in MCr, then by using the stabilizer of p we can also make a nontrivial sphere in
MCr bounding p. Thus we have again obtained a contradiction.

(c) A branch locus that is a circle is the image of an axis which is also invari-
ant under a loxodromic cyclic group. In this case, the whole axis is contained in
MCr; otherwise the intersection of the axis with MC, which is invariant under
the translation on the axis, would not be connected. A branch locus that is a seg-
ment is the image of an axis which has two distinct points shared with other axes.
Then the portion between the two points must be in MCr by (b), and thus the
whole branch locus must be in MCr. O

Branch loci that are rays or infinite lines pass through or go toward dMCr. Thus
their intersections with MCr are regarded as segments. In sum, the branch loci
in MCy are circles or segments that have a one-to-one correspondence with the
conjugacy classes of maximal elliptic cyclic subgroups of I.

5. The Euler Characteristic of the Orbifold Core

We remove the tubular neighborhoods of the branch loci from MCr, and denote
the resulting topological manifold by Or. It is compact and irreducible. We will
calculate the Euler characteristic x of this manifold.

We classify the boundary of Or into four parts. Hereafter we say a compact
surface is of (g, n)-type if it has genus g and n boundary components. The inter-
section with Q(I") /T is called the ordinary part. It consists of compact surfaces
with negative Euler characteristic. The intersection with the boundary of the ex-
tended cusps is called the cuspidal part. It consists of annuli, tori, (0, 3)-surfaces
or (0, 4)-surfaces. Annuli come from (i), tori from (iii), (0, 3)-surfaces from (ii),
(v), (vi), and (vii), and (0, 4)-surfaces from (iv) of the classification of cusps in
Section 1. The boundary of the tubular neighborhoods of the branch loci is called
the singular part. With each Y-singularity, we may associate a pair of pants overit
as a subregion of the singular part. The remainder of dOr is called the frontier part.

We use the following notation (# indicates the number of the elements):

p1 = #{cusps of type (i) or (ii) (rank 1)}, p, = #{cusps of type (iii) (torus)}
q = #{cusps of type (iv) (pillow)}, y; = #{cusps of type (ii), (v), (vi), or (vii)}
e = #{branch loci}, e, = #{isolated branch loci of circle}

yo = #{Y-singularities}
t = #{toral components of 30}
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Moreover, set p = p1+pa2, ¥y = y1+y2, ande; = e—ey. Note thatt = p, + e,
because a toral component of dOr bounds a component of Mr — Or having an
abelian orbifold fundamental group.

Now we begin to compute x(Or). By Poincaré duality for the double of Oy
with respect to 01, we know x(Or) is equal to half of x(30r). Let {S;} (i =
1, ..., k) be the components of the ordinary part, and let {S;} i =k+1,... ,m)
be the components of the frontier part. We suppose they have topological type
(gi, n;). In addition, there are y; number of (0, 3)-surfaces and ¢ number of (0, 4)-
surfaces in the cuspidal part, and y, number of pairs of pants over Y-singularities.
The remainder of these surfaces in dOr consists of annuli or tori, which have no
contribution to the Euler characteristic of dOr. Then we see

m
—x@0r) =) (g —2+m)+y+2q.
i=1

By using this equality, we obtain
3 m 1 m
=3x(0r) = —5X(@0r) = ) ,(B3gi =3 +nm) + 7 (Z ni +3y +4q | +q.
i=1 i=1

Here ", n; + 3y + 4q is the total number of the boundary components of
the above surfaces. Two of them are connected each directly or by an annulus.
(For example, a surface in the cuspidal part caused by a cusp of type (ii) has three
boundary components: one of them is a loop corresponding to the parabolic ele-
ment; the others are round branch loci of order 2, and they are connected by two
annuli over the branch loci to distinct surfaces or by an annulus to each other.) We
can see that the number of the parabolic connections is the same as the number
of the cusps of rank 1 (recall that a cusp of type (ii) counts exactly one parabolic
connection), and the number of the elliptic connections is the same as the num-
ber of the branch loci that are not isolated circles. Summing up, we have p; + e;
connections. Therefore

m

—=3x(0r) =) (Bgi —3+n)+(p1+e1) +4q. (1)

i=1

6. Structural Stability Implies Geometric Finiteness

In this section, we prove the “only if” part of Theorem 1. Let p: G — PSL(2, C)
be a nonrigid structurally stable representation. Then by Sullivan’s result (Lemma
1 in Section 2), p(G) = T is a Kleinian group with the region of discontinuity
Q).

First, we assume that I' is indecomposable and take Or constructed as in the
previous section. The inclusion map Or <> Mr induces a surjective homomor-
phism p:m(Or) — TI'. Letting ¢; € m;(Or) (i = 1,...,e) correspond to the
simple loops around the branch loci with the order n;, we see that the kernel of p is
the normal closure of the elements {&{’, ... , g"}. Set 7 = 7;(Or) in brief. Let
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1:T" — PSL(2, C) be the identity representation. The surjective homomorphism
p defines an injection

Hom(T, PSL(2, C)) < Hom(zr, PSL(2, C))

such that ¢ is mapped to p. The isomorphism p identifies Hom(G, PSL(2, C))
with Hom(T", PSL(2, C)). In this manner, Hom(G, PSL(2, C)) is regarded as a
subvariety of Hom(;z, PSL(2, C)).

By Thurston’s result (cf. [2, Prop. 3.2.1]), we can estimate the local dimension
dim; of the algebraic variety Hom(r, PSL(2, C)) at p as

dim; Hom(zr, PSL(2, C)) > —3x(Or) + ¢t + 3.

We fix here a system of generators of zr. We also fix a representation of each ¢;
(i = 1,...,e) by the generators. Then we can define 0(g;) for 6 € V., and
Hom(I", PSL(2, C)) is the intersection of Hom (7, PSL(2, C)) with the algebraic
variety

(e V,|0@E) =idi=1,...,e)}.

Hence (cf. [18, Chap. 2, Thm. 12C]), we have
dim, Hom(I", PSL(2, C)) > —3x(Op) +t +3 —e.
Substitution of (1) and ¢t = p, + e yields

dim, Hom(, PSL(2,C)) = ) "B3gi —3+n) +3+(p+q).

i=1
On the other hand, by Lemma 1 in Section 2 we know that
dim, Hom(T", PSL(2, C)) = dim T(Q2(I")/T") + 3, 3)

where T(€2(I")/T) is the Teichmiiller space of the complex structure on the orb-
ifold Q(I")/T" = dMr, and that

k
dim T(Q(I")/T) = Y (g — 3 +m). 0
i=1
By the formulas (2), (3), and (4), we have the following conditions:

(a) the sum Z:":k +138i — 3 + n;) over the surfaces in the frontier part is zero;
(b) the number P(I") := p + q of the nonrigid cusps of Nr is zero.

Condition (a) means that the frontier part consists only of (0, 3)-surfaces.

We will show that there is no (0, 3)-surface in the frontier part. Suppose such
a surface S exists. We consider the image F of a homomorphism 71(S) — I in-
duced by the inclusion & < (Mr)o. Then F must be Fuchsian (cf. [10, Chap. IX,
C]). Let E be a component of (Mr)o — MCy adjoining S. Since MCr is a core,
we can see that the image of n{’rb(E) in I" coincides with F. Hence the stabilizer
of a connected component E of the lift of E to the universal cover H> U (ID)is
a Fuchsian group, which we may assume to be F. In particular, £ must contain a
component A of 2(I"). However, the relative core MCy contains A /F except for
cusp neighborhoods. This is a contradiction.
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Therefore the condition (a) actually implies that the frontier part does not exist
and (M) itself is compact. Hence so is (Mr/)o. This is equivalent to the geomet-
ric finiteness of I’ by [9, Prop. 4.2], and equivalent to the geometric finiteness of
I". We have proved the “only if” part of Theorem 1 under the assumption that I" is
indecomposable.

Next we treat the general case. We will show that an arbitrary finitely generated
Kleinian group I" satisfies

dim, Hom(T", PSL(2, C)) > dim 7(2(T")/T") + P(T") + 3. &)

Formulas (2) and (4) imply that an indecomposable I" satisfies (5).
Suppose that I" is decomposable in the sense of the definition in Section 3 as

(I) F=F1*CF2 or (H) F=F0 *C.

Let S = A/Stabr(A) be any component of Q(I")/T". By (**) of the definition

of a decomposable Kleinian group, there is ¥ € I' such that y Stabpr(A)y~! =

Stabr(y(A)) is contained in some I'; (i = 0,1, 2). Then Stabr(y(A)) =
Stabr, (¥ (A)), and S is isometrically equivalent to y (A)/Stabr, (y (A)), which is
a component of 2(I';)/T";. Thus, to any S in Q(I") /T there corresponds a unique
component of Q2(I'y)/I'y U Q(I'2)/T"; in case I or that of 2(I'y)/Ip in case IL
Hence

dim 7(82(I'1)/T"1) + dim T(R2(I'2)/T'2) = dim T'($2(T")/T); (©6)
dim T'(€2(Tp)/To) = dim T(€2(T")/T"). @
In case I, we have
dim, Hom(T", PSL(2, C))
> dim, Hom(I'1, PSL(2, C)) 4+ dim, Hom(I',, PSL(2,C)) — 2, (8)

because the amalgamating group C is elliptic cyclic (possibly trivial) and C re-
stricts the representations of the free product I'y * I', by at most two dimensions.
Suppose I'1 and I'; satisfy (5). Then, using (8), (5), (6), and P(T"}) 4+ P(I",) =
P (T") in order, we obtain

dim, Hom(T", PSL(2, C)) > dim 7(2(I")/T) + P(T") + 4. )

In particular, we see that I satisfies (5).

In case II, though the fixed points of the loxodromic element f € I' conjugat-
ing the elliptic cyclic group C C I'y is fixed once 'y is given, there remains the
ambiguity of the multiplier of f. Hence f gains at least one dimension in addition
to the representations of I'g, which yields

dim, Hom(T", PSL(2, C)) > dim, Hom(I'y, PSL(2, C)) + 1. (10)

Suppose I'y satisfies (5). Then, using (10), (5), (7), and P(I'g) = P(I") in order,
we also obtain the inequality (9), and (5) for I.



34 KATSUHIKO MATSUZAKI

Any finitely generated Kleinian group I" can be decomposed into indecompos-
able ones after a finite number of steps. This is seen as follows. For a finitely
generated Kleinian group I', we define an index

r(I') = dim, Hom(T", PSL(2, C)) — 3.

Formulas (8) and (10) mean that the index is strictly decreasing in each decompo-
sition. However, the index must be nonnegative. This implies that such decompo-
sitions are possible only finitely many times.

Therefore, we see that any I' satisfies (5) by induction, and (9) implies that,
once I' is decomposable, it does not satisfy the equality in (5). If a nonrigid rep-
resentation p: G — I is structurally stable, the formula (3) is satisfied and thus
the equality in (5) must be satisfied for such I'. Hence we need only consider the
indecomposable case. We have already shown the assertion in this case, and thus
our proof of the “only if”” part of Theorem 1 is complete.

7. Quasiconformal Stability

The “if” part of Theorem 1 is a consequence of Marden’s result [9, Prop. 9.1]
about quasiconformal stability. First we give its definition here. For a finitely
generated Kleinian group I', we define another algebraic subvariety of Vr as

Hom,(T", PSL(2, C))
= {6 € Hom(T", PSL(2, C)) | tr29(y) =4 (Vy : parabolic) }.

We say that I' is quasiconformally stable if there exists an open neighborhood U
(C Vr) of the identity representation ¢ such that each element of

Hom, (T, PSL(2,C)) N U

is a quasiconformal deformation. Marden proved that geometrically finite torsion-
free Kleinian groups are quasiconformally stable. This result is easily generalized
to the case where they have torsion [11].

Proof (“if” part of Theorem 1). Suppose that p(G) = T is geometrically finite
without nonrigid cusps. In particular, I" is quasiconformally stable by Marden’s
theorem. Since all the cusps of I' are rigid, we know that Hom,(I", PSL(2, C))
coincides with Hom(I", PSL(2, C)) near the identity representation ¢. Thus the
quasiconformal stability implies the structural stability of T". u

Finally, we show a parallel result with respect to quasiconformal stability. For
torsion-free groups, this was proved by Sullivan [17].

THEOREM 2. Quasiconformally stable Kleinian groups are geometrically finite.
Hence quasiconformal stability and geometric finiteness are equivalent in general.

Proof. The methods are similar to those used in proving Theorem 1; in addition
we need to estimate the dimension of Hom, (T", PSL(2, C)): it is the restriction
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of Hom(T", PSL(2, C)) to the subvariety {6} of Vi where tr?0(y) = 4 for para-
bolic elements y € I'. (To define this variety precisely, we carry out the same dis-
cussion as in the previous section.) However, we need not consider the elements
from all the conjugacy classes of maximal parabolic subgroups in I'; we note the
following simple fact.

PROPOSITION 2. If two nontrivial elements a and B8 of PSL(2, C) commute and
« is parabolic, then so is B.

By this proposition, we can decide that a homomorphism of I" close to the identity
is type-preserving if we verify that just one parabolic element of each conjugacy
class of nonrigid cusps in I" remains parabolic under the homomorphism. Non-
rigid cusps are rank-1, torus, or pillow cusps. Their total number is P(I"). Hence,
denoting the local dimension of Homy(I", PSL(2, C)) at the origin ¢ by d, we have

d > dim, Hom(T", PSL(2, C)) — P(I"). (11)

As in the previous section, we need only consider the case where I is indecom-
posable. By the inequalities (2) and (11), we see that

dz ) (gi—3+m)+3,

i=1

where the notation is the same as in the proof of Theorem 1. On the other hand, qua-
siconformal stability implies d = dim 7(Q2(T")/T") +3 = Zf=1(3g,- —34n;)+5.
Hence we have the condition (a) in the previous section, which means that I' is
geometrically finite. This finishes a proof of Theorem 2. O
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