On Composition Sequences in the Unit Disk

CH. POMMERENKE

1. General Composition Sequences

In complex iteration theory, the case of analytic self-maps of the unit disk D
is well understood (see e.g. [Va; P1; BP]). Its dynamics is simpler than that
of rational functions [Be]. We want to generalize some results on sequences
of iterates to composition sequences.

We consider the analytic functions

en: DD (n=1,2,..) (1.1)
and form the forward composition sequence (f,) defined by f,(z) =z and
fn = ‘pn°fn—1: that is,

Jn=@nocceppep; (n=1,2,...). (1.2)

This is the same process as for iteration but with different functions. In other

contexts the backward compositions ¢;°---°¢, are more important—for ex-

ample, for continued fractions [JT] and for branching processes [AN; P2].
We write z,, = f,,(0). The normalized functions

fn(z)—zn — fn(z)_fn(o)
1=-2,/u(z)  1—=14(0) fn(2)

again map the unit disk D into itself but such that g,(0) = 0. It follows from
(1.2) and (1.3) that

gn(2) = (1.3)

fi0) o 1—|z,_y|?

gn(0) = =11 o1 (Zk—1)- (1.4)
B N = Bt
The factors are at most 1 in absolute value.
THEOREM. If
— l—lzn—llz ’
an=w|¢n(zn_l)|2a>0 (zeD) (1.5)
n

forn=1,2,..., then the limit
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. &n(2)
z)=lim = =z+--- (1.6)
@)= I 60
exists locally uniformly in D and g is univalent in
{lz|]<p}, p=a/(l+V1+a2). 1.7)
Moreover, if |z|<r<1and m<n then
gm(z) _ &n(2) | _
7 i =M(r, o)(|m(0)|—|8x(0)]), (1.8)

where M(r, a) depends only on r and o.

It follows from (1.4) and (2.8) below that
|£2(0)| <|g7-1(0)], |gn(2)|=|8n-1(z)| (z€D). (1.9)

Hence |g;,(0)| and |g,(z)| converge as n — oo. There are two distinct cases:
(i) If lim, _, »|g,(z)| =0 then g,(0) —» 0 as n - o and
1— |Zn|2
1+2,8n(2)
Hence we conclude from (1.3), (1.4), and (1.6) that
. Ja(2) = fn(0)
g@= I T

(ii) If lim,_, »|g,(2z)|# 0 then |g;(0)| = b+ 0 by (1.6) and therefore
|g(z)|<1/b< o for zeD.

In the iteration case we have ¢, = f for all n so that f, is the nth iterate.
There is an important additional feature: We also have f,=f,_;°f, and it
follows from (1.3) that there is a functional equation

Su(2) =2, = &n(2) ~ (1=|z,*) gn(2).

locally uniformly in D. (1.10)

gof=71og where 7isaMobius transformation.
The case (i) occurs if and only if
(Zn—2p-1)/(1—2,_42,) >0 as n—ooo

[Va; BP], in particular if f has an attractive fixed point in D. In case (ii) the
normalizations in [ Va] and [P1] are somewhat different from that in (1.3).

In Section 3 we shall study the case where ¢,(0) =0 for all n. We shall
see that the awkward condition (1.5) cannot be deleted and that the conver-
gence is non-uniform (in the function data) if |¢;(0)| is near to 1, even in the
iteration case.

2. Proof of the Theorem

First we state some well-known facts that we need for the proof of the theo-
rem. Let ¢ be analytic in C and let (D) CD. If { € D we can write
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©(z) — () a-+x(s) {+s
— = =y— = — 2.1
1—o(O)e(z) vis)=s 1+ ax(s) ¢ 1+¢s (21
for s e D, where x is analytic and
-5,
a=w¢ £)s Ix(s)|=<|s| (seD). (2.2)
It follows that, for s € D and thus for ze D,
‘ @) =p() | _ o lal+ls| 2.3)
1—0(D)e(2) 1+]as|’
_ 2
99(757)_90“') '—GS, lal | IZ (2-4)
1— () e(2) —|as]|

The analytic function ¢ satisfies Yy(D)C D, ¢(0)=0, and ¢'(0)=a and is
therefore (by [Ne, p. 171]) univalent in {js| < p} where p =|a|/(1+ V1 —|a[?).
Hence (2.1) shows that

¢ is univalent in {|(z—{)/(1—{z)| < o). (2.5)

We also need the elementary fact that, for 0 <8, <

5. By Bua(1=B) =1~ lim By - 6, =<1, (2.6)

n—Cco

Proof. Since f,=¢,°f,_;, it follows from (1.3) that

‘Pn(fn—l(z)) - ﬁon(zn—l)
n = D). 2.7
&) l_ﬁon(zn—l)ﬁon(fn_l(z)) @eb) @7

We apply (2.3) and (2.4) with ¢ = ¢, and

fn—l(z)_zn-—l 1—|Z,,_.1|2
= =8n-1(2), a=———7—op(2,-1).
l_zn—lfn—l(z) n=l l—]Z,,IZ men-l

Then (¢ +5)/(1+{s) = f,_;(z) and we obtain, by (2.7) and (1.5), that

rzzn—-ls

an'*'lgn—l(z)l
1+an|gn-l(Z)l

|gn(z)|5|gn—l(2)| SIgn—l(z)l (2.8)

and

l_l Zn— 1|2 1-af

8n(2) — 2 onlZn-1)8n-1(2)| < _|z"| lgn1R% (2.9)

~|zn

because |g,_;(z)|= |z[ by repeated application of (2.8). Since
(u+v)y/(1+uv)=su+2(1—u)v for 0=u<l and O0=<v,
it follows from (2.8) and (1.5) that
|8n(2)| = an|8n—1(2)|(1+2(1 — ) | 8= 1(2)])- (2.10)
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Let 0 <r<1and let M, M,,... be constants that depend only on « and r.
Since (1 —x)/log(1/x) is increasing in 0 < x <1, we obtain from (1.5) that

oa,+r 1—r 1
1_:%" < exp[—T(l —an)} < exp[—clog —OZ] =,
where ¢ =(1—r)(1—a)/(2log(1/a)) > 0. Now let |z|<r. Then |g,_(2)|=<r,
and it follows by repeated application of (2.8) that

n k+r n

< 1] «f.

11+ak k=1

|gn(z)|—

Since 1 — o < M{(1—af), we conclude from (2.6) that
El(l_an)lgn—l(z)ISMl Y (I—ag)oaf - o = M,.
n= n=1

Hence we obtain from (2.10) that

n

|gn(z)| = ];[:[1(0% exp[Mr(1—oy)|gr-1(2)|]) = Mza; -+

Dividing (2.9) by |g;(0)| we therefore obtain from (1.4) and (1.5) that, for
lz|=r,

&,(2) _ gn—-1() < l—ar% |gn-—l(z)|2

g,(0) gn-1(0) l—r ap«a

M3 (1-a )
(1—- r)ozn
and it follows from (2.6) that the limit (1.6) exists locally uniformly in D.
We see from (1.5) and (2.5) that ¢, is univalent in {|z—z,_|/[1—Z,_1z|<

p}. Since

I(fn—l(z)"'zn—l)/(l"Zn—lfn—-l(z))l = Ign—l(Z)l <p for |Z| <p,

and since f, = ¢,°f,_1, it follows by induction that f, is univalent in {|z| < p}
for all n and thus g is also, by (1.6).
Finally, it follows from (2.11) that, for |z|<r and m < n,

rop SMy(l—ap)ay o,y (2.11)

&gm(2) _ gn(2)
gm(0)  £,(0)

SM4 E (l—-ak)al---a -

k=m+1

=M4(‘D‘1 OOyt an),

which implies (1.8), by (1.4) and (1.5). O

3. Composition with Fixed Point 0
We now consider the case where ¢,(0) =0 and thus z, =0 for all n.

COROLLARY. Let ¢,: D— D be analytic,

en(2)=az+b,2%+-+, |a,|z=a>0, (3.1)
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and fy,=¢pe--cpy forn=12,.... If f1(0)=a,---a,—0as n— o then

n ad bv .
8= lim ;Eg; =z+<l§1a—yal a,,_l)zz+--- (3.2)

exists locally uniformly in D and is univalent in {|z| <a/(1+~1—a?))}.

This is an immediate consequence of our theorem; see (1.10). The coefficient
in (3.2) is obtained as follows: We see from (3.1) that

S4100) = @114 1(0) £1(0)2 + 0741(0) f7(0) = 2, 1@ -+ @) * + @y 41 £7(0)
and thus by induction that

n bv
fJ;I(O)=2al“'an2 —aqy 4, (n=132’--°)-

v=1 “yp

Our first example shows that the assumption |a@,|= « > 01in (3.1) cannot be
replaced by a,, # 0; compare also (1.5).

ExampLEl. If0<b<l1, 0<c<l1, and

a,+2z
1+a,z

then f,(x)/f,(0) = o (n— ) for some xe€D.

on(z) =2 with a,=bc*” (n=1,2,...), (3.3)

Proof. Let 0 < x < 1. We write p, = f,(x)/a,; and see from (3.3) that
_ S0 beTASx) LD
be? 14-be?" f,(x) "1+al P,
The positive fixed point &, of bx(14+x)/(1 +a,§+1x) satisfies
1—b 1-b
b_pior >&p1> 3 (3.4)

We choose x with (1—b)c/(1—bc?) < x < 1. Then py = x/a; > &, and if p, >
¢, then p, 1 >p,>&,>&,.1 by (3.4). Hence p,> £, holds for all n and
thus, by (3.4),

Prn+1

En=

2)1
Ja¥) _ bc"pn (A=b)c

= — > O
f,;(O) bncz -1 bn
ExampLE 2. Fork=1,2,...,let 0<a,,<1 and
Agpt+2 21,2
— =da +(1—a + .-l 3.5
‘Pkn(z) 4 1+61an kn< ( kn)z ( )

If ap -+ ap,, > 0 (n > ) for each k and inf, ay, —1 (k - =), then fi,=
Opno***°Q1, Satisfies

lim fkn(z) N <
n—oo fl;n(o) (I_Z)z

as k—o, aeD. (3.6)
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Since ¢;,(z) = z as kK — oo uniformly in n, one might have expected that the
limit function in (3.6) is z. This shows that the convergence in (3.2) is not
uniform in the function data if |¢;,(0)| is near to 1.

Proof. Let k=1,2,.... Since f;,(0)=ay; - a,,— 0 as n— oo, we conclude
that
fkn( ) 2
h,(z)= lim =z+crz°+--- and
k( ) n—o fkn(o) *
o a?
=S g, 52 5 (A a) g =2 ()
v=1 Agn v=1

by (2.6). Since inf, a;,, —1 as kK — oo, the corollary shows that every limit
function h(z) =z+cz%+ -+ of (k) is univalent in D. We see from (3.7) that
c=2 so that A(z) = z/(1 —z)? the Koebe function [Du, p. 30]. a

Our final example from iteration theory emphasizes this non-uniformity.
We denote the iterates by f” and the unit circle dD by T. See [ Yo, 11.2.6] for
the case where A is not a root of unity; see [HR] for further results.

ExaMmpPLE 3. ForAeD, A+0, let

A+z

Mz =z Z—A z+(1=|A]») 2‘ A=2(—z)* (3.8)

and let g,=1im,,_, o, )\""f,\. If Age€ T is not a root of unity then, as A — Ay,
gx(z) = z locally uniformly in zeD. (3.9)
If Ay is a primitive mth root of unity then, as p — 1,
gor,(2) = 2(1+(—=2)™) "™ locally uniformly in D (3.10)
whereas (3.9) holds if A— Aq tangentially to R.
Proof. It is easy to see [ Va, p. 116] that
Aexz)=gx(fi(z)) for zeD, 0<|A|<], (3.11)

the Koenigs functional equation. We write

ex(z) = él biMzk (zeD),  b(\)=I (3.12)
and obtain from (3.8) and (3.11) that, as |A| > 1,

kil)xbk()\)z" - kﬁ} A¥b(N)z5+ 01 =)

locally uniformly in z € D. Hence, for each fixed k,
(1=M"YHp,AN)=01—|A]) as |A|-1. (3.13)

If Ay is not a root of unity it follows that
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by(A)—=0 (A—-Ay) for k=2. (3.14)
This also holds if Ay is a root of unity and A — A, tangentially to T, because
then (1—|A|)/|Ao—A|— 0.
Now let Ay be a primitive mth root of unity and let A=pAy, 0<p<1. It
follows from (3.13) that

bi(A)=00—-p)(p—1) for k+vm+1 (vr=0,1,...) (3.15)
so that, by (3.8) and (3.11),

S W@+ S Mozt = 5 ANzt +0(- o).

k#+vm+1 k=1

Comparing the coefficients of z”*! we thus obtain from (3.8) and b;(A) =1
that

(=)™ (1= p2 )AL A" D, (A = Abp1(A) + O((1— p)P).

Since A§ =1 it follows that, as p — 1,
— p2
p(1—p")
The corollary shows that every limit function 4(z) =z+c,z%+ -+ of (g))
as |A| —» 1 is univalent in D. If A is not a root of unity or if the approach is

tangential then (3.14) shows that #(z) =z. Now let Ay be a root of unity.
Then, for radial approach,

b1 (A) = (=1)"*+! +0(1—p)—>(—1)’"“%- (3.16)

el 2
h(Z)=Z+ E cmv+lzmy+l: Cm+1=(_1)m+l'as

r=1

by (3.15) and (3.16). The function
[h(ZI/m)]m=Z+2(_1)m+1z2+

is again analytic and univalent and is therefore =z/(1+(—1)"z)? [Du, p.
30], which implies (3.10). O
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