Invariant Subspaces of the Bergman Space
and Some Subnormal Operators in A\A,
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1. Introduction

Let D be the open unit disk in the complex plane C. The Bergman space
L2(D) consists of analytic functions in D with
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171z =( [ |0 daa) <o,

where dA denotes the area measure in C, normalized by a constant factor
dA(z) =dxdy/x.

Let p be a finite positive Borel measure with compact support, and let
spt » denote the support of u. Let P2(u) denote the closure in L2(n) of
analytic polynomials in z and let S, denote the operator of multiplication
by z on P2(n). The operator S, is pure if P*(p) has no L? summand. A
measure with support in the closed unit disk is a reverse Carleson measure
for L3(D) if

| praa=c [ippan

for every polynomial p. The set E denotes a compact subset of the unit
circle T with positive Lebesgue measure. Set T\ £ =U J,,, where J, is a con-
nected component. We say that E satisfies the Carleson condition if

s 1
)1
& mUnlog o

< 00,

where m stands for the normalized Lebesgue measure on T, that is, dm =
(1/27) df. Every closed arc of T satisfies the Carleson condition. It is easy
to construct a nowhere dense subset of T satisfying the Carleson condition.
Put

pe=dA|p+m|g. (1.1)

The Cauchy transform of a finite measure p is defined by
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) = | Ei—)\ du(z).

This function is locally integrable with respect to the area measure. The
function P, is defined by

.z
z—=A z—lU/A°
It is easy to show that P,(e‘®) is the Poisson kernel. For a compact subset E
of T, define the space Hf as follows:

Py\(z) =

HE = { f: f is analytic in the open unit disk and limlinof f | f(re®)|? db < 00} :
r-1-0 Jg

Let W be a connected component of D\spt u. Olin and Thomson [10] have
defined the strong boundary By, of W to be the set of points ¢ in TNJW
such that, for all « € (0, ), there is an isosceles triangle T , where:

(1) ais avertex of 7, , and s is the height of T} ,;

(2) int TS, CW;

(3) the interior angle of 7, , at @ is a; and

(4) the radial line segment from O to a bisects the interior angle of 77,
at a.

The strong boundary of W is a Borel set (see [10]). If m(By) > 0, we call W
an outer hole in the support of p.

Let z be the coordinate function on C, with z(A) =A and Ae C. Let X be
a Banach space of analytic functions over an open set G. A closed subspace
M of X is said to be z-invariant, or simply invariant, if zf belongs to M
whenever f is in M. One says that an invariant subspace M of X has the
codimension-n property if M/zM is an n-dimensional space.

Let JC be a separable Hilbert space; denote the bounded operators on JC
by ®B(3C) and the trace class operators by @,(JC). The weak-* topology on
®(3C) is that induced on ®(IC) as the dual of ®,(IC). For T e ®B(IC), let
Q@(T) denote the weak-* closed subalgebra of ®(3C) generated by 7 and I,
and @,(T) the annihilators of @(T'). Then ®(T) is the dual of the quotient
space @«(7T) = ®(IC)/@ (T). If Be B,(3C), let [ B] denote the image of B in
Q@.(T). For x, ye 3, x®y denotes the rank-1 operator (x®@y)z =z, y)x,
ze€ JC; thus, if Ae Q(T), [x®y](A) ={(Ax, y). Bercovici, Foias, and Pearcy
[2] have defined a decreasing sequence A, of classes of operators; TeA,,, 1<
n < Ry, if for {L;j}o<i, j<n C @+(T) there exist sequences {x;};<, and {¥;};<n
in JC such that L;; = [x;®y;] whenever 0 </, j < n. Operators in A; have
nontrivial lattices of invariant subspaces, while if 7' e Gy then the lattice of
invariant subspaces of 7T is huge. It is easy to show, from the definition of
A, that if every invariant subspace S, _has the codimension-1 property then
S, € ANA,.

The structure of the lattice of invariant subspaces in a Banach space of
analytic functions X, especially the Bergman space, has attracted a lot of
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attention from both operator theorists and function theorists. However,
most results have been disappointing, in the sense that for most spaces X
there are no simple characterizations such as are known for the Hardy space
H?(D). The famous theorem of Beurling on invariant subspaces of H*(D)
asserts that either every z-invariant subspace M of H?(D) is trivial (i.e.,
M = 0) or there exists an inner function u such that M = uH?(D). The Berg-
man spaces do have some z-invariant subspaces similar to the Hardy-space
cases. For instance, Hedenmalm, Korenblum, and Zhu [6] studied Beurling-
type invariant subspaces for the Bergman spaces. However, in contrast to
the Hardy-space situation, it has been discovered by Apostol, Bercovici,
Foias, and Pearcy [1] that there exist in the Bergman space z-invariant sub-
spaces having the codimension-n property. Hedenmalm [5] gave a simple
concrete example of an invariant subspace having the codimension-n prop-
erty. In this paper, we look at a class of functions that violate the conditions
of the example in [5]. We mainly show that the invariant subspace generated
by this class of functions has the codimension-1 property (Theorem C).
In Section 2, we prove the following two theorems.

THEOREM A. Let a closed subset E C T satisfy the Carleson condition. Then
there exists an outer hole W in the support of p¥ = ug|we so that, for every
polynomial p, the following inequality holds:

f|!’|2 dpp =< Cflplzdu’EVS Cflpl2 dug.

From Theorem A, we see that the measure ufé’ is a reverse Carleson measure
for the Bergman space L2(D).

THEOREM B. Let a closed subset E of T with positive Lebesgue measure
satisfy the Carleson condition. Suppose that S, _is pure on P*(ug); then
S, isin A\A,.

Our main theorem is proved in Section 3.

THEOREM C. Let a compact subset E C T of positive measure satisfy the
Carleson condition, and let ® be a subset of L3(D). Suppose that for each
fe® there exists a bounded analytic function ¢ such that ¢fe HE. Let M
be the invariant subspace generated by &. Then M has the codimension-1
property.

2. A Reverse Carleson Measure and a
Subnormal Operator in A\ A,

In this section, we construct a reverse Carleson measure for the Bergman
space L2(D). The measure, which has an outer hole inside the open unit disk,
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will be used to prove our main theorem in Section 3. We fix a compact subset
ECT, m(E)> 0, that satisfies the Carleson condition. The next lemma is
due to Hruscev [7].

LEMMA 2.1. There exists a nontrivial bounded function ¢ on E such tha!
the Cauchy transform f g 9(W)/(w—2z)dw is infinitely differentiable in the
closed unit disk (see [7, Thm. 5]).

LEMMA 2.2. There exists a function g€ L*(ug), g|g is not the zero func-
tion a.e. m|g, and [ pgdug =0 for every polynomial p.

Proof. Define

d d(w)
2(2) = —a;( W2 dw), ze D,
—27iZd(2), z€eE.

From Lemma 2.1, we see that g € L*(ug) and g | g is nontrivial. It remains to
show g L P?(ug). In fact,

27 vy
[ e da = f 1 f gmint 4 ( PW)W dw> do dr
D g 1—2zw z=rein?
27
=if r"“f (n+1)r”(f W"”d)(w)dw)dadr
T Jo 0 E
=27rif W (w) dm.
E
The lemma is proved. O

From now on, we will fix the functions ¢ in Lemma 2.1 and g in Lemma 2.2
and assume ||¢||, > 1. Set

Ey={e”:|p(e)| > 1].

Then m(Ey) > 0. Let T, , be a Stoltz angle with vertex e’ and opening «
(see [3, p. 110, Fig. 1]), where 0 < o < w/2. Using Fatou’s theorem, we have
that

lim fP,\(e"’)é(e"’)e"’dm(t)|>1 a.e. m|g,.

AeT i0  —e!

Forn=1,2,3,..., set

E,= {e“’:

LEMMA 2.3. There exists an n such that m(E,) > 0.

fPA(ei’)$(ei')eit dm([)‘ > -% forall Ae Y‘eie,an(IAl > 1—-%)},

Proof. Itis clear that £, C U~ E, and that {E,,} is an increasing sequence.
Hence, lim,, _, , m(E,) = m(Ey) > 0. O
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We now fix the set E,, in Lemma 2.3 and set
= U (Teia’aﬂ(P\' > l—l)>,
e%eE, k

LEMMA 2.4. There exists an N such that, for each Ae Ty,

where k = n.

= 1.

fPA(Z)g_(Z) dpg(z)

Proof. The Cauchy transform [ p(z2/(z—A))gdA is a continuous function
throughout C, since g is bounded. Hence there is an N such that, for Ae Ty,

P\(2)gdA| = f % _gdA— dA|<1
fD A(2)8 l D Z-A° D Z— I/Ag
Therefore, for each Ae Ty;, we have
lﬁmmﬂamw22wf&w%&ww%m—ufm&mum4
D
> 1. O

We will let C denote an absolute constant which may change from one step
to the next.

LEMMA 2.5. There exist an integer K and a constant C > 0 such that
f Ip|PdA = c(f |p|2dm+f |p|2dA).
T E D\TZ
Proof. For each Ae D and each polynomial p, we see that
Z -
p(A) f T 8dre= f;—_—xp(z)g dpg
since Zg L P%(ug). Hence,

PO [ Pr(@gdur = [ P2 ()3 dus

since

f —1I/x p(2)8(z)dug =0 for AeD.

Let Ae T¢, K > N; K will be determined later. Using Lemma 2.4, we see
that

[p(V)] = |P(A)|| fPAgd#E

=
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_ 1/2 1/2
<2r fPAP¢zdm’+(fD|PA|dA) (fD|PA||pg|2dA)

= 27['[]""]2.

The area measure restricted to the unit disk is a Carleson measure for the
Hardy space, so

f|11[2dA < cf|p¢|2dm < cfE|p(2dm

(see [12, Thm. 8.2.2]). On the other hand,

1
plz—1/A

f |P\(2)| dA(z) < f

dA( )+

ldA(z) =C

Hence,

f DM AN = C f \pP dm+C f 1p(2)| dA(z) f |P\(2)| dAN).
TS E D Tx
However,

__X dA(A) +

(see [3, p. 167, similar proof of Prop. 2.2]). Thus,
(I—C\/area(T,?))f ]p|2dAsC<f |p|2dm+f |p|2dA).
. E D\T}

Choose an integer K such that

1—C+/area(T¢) =1/2,

and we have the desired inequality. O

fr" |PAD)|dAN) = f

|1 /_ ldA()\) < C+area(T¥®)

Let T¢ = U W, where each W} is a connected component of 7%.

LEMMA 2.6. There exists a W) which is an outer hole in the support of
plk = pgp lwe. (We will denote this Wy by W.)

Proof. Let A€ E,. By definition, we see that Ty ,N(|A|>1—1/K)C TZ.
Since Ty ,N(|A|>1—1/K) is a connected set, we can find a W such that
T).«N(JA|>1—-1/K) C W,. Thus, Ae W NT and

E,CU(@W,NT).

We can find a W, satisfying m(0W,NT) > 0.

By the construction of 7§, we know that dW} is a rectifiable Jordan curve.
Let f be the Riemann map from D to W; then the harmonic measure w =
meof~! of W, and the arc-length measure are mutually absolutely continuous
(see [3, p. 199]). Hence, w(dW; NT) > 0. Using the argument in {4, p. 45],
we see that w|sw, 7 and m| By, are mutually absolutely continuous. Thus
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TueOREM 2.7. There exists an outer hole W in the support of p¥ = pg|we
such that, for every polynomial p, the following inequality holds:

flplz dpg < Cf|17|2 duf < Cf|li'l2 dpg.

Proof. The inequality follows from Lemma 2.5 and Lemma 2.6. O

COROLLARY 2.8. The measure pl¥ in Theorem 2.7 is a reverse Carleson mea-
sure for the Bergman space L:(D).

THEOREM 2.9. Let a closed subset E of T with positive Lebesgue measure
satisfy the Carleson condition. Suppose that S, _is pure on P%(ug); then S,
isin A\A,.

Proof. It follows from Theorem 2.7 that S, _ is similar to S,y. The mini-
mal normal extension of S,w is N,w, the operator of multlpllcatlon by z on
L*(p¥). Using Theorem 1(1) in [9], one sees that S,w is in A\A,. Since
membership in the classes A, is preserved by 51m11ar1ty [2, Prop. 2.09], S

belongs to A\ A,. EI

Theorem 2.9 is a generalization of Theorem 2 in [9].

3. Invariant Subspaces of the Bergman Space
Before proving our main theorem, we need the following lemma.

LEmMaA 3.1. Suppose that W is the outer hole in Theorem 2.7. Then the
space LZ(D) N HE is contained in P*(uY) in the sense that, for every func-
tion fe LX(D)N HE, there exists g P2(u¥) such that f equals g on D.

Proof. Let f.(z) = f(rz); then f,e P?(u¥). We have the following com-
putation:

f|fr(z)|2dpg’5f | f(r2)f? dA+f | f(re™)|? dm
b E

< I/ zon+ [ 1ftre™ P dm.
E
Since f is in HZ, we can choose r, converging to 1 such that

[17 0P duf = M <o,

By choosing a subsequence (if necessary) we may assume that {f; } con-
verges weakly to a function g in P%(u¥). It is routine to check that f and g
are equal on D. O

The following theorem is our main result.

THEOREM 3.2. Let a compact subset E C T of positive measure satisfy the
Carleson condition, and let ® be a subset of L2(D). Suppose that for each
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fe® there exists a bounded analytic function ¢ such that ¢ fe€ H3. Let M
be the invariant subspace generated by ®B. Then M has the codimension-|

property.

Proof. Without loss of generality, we assume that zero is in the outer hole W
of Theorem 2.7. Using Corollary 3.15 of [11], we may assume that M is gen-
erated by two functions f; and f,, and that there exist two bounded analytic
functions ¢, and ¢,, ¢,(0) # 0 # ¢,(0), such that ¢, f; € HZ fori =1, 2. Sup-
pose that dim(M/zM) = 2. Let x;, X, be two unit vectors in MO zM with
{x1,X)=0and let g; =X; fori=1,2. Then

(1) [ fg;du =0 for every f e zM; and
Q) [x;g;dA=46.

Since
f¢ixigj dA = ¢;(0)5;,

one sees that the invariant subspace generated by ¢, f; and ¢, f, has the
codimension-2 property. Therefore, we may assume that ¢, = ¢, =1, that
is, fe Hi fori=1,2.
Claim:
det[ [ figrdA, [ fig,dA
ffzgl dA, ffzgz dA

Otherwise, there exists a nonzero constant ¢ such that

[ fter+cenda=o

for i =1, 2. On the other hand,

|=o.

f(p1f1+P2f2)(gl+Cg2) dA

= u(0) [ filei+cg) dA+pa(0) [ Filer+cen) dA
=0
and {p, fi+ p» f>} are dense in M. Hence,
fx,-(gl +C'g2) dA = 0

This is a contradiction, so the claim is established.
Using Corollary 2.8, we see that

[ peida| < Ipluslaliom = Claloo el

for every polynomial p. Using the Hahn-Banach theorem, we can find k; €
L*(u¥) so that



Invariant Subspaces of the Bergman Space 309

fpgi dA = fphi du¥.

From Lemma 3.1, we conclude that f; € P?(u¥). Choose a sequence of poly-
nomials { p,} converging to f; in P?(u%). From Corollary 2.8, the sequence
should converge to f; in L2. Therefore,

| phesda= [ prndul.

Hence,
p(o)[ [figrdA, [ fig, dA} _ [fp(z)flhlduf%’, [ p(2) fih: du%”]
[ f81dA, [ frg,dA [ p@) frhdu?, [p)frhyduf |

Denote

[fflgldA, ffngdA]—lz[a b]
ffZgldAs ffzgsz c di
Let f! = af,+bf, and f? = cf|+df>, then

p(0) if i=,
h: du’ =
fpf'f HE {0 if i 5,
where p is a polynomial and i, j =1, 2. Therefore, the invariant subspace
generated by f!and f2in P%(u/¥) has the codimension-2 property. This con-

tradicts Theorem 2.9. O

It is interesting to ask about the following possible generalization of Theo-
rem 3.2.

QuesTioN 3.3. Does Theorem 3.2 still remain valid if E is replaced by any
compact subset K (m(K) > 0) of the unit circle?

Our method will not work in this case, because in [8], Kegejan constructed
an example as follows: There exists a compact subset E of T with positive
Lebesgue measure such that

P(up) = LAD)®L*(m|g).

Hence, we are not able to construct an outer hole for this E.
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