Invariant Subspaces of the Bergman Space and Some Subnormal Operators in $\mathbb{A}_1 \setminus \mathbb{A}_2$

LIMING YANG*

1. Introduction

Let D be the open unit disk in the complex plane \mathbb{C} . The Bergman space $L_a^2(D)$ consists of analytic functions in D with

$$||f||_{L^2_a} = \left(\int_D |f(z)|^2 dA(z)\right)^{1/2} < \infty,$$

where dA denotes the area measure in \mathbb{C} , normalized by a constant factor

$$dA(z) = dx \, dy/\pi$$
.

Let μ be a finite positive Borel measure with compact support, and let spt μ denote the support of μ . Let $P^2(\mu)$ denote the closure in $L^2(\mu)$ of analytic polynomials in z and let S_{μ} denote the operator of multiplication by z on $P^2(\mu)$. The operator S_{μ} is pure if $P^2(\mu)$ has no L^2 summand. A measure with support in the closed unit disk is a reverse Carleson measure for $L^2_q(D)$ if

$$\int_{D} |p|^2 dA \le C \int |p|^2 d\mu$$

for every polynomial p. The set E denotes a compact subset of the unit circle \mathbb{T} with positive Lebesgue measure. Set $\mathbb{T} \setminus E = \bigcup J_n$, where J_n is a connected component. We say that E satisfies the Carleson condition if

$$\sum_{n=1}^{\infty} m(J_n) \log \frac{1}{m(J_n)} < \infty,$$

where m stands for the normalized Lebesgue measure on \mathbb{T} , that is, $dm = (1/2\pi) d\theta$. Every closed arc of \mathbb{T} satisfies the Carleson condition. It is easy to construct a nowhere dense subset of \mathbb{T} satisfying the Carleson condition. Put

$$\mu_E = dA |_D + m |_E. (1.1)$$

The Cauchy transform of a finite measure μ is defined by

Received May 31, 1994. Final revision received December 2, 1994.

^{*}Supported in part by NSF grant DMS-9401234.

Michigan Math. J. 42 (1995).

$$\hat{\mu}(\lambda) = \int \frac{1}{z - \lambda} \, d\mu(z).$$

This function is locally integrable with respect to the area measure. The function P_{λ} is defined by

$$P_{\lambda}(z) = \frac{z}{z - \lambda} - \frac{z}{z - 1/\bar{\lambda}}.$$

It is easy to show that $P_{\lambda}(e^{i\theta})$ is the Poisson kernel. For a compact subset E of \mathbb{T} , define the space H_E^2 as follows:

$$H_E^2 = \left\{ f : f \text{ is analytic in the open unit disk and } \lim_{r \to 1-0} \int_E |f(re^{i\theta})|^2 d\theta < \infty \right\}.$$

Let W be a connected component of $D \setminus \operatorname{spt} \mu$. Olin and Thomson [10] have defined the *strong boundary* B_W of W to be the set of points a in $\mathbb{T} \cap \partial W$ such that, for all $\alpha \in (0, \pi)$, there is an isosceles triangle $T_{a, \alpha}^s$ where:

- (1) a is a vertex of $T_{a,\alpha}^s$ and s is the height of $T_{a,\alpha}^s$;
- (2) int $T_{a,\alpha}^s \subset W$;
- (3) the interior angle of $T_{a,\alpha}^s$ at a is α ; and
- (4) the radial line segment from 0 to a bisects the interior angle of $T_{a,\alpha}^s$ at a.

The strong boundary of W is a Borel set (see [10]). If $m(B_W) > 0$, we call W an *outer hole* in the support of μ .

Let z be the coordinate function on \mathbb{C} , with $z(\lambda) = \lambda$ and $\lambda \in \mathbb{C}$. Let X be a Banach space of analytic functions over an open set G. A closed subspace M of X is said to be z-invariant, or simply invariant, if zf belongs to M whenever f is in M. One says that an invariant subspace M of X has the codimension-n property if M/zM is an n-dimensional space.

Let $\Im C$ be a separable Hilbert space; denote the bounded operators on $\Im C$ by $\Im C(\Im C)$ and the trace class operators by $\Im C(\Im C)$. The weak-* topology on $\Im C(\Im C)$ is that induced on $\Im C(\Im C)$ as the dual of $\Im C(\Im C)$. For $T \in \Im C(\Im C)$, let $\Im C(T)$ denote the weak-* closed subalgebra of $\Im C(\Im C)$ generated by T and T and $\Im C_{\perp}(T)$ the annihilators of $\Im C(T)$. Then $\Im C(T)$ is the dual of the quotient space $\Im C_{\perp}(T) = \Im C_{\perp}(\Im C)/ \Im C_{\perp}(T)$. If $T \in \Im C_{\perp}(\Im C)$, let $T \in \Im C_{\perp}(\Im C)$ denote the image of $T \in \Im C_{\perp}(T)$. For $T \in \Im C_{\perp}(T)$ is the dual of the quotient space $T \in \Im C_{\perp}(T)$. If $T \in \Im C_{\perp}(T)$, let $T \in \Im C_{\perp}(T)$ denote the image of $T \in \Im C_{\perp}(T)$. Becovici, let $T \in \Im C_{\perp}(T)$ in $T \in \Im C_{\perp}(T)$, $T \in \Im C_{\perp}(T)$ in $T \in \Im C_{\perp}(T)$, if for $T \in \Im C_{\perp}(T)$ is the defined a decreasing sequence $T \in C_{\perp}(T)$ in $T \in C_{\perp}(T)$

The structure of the lattice of invariant subspaces in a Banach space of analytic functions X, especially the Bergman space, has attracted a lot of

attention from both operator theorists and function theorists. However, most results have been disappointing, in the sense that for most spaces X there are no simple characterizations such as are known for the Hardy space $H^2(D)$. The famous theorem of Beurling on invariant subspaces of $H^2(D)$ asserts that either every z-invariant subspace M of $H^2(D)$ is trivial (i.e., M=0) or there exists an inner function u such that $M=uH^2(D)$. The Bergman spaces do have some z-invariant subspaces similar to the Hardy-space cases. For instance, Hedenmalm, Korenblum, and Zhu [6] studied Beurlingtype invariant subspaces for the Bergman spaces. However, in contrast to the Hardy-space situation, it has been discovered by Apostol, Bercovici, Foias, and Pearcy [1] that there exist in the Bergman space z-invariant subspaces having the codimension-n property. Hedenmalm [5] gave a simple concrete example of an invariant subspace having the codimension-n property. In this paper, we look at a class of functions that violate the conditions of the example in [5]. We mainly show that the invariant subspace generated by this class of functions has the codimension-1 property (Theorem C).

In Section 2, we prove the following two theorems.

THEOREM A. Let a closed subset $E \subset \mathbb{T}$ satisfy the Carleson condition. Then there exists an outer hole W in the support of $\mu_E^W = \mu_E|_{W^c}$ so that, for every polynomial p, the following inequality holds:

$$\int |p|^2 d\mu_E \le C \int |p|^2 d\mu_E^W \le C \int |p|^2 d\mu_E.$$

From Theorem A, we see that the measure μ_E^W is a reverse Carleson measure for the Bergman space $L_a^2(D)$.

THEOREM B. Let a closed subset E of \mathbb{T} with positive Lebesgue measure satisfy the Carleson condition. Suppose that S_{μ_E} is pure on $P^2(\mu_E)$; then S_{μ_E} is in $\mathbb{A}_1 \setminus \mathbb{A}_2$.

Our main theorem is proved in Section 3.

Theorem C. Let a compact subset $E \subset \mathbb{T}$ of positive measure satisfy the Carleson condition, and let \mathfrak{B} be a subset of $L_a^2(D)$. Suppose that for each $f \in \mathfrak{B}$ there exists a bounded analytic function ϕ such that $\phi f \in H_E^2$. Let M be the invariant subspace generated by \mathfrak{B} . Then M has the codimension-1 property.

2. A Reverse Carleson Measure and a Subnormal Operator in $A_1 \setminus A_2$

In this section, we construct a reverse Carleson measure for the Bergman space $L_a^2(D)$. The measure, which has an outer hole inside the open unit disk,

will be used to prove our main theorem in Section 3. We fix a compact subset $E \subset \mathbb{T}$, m(E) > 0, that satisfies the Carleson condition. The next lemma is due to Hruscev [7].

LEMMA 2.1. There exists a nontrivial bounded function ϕ on E such that the Cauchy transform $\int_E \phi(w)/(w-z) dw$ is infinitely differentiable in the closed unit disk (see [7, Thm. 5]).

LEMMA 2.2. There exists a function $g \in L^{\infty}(\mu_E)$, $g|_E$ is not the zero function a.e. $m|_E$, and $\int p\bar{g} d\mu_E = 0$ for every polynomial p.

Proof. Define

$$g(z) = \begin{cases} \frac{d}{dz} \left(\int_{E} \frac{\phi(w)}{w - z} dw \right), & z \in D, \\ -2\pi i \bar{z} \phi(z), & z \in E. \end{cases}$$

From Lemma 2.1, we see that $g \in L^{\infty}(\mu_E)$ and $g|_E$ is nontrivial. It remains to show $g \perp P^2(\mu_E)$. In fact,

$$\int_{D} \bar{z}^{n} g(z) dA(z) = \frac{1}{\pi} \int_{0}^{1} r^{n+1} \int_{0}^{2\pi} e^{-in\theta} \frac{d}{dz} \left(\int_{E} \frac{\phi(w)\bar{w}}{1 - z\bar{w}} dw \right) \Big|_{z = re^{in\theta}} d\theta dr$$

$$= \frac{1}{\pi} \int_{0}^{1} r^{n+1} \int_{0}^{2\pi} (n+1) r^{n} \left(\int_{E} \bar{w}^{n+2} \phi(w) dw \right) d\theta dr$$

$$= 2\pi i \int_{E} \bar{w}^{n+1} \phi(w) dm.$$

The lemma is proved.

From now on, we will fix the functions ϕ in Lemma 2.1 and g in Lemma 2.2 and assume $\|\phi\|_{\infty} > 1$. Set

$$E_0 = \{e^{i\theta} : |\phi(e^{i\theta})| > 1\}.$$

Then $m(E_0) > 0$. Let $T_{e^{i\theta},\alpha}$ be a Stoltz angle with vertex $e^{i\theta}$ and opening α (see [3, p. 110, Fig. 1]), where $0 < \alpha < \pi/2$. Using Fatou's theorem, we have that

$$\lim_{\lambda \in T_e^{i\theta}, \alpha \to e^{i\theta}} \left| \int P_{\lambda}(e^{it}) \overline{\phi}(e^{it}) e^{it} dm(t) \right| > 1 \text{ a.e. } m|_{E_0}.$$

For n = 1, 2, 3, ..., set

$$E_n = \left\{ e^{i\theta} : \left| \int P_{\lambda}(e^{it}) \, \overline{\phi}(e^{it}) e^{it} \, dm(t) \right| > \frac{1}{2} \text{ for all } \lambda \in T_{e^{i\theta}, \alpha} \cap \left(|\lambda| > 1 - \frac{1}{n} \right) \right\}.$$

LEMMA 2.3. There exists an n such that $m(E_n) > 0$.

Proof. It is clear that $E_0 \subset \bigcup_{n=1}^{\infty} E_n$ and that $\{E_n\}$ is an increasing sequence. Hence, $\lim_{n\to\infty} m(E_n) \ge m(E_0) > 0$.

We now fix the set E_n in Lemma 2.3 and set

$$T_k^n = \bigcup_{e^{i\theta} \in E_n} \left(T_{e^{i\theta}, \alpha} \cap \left(|\lambda| > 1 - \frac{1}{k} \right) \right),$$

where $k \ge n$.

Lemma 2.4. There exists an N such that, for each $\lambda \in T_N^n$,

$$\left|\int P_{\lambda}(z)\,\bar{g}(z)\,d\mu_E(z)\right|\geq 1.$$

Proof. The Cauchy transform $\int_D (z/(z-\lambda))\bar{g} dA$ is a continuous function throughout \mathbb{C} , since g is bounded. Hence there is an N such that, for $\lambda \in T_N^n$,

$$\left| \int_D P_{\lambda}(z) \bar{g} \, dA \right| = \left| \int_D \frac{z}{z - \lambda} \bar{g} \, dA - \int_D \frac{z}{z - 1/\bar{\lambda}} \bar{g} \, dA \right| < 1.$$

Therefore, for each $\lambda \in T_N^n$, we have

$$\left| \int P_{\lambda}(z) \, \bar{g}(z) \, d\mu_E \right| \ge 2\pi \left| \int P_{\lambda}(e^{it}) \, \bar{\phi}(e^{it}) e^{it} \, dm \right| - \left| \int_D P_{\lambda}(z) \, \bar{g}(z) \, dA \right|$$

$$\ge 1. \qquad \Box$$

We will let C denote an absolute constant which may change from one step to the next.

Lemma 2.5. There exist an integer K and a constant C > 0 such that

$$\int_{T_K^n} |p|^2 dA \le C \left(\int_E |p|^2 dm + \int_{D \setminus T_K^n} |p|^2 dA \right).$$

Proof. For each $\lambda \in D$ and each polynomial p, we see that

$$p(\lambda) \int \frac{z}{z - \lambda} \bar{g} \, d\mu_E = \int \frac{z}{z - \lambda} p(z) \bar{g} \, d\mu_E$$

since $\bar{z}g \perp P^2(\mu_E)$. Hence,

$$p(\lambda) \int P_{\lambda}(z) \bar{g} \, d\mu_E = \int P_{\lambda}(z) \, p(z) \bar{g} \, d\mu_E$$

since

$$\int \frac{z}{z - 1/\bar{\lambda}} p(z) \bar{g}(z) d\mu_E = 0 \quad \text{for } \lambda \in D.$$

Let $\lambda \in T_K^n$, K > N; K will be determined later. Using Lemma 2.4, we see that

$$|p(\lambda)| \le |p(\lambda)| \left| \int P_{\lambda} \bar{g} \, d\mu_{E} \right|$$

$$\le 2\pi \left| \int P_{\lambda} p \bar{\phi} z \, dm \right| + \left| \int_{D} P_{\lambda} p \bar{g} \, dA \right| \le$$

$$\leq 2\pi \left| \int P_{\lambda} p \overline{\phi} z \, dm \right| + \left(\int_{D} |P_{\lambda}| \, dA \right)^{1/2} \left(\int_{D} |P_{\lambda}| |pg|^{2} \, dA \right)^{1/2}$$

$$= 2\pi I_{1} + I_{2}.$$

The area measure restricted to the unit disk is a Carleson measure for the Hardy space, so

$$\int |I_1|^2 dA \le C \int |p\phi|^2 dm \le C \int_E |p|^2 dm$$

(see [12, Thm. 8.2.2]). On the other hand,

$$\int_{D} |P_{\lambda}(z)| \, dA(z) \le \int_{D} \left| \frac{1}{z - \lambda} \right| dA(z) + \int_{D} \left| \frac{1}{z - 1/\bar{\lambda}} \right| dA(z) \le C.$$

Hence,

$$\int_{T_K^n} |p(\lambda)|^2 dA(\lambda) \le C \int_E |p|^2 dm + C \int_D |p(z)|^2 dA(z) \int_{T_K^n} |P_{\lambda}(z)| dA(\lambda).$$

However,

$$\int_{T_K^n} |P_{\lambda}(z)| \, dA(\lambda) \le \int_{T_K^n} \left| \frac{1}{z - \lambda} \right| dA(\lambda) + \int_{T_K^n} \left| \frac{1}{1/\bar{z} - \lambda} \right| dA(\lambda) \le C \sqrt{\operatorname{area}(T_K^n)}$$

(see [3, p. 167, similar proof of Prop. 2.2]). Thus,

$$(1 - C\sqrt{\operatorname{area}(T_K^n)}) \int_{T_K^n} |p|^2 dA \le C \left(\int_E |p|^2 dm + \int_{D \setminus T_K^n} |p|^2 dA \right).$$

Choose an integer K such that

$$1 - C\sqrt{\operatorname{area}(T_K^n)} \ge 1/2,$$

and we have the desired inequality.

Let $T_K^n = \bigcup W_k$, where each W_k is a connected component of T_K^n .

LEMMA 2.6. There exists a W_k which is an outer hole in the support of $\mu_E^{W_k} = \mu_E|_{W_k^c}$. (We will denote this W_k by W.)

Proof. Let $\lambda \in E_n$. By definition, we see that $T_{\lambda,\alpha} \cap (|\lambda| > 1 - 1/K) \subset T_K^n$. Since $T_{\lambda,\alpha} \cap (|\lambda| > 1 - 1/K)$ is a connected set, we can find a W_k such that $T_{\lambda,\alpha} \cap (|\lambda| > 1 - 1/K) \subset W_k$. Thus, $\lambda \in \partial W_k \cap \mathbb{T}$ and

$$E_n \subset \bigcup (\partial W_k \cap \mathbb{T}).$$

We can find a W_k satisfying $m(\partial W_k \cap \mathbb{T}) > 0$.

By the construction of T_K^n , we know that ∂W_k is a rectifiable Jordan curve. Let f be the Riemann map from D to W_k ; then the harmonic measure $\omega = m \circ f^{-1}$ of W_k and the arc-length measure are mutually absolutely continuous (see [3, p. 199]). Hence, $\omega(\partial W_k \cap \mathbb{T}) > 0$. Using the argument in [4, p. 45], we see that $\omega|_{\partial W_k \cap \mathbb{T}}$ and $m|_{B_{W_k}}$ are mutually absolutely continuous. Thus $m(B_{W_k}) > 0$.

THEOREM 2.7. There exists an outer hole W in the support of $\mu_E^W = \mu_E|_{W^c}$ such that, for every polynomial p, the following inequality holds:

$$\int |p|^2 d\mu_E \le C \int |p|^2 d\mu_E^W \le C \int |p|^2 d\mu_E.$$

Proof. The inequality follows from Lemma 2.5 and Lemma 2.6. \Box

COROLLARY 2.8. The measure μ_E^W in Theorem 2.7 is a reverse Carleson measure for the Bergman space $L_a^2(D)$.

THEOREM 2.9. Let a closed subset E of \mathbb{T} with positive Lebesgue measure satisfy the Carleson condition. Suppose that S_{μ_E} is pure on $P^2(\mu_E)$; then S_{μ_E} is in $\mathbb{A}_1 \setminus \mathbb{A}_2$.

Proof. It follows from Theorem 2.7 that S_{μ_E} is similar to $S_{\mu_E^W}$. The minimal normal extension of $S_{\mu_E^W}$ is $N_{\mu_E^W}$, the operator of multiplication by z on $L^2(\mu_E^W)$. Using Theorem 1(i) in [9], one sees that $S_{\mu_E^W}$ is in $\mathbb{A}_1 \setminus \mathbb{A}_2$. Since membership in the classes \mathbb{A}_n is preserved by similarity [2, Prop. 2.09], S_{μ_E} belongs to $\mathbb{A}_1 \setminus \mathbb{A}_2$.

Theorem 2.9 is a generalization of Theorem 2 in [9].

3. Invariant Subspaces of the Bergman Space

Before proving our main theorem, we need the following lemma.

Lemma 3.1. Suppose that W is the outer hole in Theorem 2.7. Then the space $L_a^2(D) \cap H_E^2$ is contained in $P^2(\mu_E^W)$ in the sense that, for every function $f \in L_a^2(D) \cap H_E^2$, there exists $g \in P^2(\mu_E^W)$ such that f equals g on D.

Proof. Let $f_r(z) = f(rz)$; then $f_r \in P^2(\mu_E^W)$. We have the following computation:

$$\int |f_r(z)|^2 d\mu_E^W \le \int_D |f(rz)|^2 dA + \int_E |f(re^{i\theta})|^2 dm$$

$$\le ||f||_{L_a^2(D)}^2 + \int_E |f(re^{i\theta})|^2 dm.$$

Since f is in H_E^2 , we can choose r_n converging to 1 such that

$$\int |f_{r_n}(z)|^2 d\mu_E^W \leq M < \infty.$$

By choosing a subsequence (if necessary) we may assume that $\{f_{r_n}\}$ converges weakly to a function g in $P^2(\mu_E^W)$. It is routine to check that f and g are equal on D.

The following theorem is our main result.

THEOREM 3.2. Let a compact subset $E \subset \mathbb{T}$ of positive measure satisfy the Carleson condition, and let \mathfrak{B} be a subset of $L_a^2(D)$. Suppose that for each

 $f \in \mathfrak{B}$ there exists a bounded analytic function ϕ such that $\phi f \in H_E^2$. Let M be the invariant subspace generated by \mathfrak{B} . Then M has the codimension-l property.

Proof. Without loss of generality, we assume that zero is in the outer hole W of Theorem 2.7. Using Corollary 3.15 of [11], we may assume that M is generated by two functions f_1 and f_2 , and that there exist two bounded analytic functions ϕ_1 and ϕ_2 , $\phi_1(0) \neq 0 \neq \phi_2(0)$, such that $\phi_i f_i \in H_E^2$ for i = 1, 2. Suppose that $\dim(M/zM) \geq 2$. Let x_1, x_2 be two unit vectors in $M \ominus zM$ with $\langle x_1, x_2 \rangle = 0$ and let $g_i = \bar{x}_i$ for i = 1, 2. Then

- (1) $\int fg_i d\mu = 0$ for every $f \in zM$; and
- (2) $\int x_i g_i dA = \delta_{ii}.$

Since

$$\int \phi_i x_i g_j dA = \phi_i(0) \delta_{ij},$$

one sees that the invariant subspace generated by $\phi_1 f_1$ and $\phi_2 f_2$ has the codimension-2 property. Therefore, we may assume that $\phi_1 = \phi_2 = 1$, that is, $f_i \in H_E^2$ for i = 1, 2.

Claim:

$$\det\begin{bmatrix} \int f_1 g_1 dA, & \int f_1 g_2 dA \\ \int f_2 g_1 dA, & \int f_2 g_2 dA \end{bmatrix} \neq 0.$$

Otherwise, there exists a nonzero constant c such that

$$\int f_i(g_1 + cg_2) \, dA = 0$$

for i = 1, 2. On the other hand,

$$\int (p_1 f_1 + p_2 f_2)(g_1 + cg_2) dA$$

$$= p_1(0) \int f_1(g_1 + cg_2) dA + p_2(0) \int f_2(g_1 + cg_2) dA$$

$$= 0$$

and $\{p_1f_1+p_2f_2\}$ are dense in M. Hence,

$$\int x_i(g_1+cg_2)\,dA=0.$$

This is a contradiction, so the claim is established.

Using Corollary 2.8, we see that

$$\left| \int p g_i dA \right| \leq \|p\|_{L^2_a} \|g_i\|_{L^2(D)} \leq C \|g_i\|_{L^2(D)} \|p\|_{P^2(\mu_E^W)}$$

for every polynomial p. Using the Hahn-Banach theorem, we can find $h_i \in L^2(\mu_F^W)$ so that

$$\int pg_i\,dA = \int ph_i\,d\mu_E^W.$$

From Lemma 3.1, we conclude that $f_i \in P^2(\mu_E^W)$. Choose a sequence of polynomials $\{p_n\}$ converging to f_i in $P^2(\mu_E^W)$. From Corollary 2.8, the sequence should converge to f_i in L_a^2 . Therefore,

$$\int pf_ig_j\,dA = \int pf_ih_j\,d\mu_E^W.$$

Hence,

$$p(0) \begin{bmatrix} \int f_1 g_1 dA, & \int f_1 g_2 dA \\ \int f_2 g_1 dA, & \int f_2 g_2 dA \end{bmatrix} = \begin{bmatrix} \int p(z) f_1 h_1 d\mu_E^W, & \int p(z) f_1 h_2 d\mu_E^W \\ \int p(z) f_2 h_1 d\mu_E^W, & \int p(z) f_2 h_2 d\mu_E^W \end{bmatrix}.$$

Denote

$$\begin{bmatrix} \int f_1 g_1 dA, & \int f_1 g_2 dA \\ \int f_2 g_1 dA, & \int f_2 g_2 dA \end{bmatrix}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Let $f^1 = af_1 + bf_2$ and $f^2 = cf_1 + df_2$, then

$$\int pf_ih_j\,d\mu_E^W = \begin{cases} p(0) & \text{if } i=j,\\ 0 & \text{if } i\neq j, \end{cases}$$

where p is a polynomial and i, j = 1, 2. Therefore, the invariant subspace generated by f^1 and f^2 in $P^2(\mu_E^W)$ has the codimension-2 property. This contradicts Theorem 2.9.

It is interesting to ask about the following possible generalization of Theorem 3.2.

QUESTION 3.3. Does Theorem 3.2 still remain valid if E is replaced by any compact subset K(m(K) > 0) of the unit circle?

Our method will not work in this case, because in [8], Kegejan constructed an example as follows: There exists a compact subset E of \mathbb{T} with positive Lebesgue measure such that

$$P^{2}(\mu_{E}) = L_{a}^{2}(D) \oplus L^{2}(m|_{E}).$$

Hence, we are not able to construct an outer hole for this E.

ACKNOWLEDGMENT. The author wishes to thank the referee for many helpful suggestions.

References

- [1] C. Apostol, H. Bercovici, C. Foiaş, and C. Pearcy, *Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I, J. Funct. Anal.* 63 (1985), 369-404.
- [2] H. Bercovici, C. Foiaş, and C. Pearcy, *Dual algebras with applications to invariant subspaces and dilation theory*, CBMS Regional Conf. Ser. in Math., 56, Amer. Math. Soc., Providence, RI, 1985.

- [3] J. Conway, *The theory of subnormal operators*, Math. Surveys Monographs, 36, Amer. Math. Soc., Providence, RI, 1991.
- [4] P. L. Duren, *Theory of H^p spaces*, Academic Press, New York, 1970.
- [5] H. Hedenmalm, An invariant subspace of the Bergman space having the codimension two property, J. Reine Angew. Math. 443 (1993), 1-9.
- [6] H. Hedenmalm, B. Korenblum, and K. Zhu, Beurling type invariant subspaces of the Bergman spaces, preprint.
- [7] S. V. Hruscev, The removal of singularities for Cauchy integrals and an analogue of the Hincin-Ostrovskii theorem for sequences of increasing functions, Dokl. Akad. Nauk SSSR 214 (1974), 524-527 (Russian).
- [8] E. M. Kegejan, Simultaneous approximation in a disc, Izv. Akad. Nauk Armjan. SSR Ser. Mat., 1 (1966), 317–330 (Russian).
- [9] T. L. Miller, Some subnormal operators not in \mathbb{A}_2 , J. Funct. Anal. 82 (1989), 296-302.
- [10] R. Olin and J. Thomson, *Some index theorems for subnormal operators*, J. Operator Theory 3 (1980), 115–142.
- [11] S. Richter, *Invariant subspaces in Banach spaces of analytic functions*, Trans. Amer. Math. Soc. 304 (1987), 585-616.
- [12] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.

Department of Mathematics Washington University St. Louis, MO 63130

Current address:
Department of Mathematics
University of Hawaii
Honolulu, HI 96822