Cohomology of the Symplectic
Group Sp(4, Z), Part I1:
Computations at the Prime 2

ALAN BROWNSTEIN & RONNIE LEE

0. Introduction

In this paper, we give a complete description of the integral cohomology
group H*(Sp(4, Z); Z) of Sp(4, Z). In our previous paper [BL], the odd tor-
sion pieces were determined, so here we concentrate on the 2-primary com-
ponents. These components are closely related to the cohomology of the
mapping class group I'{ of a genus-2 Riemann surface. Using this relation-
ship and the knowledge of H*(I'?;Z) in the recent work of Benson and
Cohen, we complete the project started in [BL].

Let Sp(4; Z) denote the group of 4-by-4 integral matrices preserving the

skew symmetric pairing (fl {)) This is a well-known arithmetic subgroup

of the real symplectic group Sp(4; R) and has been studied by various au-
thors from the viewpoint of automorphic forms (e.g. see [G1; G2; Ba]). For
Sp(4; R) is a generalization of the special linear group Sp(2; R) =SL(2; R),
and the theory of automorphic forms on Sp(4; R) can be regarded as a nat-
ural extension of the study of elliptic functions. From a topological view-
point, this group is of some interest because of its relation with the map-
ping class groups I'Y and T'§. In general, let Sg be a surface of genus g with n
punctures, and let diff +(Sé’,') be the group of orientation-preserving diffeo-
morphisms of the surface S; which fix the punctures setwise. The mapping
class group I’y is the set of isotopy classes of diff *(S;'). Since the cohomol-
ogy H*(I'Y; Z) can be identified with the cohomology H*(BT'Y;Z) of the
classifying space BI'Y, classes in H *(I'Y; Z) can be regarded as characteristic
classes of genus-2 surface bundles [Mo]. Motivated by this interpretation,
Cohen completely determined the cohomological structure of I'Y in [Co;
BC]. Since Sp(4; Z) is the fundamental group of the moduli space of genus-2
abelian varieties, the cohomology H*(Sp(4; Z); Z) gives rise to characteristic
classes of fibrations of these abelian varieties [CL]. Hence, it is an interest-
ing question to determine the structure of H*(Sp(4; Z); Z).
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In our previous paper [BL], we set up a Mayer-Vietoris sequence to study
the cohomology of Sp(4; Z), H*(Sp(4; Z); R), with coefficients in an arbi-
trary ring R. As an application of this machinery, we determined the rank
of H*(Sp(4;Z); Q) and odd torsion components of H*(Sp(4;Z);Z). More
explicitly, there exists an infinite cyclic component in H?(Sp(4; Z)) and no-
where else. The odd torsion summands are of order 3 and 5 and can be de-
termined from the formulas

s, qg=2
HYSp4;Z);Zs)) =4 Z/5 g>2, ¢g=0mod2
0 g=1mod2
and

HYSp4;Z);Z3)) =

where v, is the coefficient of #7in f(1—2¢+312+2£24+2¢*—3) /(1—1)(1—1t%).

The object of this paper is to determine the 2-torsion piece, and hence
a complete picture of H*(Sp(4; Z); Z). Explicitly, we obtain the following
theorem.

THEOREM (0.1). The 2-primary components of H*(Sp(4; Z); Z:)) of
Sp(4; Z) have orders 2, 4, 8, and 16. As a graded abelian group, there exists
a decomposition into the following summands:

2/16®(De, Z/4) ®(Dg,-1Z/2) =0 mod4
HYSp(4;2); L)) =3 Z/18D(De,~1 Z/4)D (D, Z/2) g=2mod4

(@J;Z/Z)@(@qu/Z) g=1mod?2
and

H*(Sp(4;Z); Zy) = ZyDZL/2,
where the e, f,, &, are specified in (5.12).

Compared with the odd primary components, the answer is far more com-
plicated and so is the technique involved. A good deal of help is provided by
Cohen’s paper [Co], where the 2-primary components of H*(I'y; Z) are de-
termined. Besides [BL] and [Co], our general method throughout is to per-
form cohomology computations with F, coefficients and use these results to
deduce the integral cohomology. The technique involves a careful analysis
of Bockstein operations.

In the first section we review material from [BL] used in this paper, in-
cluding the 2-local version of the Mayer-Vietoris sequence for Sp(4; Z).
In this last sequence, the main ingredients are the cohomology of three dif-
ferent groups I'Y, G, and H. In Sections 2 and 3 we compute the cohomol-
ogy of G and H with coefficients in Z and F, and the induced homomorph-
ism between them. In Section 4 we calculate the map in cohomology ¢5:
H*(H;Z)—- H*T?;Z), and in Section 5 we assemble the information to
complete the computation of H*(Sp(4; Z);Z).
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1. The Mayer-Vietoris Sequence
In [BL] it was shown that there is a Mayer-Vietoris sequence in cohomology

.- — H*(Sp(4, Z); R) 2 H*(T9; R)® H*(SL(2, Z)]Z./2; R)

. s (1.1)
L2790 H*®XZ/2; Ry— H**Y(Sp(4,Z); R) — ---.

The group ® is defined as follows: Let St(2, Z) denote the Steinberg group
associated to SL(2, Z) (cf. [Mi, p. 82]). The group St(2, Z) has presentation

St(2, Z) = {0y, 03] 010201 =0,0,03).

There is a homomorphism y: St(2, Z) — SL(2, Z) given by

1 1 1 O
4’(01)—1(0 1), 1//(02)=(_1 1).

The kernel of ¥ is a central infinite cyclic subgroup which is generated by
o= (0,0,07)% so there is a central extension

1—>Z[o]— St2,Z) > SL@2, Z) — 1. (1.2)
The group ® is then defined by

St(2,Z) X St(2, Z)

® =
Z{oXa 1)

We give a brief description of the group homomorphisms ¢, ¢,, ¢;, and
t, which induce the maps in the Mayer-Vietoris sequence (1.1). Detailed de-
scriptions and proofs can be found in [BL]. The relationships between the
relevant groups are summarized in the following diagram:

BXZ/225SL(2,Z)]Z/2

K2 Lo (1.3)
ry - Sp(,2).

There is a subgroup I'(S, ) of the mapping class group I'Y, which is de-
fined as follows. Let S, ; be a genus-1 surface with one boundary component.
The mapping class group I'; ; is defined to be the group of isotopy classes of
orientation-preserving diffeomorphisms of S; ; which fix the boundary point-
wise. A genus-2 surface S can be viewed as the union along vy of two halves
of type S;,1. The group B3 X Z/2 is isomorphic to the subgroup I'(S, ) of Iy
fixing the separating curve v, and ¢, is the inclusion of this group into I'y.

If we allow the separating curve v to degenerate to a point P then we have
a stable Riemann surface S, consisting of the union of two genus-1 surfaces,
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which intersect at the point P. The mapping class group of S, I'(S/v), is iso-
morphic to SL(2,Z)]Z/2. The map ¢, is then the natural map I'(S, vy) to
I'(S/v).

There is an inclusion of SL(2, Z)!Z/2 into Sp(4, Z) as matrices of the form

aq 0 a O 0 a 0 a
0 b 0 b, b, 0 b, 0
a; 0 a4 0O 0 a3 0 a4}
0 by, 0 by by 0 b, O

where
a da; bl b2
(03 04)’_ (ba b4)

are in SL(2,Z). This is the subgroup of Sp(4, Z) which preserves the sub-
space of diagonal matrices in the Siegel space JC,. This inclusion is the map
¢;. Finally, ¢, is the well-known epimorphism from I'{ to Sp(4, Z) given by
associating to the isotopy class of a diffeomorphism its induced action on a
homology basis for the surface.

Since we are considering the 2-torsion piece of the cohomology of Sp(4, Z),
we can make some simplifications to the groups SL(2,Z)!Z/2 and B X Z/2.

ProrosiTioN (1.4). Let R be a ring in which primes p+ 2 are invertible.
Then
H*(SL(2,Z)!Z/2; R)=H*(Z/4]Z/2; R)

and
ZXZ
H*(®BXZ/2;R)=H" ————XZ/2;R).
( ) <Z<4, I )
For notational convenience, we define ,
Z.xX7Z
G=Z/4]lZ/2 d H=——"—XZ/2.
lZ/2 an 734 —4) X

The proof is very similar to computations in [BL] for the projective sym-
plectic group PSp(4, Z) (cf. Lemma 6.1); we omit the details. Let Z,y denote
the local ring Z[3, 3, %,...] and F, the field with two elements. Assembling

these results, we have the following.

ProrosiTION (1.5). Let R=1Z ) or ¥,. Then there is a Mayer-Vietoris se-
quence in cohomology with trivial R coefficients,

. — H*Sp(4, Z); R) Y24 j*(19; R\ H*(G; R)
=%, [ (H; R)— H*+\(Sp(4, Z); R) — --

For simplicity, we retain the original names from (1.3) for thé maps betweﬁ;n
the summands. |

Finally, we review another result of [BL] Wthh w1ll be needed in Sectlon
4. The pushout diagram (1.3) resulted from a Sp(4; Z) Borel construction.
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An analogous Borel construction was also performed for the projective sym-
plectic group, PSp(4, Z) = Sp(4, Z)/+ 1. The resulting pushout diagram is

Z{pXp 1) Z/2{Ix-=I)
l@"z llf (16)
ré 2, PSp@,Z),

where p = (0,0,) € St(2, Z). We define the group &’ by
_SH2,Z)XSt(2, Z)
Z{pxp ™y

As in (1.4), &’ can be simplified for calculating cohomology over the coeffi-
cient rings Z, and F,. Setting

G?)l

, Z.xX7

722, =2y

we have the following proposition.

PROPOSITION (1.7). Let R=7Z) or ¥,. Then there is an isomorphisim in
cohomology with trivial R coefficients:

H*(H'; R)= H*(®'; R).

2. The Integral Cohomology of G

In this section, we determine the cohomology H*(G, R) of G for the coeffi-
cient rings R=7,F,.

The mod 2 cohomology of the wreath product G =Z/4]Z /2 is well known
in the literature. As pointed out by the referee, for a general wreath product
group G, the Steenrod algebra structure of its cohomology can be found in
the book of Steenrod and Epstein [SE], Cohomology Operations; earlier
calculation of its co-algebra structure can be traced back to the work of
Smith and Richardson in fixed point theory. More recently, its homology
operations, together with the higher Bocksteins, have been obtained by May
in [Ma]. As we need to understand these classes explicitly, we redo part of
the computation.

ProrosiTioN (2.1). The mod 2 cohomology of G, H*(G; F,), is generated

by the classes Yo V1> Y25 V3> Y45 Y5 with I’YOI = I’Yll = 1: I'YZI = h@l = 2: 174| = 3:
and |ys| = 4. These generators have the relations vov; = Y& = 1172 = V3 =

YoV =Y0Y4=Y2Y3+V1Ys =i ="2v4=0; that is,
H*(G; ) =Fylv0, Y1> Y25 V3> Y4 ¥s] modulo the ideal
Yovs (v % Y12 (72)% Y035 Yo ¥as Y273 + Y14 (Ya) % Y2 va)-

The Bockstein operation, Sq', is given by Sq'(ve) = (70)> Sa'(v2) = vo7v2s
Sa'(v1) = Sq'(v3) =Sq'(v4) =Sq'(ys) =0.
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Consider the Lyndon-Hochschild-Serre spectral sequence associated to the
group extension

1—Z/4X2/4—G—Z/2—1 (2.2)

of the wreath product G. The E4"7 terms of this spectral sequence with F,
coefficients are given by

HP(Z/2; HI(Z/4 X Z/4; F,)).
The mod 2 cohomology of Z/4 is well known and is given by
H*Z/4;F,) =F,[a, B1Ka?), |a|=1, |B]|=2.
Hence,
H¥*Z/AXZ/4;F) = Ala), QO F;[81, 821, (2.3)

where [o;| =1 and |B;|=2. The action of Z/2 switches the generators—that
is, a; <> a, and B « B,. From this description, it is not difficult to calculate
the (Z/2)-invariant subalgebra H*(Z/4®Z/4;F,)%'2. Setting v, = o; + oy,

Y2 = arag, v3=01+82, va= o182+, By, and vs = 313,, we have
H%Z/2; H*(Z/4 X Z./4; F,))

~ Folv1s ¥2> ¥35 Ya» s 2.4
Av)% 1172, (V2) 5 Y2 v3 +71v4 (Ya) 5 Y2 v4)

As a Z/2 module, HYZ /4% Z /4;F,) is free and H*(Z /4 x Z./4) is the
direct sum of a free module and a trivial Z/2 module. This gives

H*(Z/2; H*Y(Z /4 xZ/4; F,)) =0,

and H*(Z/2; H®*"(Z./4 X Z./4;F,)) is a free H*(Z/2;F,) module on one gen-
erator. Putting this information together, we get the E, terms of the spectral
sequence shown in Diagram (2.5).

Y3¥ae 1Y MYs | -0 -0 -0 -0
Y5, V2YH Y5 | *Yo¥s  CY6Ys  cYoYs  cYoYs

Y4, 7173 -0 -0 -0 -0
V2,73 | *YoY2 VoV2 YeY2  Yov2

vl -0 0 0 0

Yo Y6 o Yo

Diagram (2.5)

From (2.1), we see that all of the generators of the E, terms must be per-
manent cocycles, and hence the spectral sequence collapses at £,. Routine
computations give the following two results.
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COROLLARY (2.6). The Poincaré series
x(G; Fy) =X dim[HY(G; F,)]¢9
of the mod 2 cohomology H*(G; F,) is given by
14+2¢+362+ -+ (n=1t"+---.

CoROLLARY (2.7). Let &, denote the second stage of the Bockstein spectral
sequence for G. Then &, is given by

Alvy, 141 O Fs[v3, ¥s1,
where |yi|=1, |y3|=2, |v4| =3, and |ys| = 4.

Next we examine the integral cohomology, H*(G; Z), of G. Since this group
is finite, the universal coefficient theorem implies that

ranky, H"(G; F,) = rank H"(G; Z) +rank H"*(G; Z),

where rank H*(G; Z) means rankg, H*(G; Z) ®F,.
Using the results of the F, computation, this formula allows us to induc-
tively compute the rank of H"(G;Z). In low dimensions, we have:

n rank H"(G;¥,) rank H"(G;Z) generators

1 2 0 0

2 3 2 80> 81

3 4 1 &2

4 5 3 g6, &t 83

5 6 2 8458280

6 7 4 g3, &1 8380, 8381

Table (2.8)

More generally, rank H?¥(G;Z) = k+1 and rank H**}(G;Z) =k.
Using this data, we now calculate the LHS spectral sequence of the group
extension (2.2) with integral coefficients. The E#>9 term is given by

EP9=HP(Z/2; HI(Z/AXZ/4;Z)),
and so the coefficient term is given by the degree-g subspace of the algebra
H*Z/AXZ/4;Z)=Z/4[B,.8,.x1Kx) (2.9)

where |3;|= 2 and |x|= 3. The notation indicates that the reduction modulo

2 of the class (; is 8; of (2.3). The reduction of the class x is oy 85+ o, 3. As

for the Z /2 action, it exchanges 3, and (3, and sends x to —x. The latter result

can be deduced from a similar argument given for H*(Z/2®Z/2;Z) in [L].
The subalgebra of invariants

EY*=H*Z/AQL/4;Z)""*
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is generated by g, =8,+82, g8, =2x, g3 =182, and g4 = x(B8;—B,), satisfy-
ing the relations (g,)?>=0, (g4)>=0, and g18,=2g4. The cohomology of
Z./2 with twisted coefficients is well known (see e.g. [Br]). In our case, for
p >0, we have

0 if g=1,2 mod4,

Hp(Z/Z;Hq(Z/4XZ/4;Z))={Z/Z if g=3,4mod4, g>0

Finally, the bottom row is a polynomial algebra on a degree-2 generator of
order 2 which we denote by g,. The terms p > 0 in the spectral sequence are
periodic with respect to cup product by g,. Let g5 and g¢ be respectively the
generator of H\(Z/2; H}(Z/4xZ/4;Z)) and H\(Z/2; HX(Z /4 X Z/4; Z)).
Then the product of these classes gives rise to gsg¢, 8582, ... and ggg3, ... in
the following diagram for E,.

Z/4g,g5,2Z/4g} -0 -0 -0 .0 .0 .0
Z/4g,| -0 0 -0 0 -0 -0

Z/4gy,7/4gt | -Z/2gs -1/28:8, -Z/28¢8y -1/2g:85 -1/28s85 -71/28:8}
Z/2g,|-Z/2gs -1/2g,8y -1/2gsgy -1/28,85 -1/28585 -1/28,8;

Z/4g, | -0 .0 .0 .0 0 .0
0| -0 .0 0 .0 0 .0
0 0 8o 0 g2 0 g3

Diagram (2.10)

The bottom row consists of permanent cocycles, because the extension
(2.2) is split. The classes g, and g, must also be permanent cocycles since no
nontrivial differential can affect them. To determine the differentials of the
spectral sequence, we compare it with the corresponding spectral sequence
with F, coefficients. By their definitions, it is clear that the reduction mod-
ulo 2 of gy and g, are (7,)? and 3, respectively. The class g, must reduce to
oYz, since Sq': HX(G;Z/2)— H3(G;Z/2) factors through H*(G;Z)=
Z./2. By examining the map

H*Z/4xZ/4;7) > H*(Z/AX Z/4;7./2),

we see that the reductions of g; and g4 are v5s and 3 v,, respectively.

PROPOSITION (2.11).  The integral cohomology H*(G;Z), £ > 0, contains a
Z./8 summand generated by [g;]°.

From the discussion above, H*(G; Z) must have rank 3. There are classes

Z/41g31DZ/4(g) 1DZ/2[gs1DZ/2[(g0)?]

on the appropriate diagonal of the spectral sequence (2.10). The class Z/4[ g;]
generates a Z /4 direct summand which accounts for (g;)2 Further, from the
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discussion of the reduction modulo 2 of these classes, we see that no non-
trivial differential can affect them. Thus the only possibility is that there is a
Z./8 extension between Z/2[gs] and Z/4[g,].

ProposiTION (2.12). In the spectral sequence (2.10) we have d,(ge) = g5 8o-

From the rank calculation, we know that the rank of H>(G;Z) is 2. By con-
sidering reduction modulo 2, we find that g, and g, g, are permanent co-
cycles. To show that H>(G;Z) contains a class of order 4 given by g,, we
consider the Bockstein spectral sequence whose &, term was computed in
Corollary (2.7). For i > 1, we denote the ith Bockstein operation by 3;. The
first Bockstein operation is, of course, Sq'. To account for the class Z/4[g,]
we must have 3,(vy;) =13, hence §8,(v3) =0. Since 75 is the mod 2 reduction
of Z/8[g;], it must survive to &;; that is, 8,(ys) =0. This also shows that
83 #0, 50 B,(4) = 0 up to lower filtration terms. This determines all the dif-
ferentials 8, for &,. The image of 8, in &3 consists of the class y;y,. As this
is the reduction of g4, we must have that g, is precisely a Z /4 class. We note
that the remaining differentials in the Bockstein spectral sequence are now
determined by 3(v4) =s. Thus

H(G;Z)=Z/4[g,0®Z/2[g,80],
so the class g must perish at E,; that is, d»(gs) = £580-
COROLLARY (2.13). (i) There is a unique Z./8 summand in the cohomology

H*(G;Z) generated by g4 and no other Z./8 summands. (ii) The Z/4 sum-
mands in H*(G;Z) are given by the Z/4 summands in the subalgebra

(Z/4]g,1QZ/4[g,1R7Z/8[g31)/K(g4)>).

3. The Cohomology of H

In this section we determine the cohomology of the group H with Z and F,
coeflicients. Further, we examine the induced map in cohomology

¢1: H(G;Z)— H*(H;Z),

which is one of the maps in the Mayer-Vietoris sequence (1.5).
Recall that H is isomorphic to the semidirect product

ZXZ
{4, —-4)

and has a presentation given by generators A=(1, —1), B=(0,1), and C=
switch, satisfying the relations

A*=C*=CAC'=[A4,B]=1, [C, B] = A. (3.1)

XZ/2,

From this there is clearly a split group extension

1—Z/4[AIXZ[B]— H—Z/2[C] — 1 (3.2)
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with associated LHS spectral sequence
EY9=HP(Z/2; HI(Z/4 X Z; R)) (3.3)

for coefficient module R. As in the previous section, we are interested in the
2-torsion part of the cohomology, so here R is Z or F,.

First we calculate the spectral sequence (3.3) with F, coefficients. Since F,
is a field,

Ey*=H*Z[A]XZ/4[B]; F,) = Alpy, p21QF,[ 0], (3.4)

where |p;|=]|p02|=1 and |g|=2. The classes p; and p, are the duals of the
abelian group Z X Z./4, that is, they are defined on the generators A, B by

p1(A)=0, py(4)=1,
p1(B)=1, p,(B)=0.

From (3.1) and a straightforward computation, the action of C takes p, to
itself, p, to p;+ p,, and fixes o. The subalgebra of invariants is given by

HYZ X L14;F,)*% = A[5), 6,]QF,[6;1/(8,82),

where we define 6, = p;, 6, = p; p2, and 65 = o. Since there is a commutative
diagram of group extensions

ZxXZ

| e (3.5)

1 —Z/4XZ2Z/4— G—Z/2—1,
we have a natural induced map
H*(Z/4XZ/4;F,)2'? > HY(Z X Z/4; F,)%"?
which is given by |
N=aitay—98;, v=arap—dy, v3=81+062-0,
Ya=oBrtay B 8183, vs=B16~ (83)%
In all degrees, H*(Z X Z./4;F,) has rank 2, and is given by
Fylp1p20" ' 1@F,[0'] if k=2i,
F 020" |®OF[(p;+p2)0'] if k=2i+1.

Furthermore, as a Z/2 module, H*(Z X Z./4;F,) is trivial in even degrees
and free in odd degrees. Finally, we have

E30=H*Z/2;F,) =F,[85], |8o|=1.

HYZXZ/4;F,) = {

We put this information together in the spectral sequence diagram (3.6) (see
next page). Since H is a semidirect product, the bottom row must survive to
E,,, and so all generators at the E, level are permanent cocycles. The algebra
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800303 656,05
82,035,835 | 8063  -650;
86| -0 0 -0 -0
8062 6503
82,83 | 8003  -836;
8| -0 0 -0 -0
8o 62 83 o8

Diagram (3.6)
structure of H*(H;F,) and all but one of the Bocksteins follow from (2.1)
via the map o
H*(H; Fy) = F,[80, 81, 83, 83148081, 8185, (81)% (82)), -
Sa'(80)=(80)% Sq'(8)=0, Sq'(82) =253,

PROPOSITION (3.7). The Bockstein Sq'(8;) is given by Sq'(8;3) = 6¢6;.
There is a central extension

1— Z[AB)>— H—> Djg— 1, (3.8)

where Dy is the dihedral group of order 16. This leads to an exact sequence
of group extensions

1—»%-» H —17/2[C]—1

| | \= (3.9)

1—> Z/8[B] — Dys— Z./2[C] — 1,

where C~ C, A~ B~2, and B ~ B. The cohomology of the dihedral group is
well known; a detailed exposition is given in [Sn].

ProprositiON (3.10). The cohomology of the dihedral group of order 2",
H*(D,n, F5), is given by

H*(Dyn, Fy) = Fy[x0, x1, 01/4(x1)* = x0x1),
where |x;| =1 and |»|=2. The nontrivial Bockstein is given by Sq'(w) = xy.
For the spectral sequence associated to the bottom row of (3.10),

H*(Z/8[B]; Fy) = Alx| ]| QF;[w]
and
H*(Z/2[C1; Fy) = F,[x0].

The morphism of group extensions (3.9) leads to a map in cohomology given
by xo+~ 8¢, X1~ 61, w+ 63. The claim of (3.7) thus follows by naturality.
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Using the preceding result, a routine computation yields the next propo-
sition.

ProrosITION (3.11). The &,-term of the Bockstein spectral sequence for H
is given by

Aley, €2, €3] @ Fs[e4] Keg €, €63, €2€3),
where |e)| =1, |ey| =3, and |e;| = |e4| = 4. The classes e, €5, €3, €4 have repre-
sentatives 6,, 8,83, 6,63, and (83)?2, respectively.

We now look at the spectral sequence associated to the group extension (3.2)
with integral coefficients. Here the E4"7 term is given by ~

EPYH)Y=HP(Z/2; HI(ZXZ/4;Z))
and the coefficient cohomology by
HYZXZ/4;2)=H*(Z;ZYRH*(Z/4;Z)
=Z[p, 51/(48, p*,

where |p| =1 and |8 = 2. The Z/2 action on Z[p, 6]/{45, p>) preserves
the generator p, but sends 6 to its negative. Thus the invariant subalgebra
HY%Z/2; H(ZXZ/4;Z)) of H*(Z xZ/4;Z) is generated by the three ele-
ments A, = p, h, =26, and h; = 82; periodically, the invariant subalgebra of
a particular degree g alternates between two successive copies of Z/2(h, h}),
Z/2(h hyhf) for g=2,3 mod 4 and copies of Z/4(hs), Z/4(h hl) for g=
0,1 mod 4.

The bottom row E;° of the spectral sequence is isomorphic to a poly-
nomial algebra H*(Z/2;Z) = Z/2[hy], * > 0, as in the first row E5>!, whichis
isomorphic to Z/2[h; hy]. Above these two bottom rows, we see that each of
the terms in £4"9, p, ¢ >0, is isomorphic to Z/2. As a H*(Z/2,Z) module,
the horizontal row E5*”, p > 2, is freely generated by classes in £;°! and E;2.

To sum up the situation, we have the following diagram of the £, terms.

Z/Ahihy | -hihs  -hihshy  -hihshg  -hyhsh
Z/4hy | - hs ‘hyhy  hshy  -hyhd
hyhy | ~hyhy  ~hyhyhg  -hyhghg  ~hihyhd

hy | -hy hyhyg hyhg -h,hE
Zh, | -0 -hyhg -0 -hyhi

0 he 0 hd

Diagram (3.12)

Using (3.6) and the universal coefficient theorem, we deduce the rank of
H*(H;Z) as shown in Table (3.13) (see next page). In general,

rank H?*(H;Z)=rank H*"Y(H;Z)=¢ for {>0.
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n rank H"(H;Z) rank H"(H;F,)

AN L W DN e
W W DN D) e
ANV b W=

Table (3.13)

LEMMA (3.14). There is a direct summand isomorphic to Z./8 in H¥(H;Z).

To see this, we examine the LHS spectral sequence associated to the central
extension
1—Z[AB)>*— H— D —1

which appeared in (3.8). The cohomology of Z is an exterior algebra on a 1-
dimensional class, say po. On the other hand, the integral cohomology of the
dihedral group can be found in [Th, p. 47, Thm. 4.6]: H*(D,4; Z) is gener-
ated by classes a, 8, ¢, || =8| =2, |v|=3, || =4, subject to the relations

8¢ =2y =20 =2g=0,
v2=8:  ol=ap.

Hence we have the following spectral sequence diagram, which must col-
lapse at Ej.

pof3
p|-0 -pa -py -pB* -pay
pB eS  PBY
0 « oY of oy af?
B B* By g?
¢ af
Br=v*

Diagram (3.15)

The differentials are determined by d,(p) = c;a+ ¢, 8, ¢, ¢, €{0,1}, and cup
product. Abelianizing the presentation of A shows that the torsion piece of
H?(H;Z)is Z/2, so this differential is nonzero. It is clear that the class ¢ is
not in the image of d3 2 because ¢ is not in the ideal generated by «, 8, and
that d,(p+y) has a nontrivial image. Hence at E; the term p-y disappears, and
since there exist no other terms in £33 there is no extension problem and the
class { survives to a Z/8 summand in H*(H, Z). By cup product, {’ givesa
corresponding Z /8 summand in degree divisible by 4, proving (3.14).
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ProrposiTioN (3.16). The d, differentials in the spectral sequence (3.12) are
determined by:

dr(h) =0, dy(hy)=hihy, dy(h3)=0,
dy(hy) =0, ds(hs)=hihshy.

From the E, diagram, we see that there is a single class, [4;], in degree 1.
Abelianizing the presentation of H, it is clear that this class must be a per-
manent cocycle. Further, the reduction modulo 2 of this class is §,. Since the
extension in (3.2) is split, Z/2[h,] generates a direct summand of the coho-
mology, so the terms in the bottom row of the spectral sequence are perma-
nent cocycles. So we see that d,(#;) =0.

We now consider degree 2. It is clear that 4, must reduce to (6,)2> modulo
2. There is, however, a second class—that is, Z/2[h,]. From the rank calcu-
lation above, the only possibility is that d,(4,) = h  hy.

There are three classes of degree 3: Z/2[h, ], Z./2[h,], and Z/2[h hy).
It follows from the preceding paragraphs that /2,4, and A, kg are in the kernel
of d,, and that A, h, is in the image of d,. Thus we have d,(h,) = 0 from rank
considerations, or more simply from its position.

We now consider degree 4, which is the direct sum of the classes Z/4[ /5],
Z/2[hahy), Z./2]hyhol, and Z/2[(hy)?]. The term hyh, does not survive to
E;, because its image under d, is nonzero. We know that H*(H; Z) is rank 2
and contains a summand isomorphic to Z /8 by Lemma (3.14), and that (/,)?
is a Z/2 direct summand. The only possibility is that there is an extension
between A3 and A4 h,. Thus d,(h3)=0.

The degree-5 classes in the spectral sequence are given by

Z/Ah h3)®Z/2[hs]1DZ/2[hyhyhglDZ /2 hyhy]®Z/2[ h hE).

From our previous computations we know that A, h3, hyhi hy, and hyhg are
in the kernel of d,, and that /42 has a nonzero image. As for the remaining
class A5, its image under d, is determined by naturality. Comparing with the
spectral sequence for G, we have gs— hyh; and gg— hs under ¢]. Because
d2(86) = 8580s dar(hs) = hyhyhy.

An examination of the E£; term now shows that all the generators are per-
manent cocycles. This concludes (3.16).

We now determine the induced map ¢ in cohomology. As mentioned above,
gs+— hyh; and gg — hs. Furthermore, it is clear from the definition that
©1(g0) = hy. The images of the remaining classes can be determined by ex-
amining the induced homomorphism

o1t H(Z/4XZ/4;Z)— H(ZXZ/4;Z).

Since the homomorphism ¢, sends 1 X Z/4 to the antidiagonal subgroup
Z/4(1, —1) in Z/4 X Z /4, the induced homomorphism ¢} sends 3, to 6 and
B, to —4. By using the Kiinneth formula, it is not difficult to see that ¢7:
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H3Z/4xZ/4;Z)— H*(ZxZ/4;Z) is a surjection, and so ¢}(x) = £p6. In
terms of the (Z/2)-invariant cohomology classes, we have g~ 0, g, h h,,
g3+ hs, and g4 2hh,. Thus we have the following.

ProrosiTiON (3.17). The induced map in cohomology

@i+ H*(G; R)— H*(H;R)
is given by
Yo 60, Y101, Y2 02,

v3~0, Y4~ 08183, s 03
for R=F,, and by
g+ hy, £~0, gy~ hih,y,

g3- hy, g4~ 2hihy
for R=Z.

In the remaining sections, we find it convenient to express the cohomol-
ogy classes of H*(H;Z) in a different form. In the spectral sequence (3.15),
d>(p) # 0, because H*(H; Z) is isomorphic to the torsion summand of
H,(H;Z) and this is easily seen to be cyclic of order 2. Furthermore, d,(p) #
3, since 3 generates a direct summand in the cohomology of H. This follows
from the fact that there is a split surjection of H onto a cyclic group of order
2 corresponding to the generator C. Thus, d,(p) is either « or ae+ 3. These
two choices differ by an automorphism of H*(Dy¢; Z), and we take d,(p) = «.

Defining 0 = p(a+ ) and p’=2p, we have the following E; terms, at
which the spectral sequence collapses.

Bo
ol-0 ¢ 0 -p¢

0 B v B> By
¢

Diagram (3.18)

We note that p’ is a class of infinite order, which we denote by p in the se-
quel. Further, we note that p¢ € H>(H;Z) has order 4.

The correspondence between the notation here and that in the previous
calculation of H*(H; Z) follows. It is not hard to see that hy =3, h; = p, and
hy=¢. The classes hy, hyhye H*(H; Z) must correspond to classes in {v, o).
However, by examining the reduction modulo 2 of the relation y2 =8¢, we
see that Ay =+. Thus A, h; = o+ lower filtration terms.

For the convenience of the reader we include the following table, which
summarizes information about the integral cohomology classes of H.
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class degree alias reduction order

P 1 hy 6; o0
B 2 ho 82 2
Y 3 h4 6063 2
g 3 hzhl 6062 2
¢ 4 hs 63 8

Table (3.19)

CoOROLLARY (3.20). The image of the induced homomorphism
o1t HYG;Z)— H*(H;Z)
is the subalgebra of H*(H; Z) generated by ¢, o, and 2p¢.

It follows immediately that the cokernel of ¢ has the following additive
basis:

p, p{mod2, pt?mod2, ..., pf'mod2,y, By, £, ..., B/ ¥y, ... . (3.21)

Note that, with the exception of the infinite cyclic summand Z[p], the co-
kernel of ¢f consists entirely of Z/2 summands.

4. The Image of ¢3

In [BC; Co], Benson and Cohen computed the mod 2 integral cohomology
of the mapping class groups I'§ and I'y. Their method involves examining
the group extension

1—2Z/2—T9—T8—1. (4.1)

In this section we apply their results to get a description of ¢3. We first recall
the presentations of the relevant groups. The braid group B, has a presenta-
tion with generators oy, ..., 0,,_; and relations

lo,0;1=1, |i—j|>1; 0;0;410;=0;410;0;41- 4.2)
To get a presentation of the mapping class group I'g, we add the relations
(01027+0,_1) " =01 0y_205_10,_3--01=1
to the relations (4.2). If n=6 and we add the relations
(0++046204---07)2=(0,0,030405)=1 and [0, ---040%04---0y,0;]=1

to the braid relations (4.2), we get a presentation of I'y. We denote braid
group generators by o;, the generators of I'$ by 4;, and the generators of T'Y
by {;. Further, we define the words

3=0600006000G0L0LG0LHG 0
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R CEERY DY Y IPEPRY O

The image of the half-twist 3 has order 2 in I‘g since its square, considered as
an element of Bg, generates the center. Furthermore, we have

30’15=0'5, 50'23:—0'4, 50’33’:03.

The image of ¢ in I'y is the hyperellpitic involution, so the central extension
(4.1) has the form

1—Z/2[{] — T YT 1.

In order to proceed, we need a more explicit description of the inclusion
. 0
0t H-T5.

ProprosiTION (4.1). Let & be defined as in Section 1. The map ¢,: ®@XZ1/2 —
'Y maps ® X Z./2 isomorphically onto the subgroup generated by ¢y, ¢, {4,
§‘5, and 3.

PROPOSITION (4.2). The map ¢, | 2 H—TY is given by

Ae 0005t Brftsts, CH 3,

where 3 denotes the image of the half-twist braid. Furthermore, composing
¢, With the surjection T'Y — ¢, we obtain a map ®: H— ¢ whose image is
isomorphic to Dg, the dihedral group of order 8.

We note that the image of A% is the hyperelliptic involution. Consider the

group extension
14

1—Z/2—T9518—1.
The element (§; ¢, §1)%(84 s $4) 72 is mapped to the identity element by . In
particular, this element can be taken to be one of the generators of the kernel
of the map Bg— I'$ (cf. [MKS]). Thus ({18, &1)2($a &s €4) 2 must be either the
identity in I'Y or the hyperelliptic involution. However, it is easy to see that
it is not the identity, since its image in Sp(4, Z) under ¢, is —1.
Given the map H — I'Y, its image is easily computed:

A= (13)(46):=a, B~ (46):=b, C+~ (16)(25)(43):=c.

Adding the relations a®>= b% =1 to the relations that come from H, we have
the presentation of the dihedral group of order 8. The subgroup of the image
in Ag is cyclic of order 4, generated by cb. ‘

An examination of the relations following (4.2) shows that there is a nat-
ural homomorphism from I'§ to the symmetric group Z¢. We call the kernel
of this map the projective symplectic group, PSpT§,

1—PSpI§ —TI§—X,—1. 4.5)

A set of generators and relations for A’ can be derived in the same manner
as for H (cf. Section 3). In fact, we call the corresponding generators 4’, B,
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and C’. There is a map ®’: H'— XL, defined analogously to ®. This leads us
to the following commutative diagram of group extensions:

1— Z[(B")]— H' 2, po 1
| le ] (4.6)

1— PSpT¢ — ¢ >, —1.

The generators of H’ have the same images in X4 as their counterparts in .
Let Dg be the semidirect product of Z/4[d] and Z/2[c], and let x;: Dg—
Z./2 be the homomorphism given by

xi(c)=1, x(d)=0,
X2(c)=0, Xxp(d)=1

In our notation above, d = bc; thus the maps are given by

b ¢ bc

X1 1 0 1
x1+x2 0 1 1
X7 1 0 1.

We now compute the map H*(Xg; F,) » H*(Ds; F,) arising from the com-
mutative diagram (4.6). The cohomology ring H*(X¢; F,) is given in [BC,
Lemma 5.6]:
H*(Z4;F) =F,[0, a, 8, v1/KBy) = H*(Ag; Fo) QK[ 6],
16]=1, |a|=2, |B]=]v|=3.

The action of the Steenrod algebra is given by

Sq' Sq?
a B+y o
B 0 aB
0% 0 oy.

Here 6 is the sign homomorphism, and hence 6 - X;.

ProrosiTioN (4.7). Under the induced homomorphism H*(Xg; F,) -
H*(Ds: F,), the element o is sent to w+x}.

Under our explicit embedding of Dg in ¢, we have
1—Z/4— Dg—2Z/2—1
Lol

By restriction to Ag, we see that 9*(a) = w+c;xE+cyx,x, for ¢, c,€F.
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Examining the diagram

*

o Lw+c,x12+czx1x2
| 5a !
B+y — Xiw
| 8@ )
a(B+y) — (0+xP)x 0,

we see that 9*(8+v) =x,w, but since multiplication by x;w is injective in
H*(Dg; F,), 9*(a) = w+x£. By a similar computation, we see that

19*(6):)(260, 19*('}’):()(1"')(2)03,

or vice versa. To be precise, there is a choice involved in here; however, be-
cause the two possibilities are related by an automorphism of the cohomol-
ogy algebra, it does not matter in our calculation. To be consistent, we make
sure that our choice agrees with that of [BC].

The characteristic class of the upper central extension in (4.6) is given by
X3, since X, is the reduction modolu 2 of the integral class in H*(H’; Z).
From [BC, p. 70], we see that (8% +ad+8)2=0 is a relation in H*(I'$; F,);
hence, by naturality, the pullback of this relation must be 0 in H*(H"; F,).
We have

(83 + b+ B) = x7 +x1(xE + w) + ¥ *(B)

=xlw+¢*(6)’

but 4*(3) cannot be x,w because (x;+ x,)w is not nilpotent. Thus §*(B) =
(x1+x3)w = (x;+Xx;)w. Summarizing the computations above, we have the
following proposition.

ProrpositioN (4.8). The map
9% H*(X6; Fp) — H*(Dg; )
is given by
§mx;, a-xtto,
Br (xij+x)w, v- X

Computing the spectral sequence associated to the top exact sequence in
(4.6), we have Ey>*= A[p]® H*(Dg; F,). Thus, the E, terms are

px{
D | pXy pX1X3
[29) pw
X1 xf x7
Xy XXy  X{x,
W X0

Xy
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and all differentials are determined by d,(p) = X, Xx,. As no other differentials
are possible, the spectral sequence collapses at E:

0| -0 -ox;

X xi X
Xy X1X2 Xjw

w Xow

Here o = p(x;+X,) and satisfies the cohomology relations

x}=x0=02=0,
ProrosiTION (4.9). The map
(62)": H*(T§; ) — H*(H'; Fy)
is given by Proposition (4.8) and uw~ o. '

The proposition follows from the preceding computations and also from
determining the induced map

H'(Ag; H'(PSpT§; Fy)) — H'(Dg; H'(Z; Fy)).

In [BC], a change of notation was made at this point, and to avoid con-
fusion we write U = u+ 82. The characteristic class of the central extension

1—Z/2—T9—T§—1 (4.10)
is given by U+ «. In the third part of [BC], it is determined that

Sq'(U)=6U+ s+
=83+ ad+8+6U.

The central extension (4.10) leads us to another commutative diagram of
group extensions,

1—Z/2—H—>H —1

| | | (4.11)

1—Z/2—T9—T§—1,

and to a corresponding morphism of spectral sequences. For the bottom
spectral sequence of (4.11), we have

E3*=F[z]Q H*(T§; Fy),
with
d2(z)=U+a, d3(Z2)='Y,
and d,=0 for n= 4. Proposition (4.9) and the computation of Sq'(U) de-

termine the cohomology algebra structure of H*(H’; F,) by naturality. Ex-
plicitly, we have the following.
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ProrosiTiON (4.12). The cohomology algebra of H' is generated by x,, X,,
w, 6, together with the relations x{ = x,x, = x,0 = 0> =0; that is,

H*(H'; F) =F,[x), x,, 0, a]/(xi", X1X2, X0, a?)

and
Sql(w) =Xy, Sql(e) =x;0+x,0.

Now, for the top spectral sequence of the extension (4.11), we have
E3*=F[ZIQH*(H'} F,),
dy(2)=0+w, dy(2%)=x0.

However, d,(2x;) =Xx,(0+w) =x,w, so the spectral sequence collapses at
E;. Following is a diagram of the £, terms of this spectral sequence.

22x}
22 22)(1 22(.0
22XZ 220
sxt
Z 2)(1 Zw
X, Zo
X1 xz  xi Xt
X5 w  Xe Xiw
0 X
X0 Xxto
wo

Diagram (4.13)

The resulting E; = E,, is the tensor product of F,[22] and the algebrz
on the bottom line of the spectral sequence. We denote the inflation of w e
H?(H'’;F,) by &,-and note that this is also the inflation of ¢. Hence this al-

gebra is given by
A A A A2 A A A A ,.2
Fz[xl,xz,x3]/(x2=x1x2=x2w=w =O>,

with Sq!'(&) = £, &. Comparing with our previous calculation of H*(H; F,) we
have a correspondence between classes given by %, %, &, 2% and 8¢, 01, 02, 03.

Recall that the mod 2 cohomology of T'Y is generated as an algebra by the
classes «, 3, 8, 228, 2%, 228, and z* [BC, p. 102]. The map ¢3: H*(I'Y; F,) —
H*(H;F,) is determined by the morphism of group extensions (4.6) and
the fact that all the classes above the bottom line split as products in the
E, terms of the spectral sequence for H*(H;F,). From (4.9), we have that
8 X, am X2 +d, and B~ %G,
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We now determine the map ¢3 from H*(I'Y; Z) to H*(H; Z). To avoid
confusion, for the remainder of this section we will denote some classes of
H*(H;Z) with the subscript H. Hopefully, the reader will excuse this tem-
porary overlap of notation. Refering to [C, p. 35], we have the following
table.

i dimp, HX[Y; Z)QF,

1 0

2 1

3 1

4 3

5 3
Table (4.14)

From the preceding computations and results of Cohen [Co, Lemmas 7.4
and 7.5], the cohomology of I'# is generated as an abelian group by the in-
tegral classes whose reduction modulo 2 is given by Table (4.15).

dimension reduction of generator

2 &?
3 B
4 z*, Bo+6%a, 8*
5 626, ZZB, z263

Table (4.15)

We assign the following names to the algebra generators of the integral co-
homology:
Vl:621 V2=6’ V3=Z4,

vy=P6+6%, vs=2%B, »*=2z285

Since 6% = »2 and »,v, =628, it follows that all of the classes in Table (4.15)
are accounted for by this assignment. The reductions modulo 2 of »y, »,, v4
map to X£, ¥,&, ¥{ and come from the bottom row of the spectral sequence
(4.13). However, these are the reductions of integral classes in H*(H; Z).
Hence we see that v, — By, v, ~ o, and v~ B#.

Since its reduction is z*, the class », is a class of order 8 in H*(I'Y; Z).
From (4.15) we have z*~ 24, and so »; — {. The reduction of v is z26° and
this maps to 22%{. Referring to Table (3.19), we see that this F, class corre-
sponds to 8363 and this is the reduction of By vy. This gives vg— By vx. H-
nally, the reduction of »s is 28, and this maps to 22%;& = 8,656,. This is
not the reduction of an integral class, because it has a nontrivial image under
Sq!. Thus, »s+— 0.

(4.16)
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Summarizing the results of the preceding paragraphs yields the next prop-
osition.

ProvposITION (4.17). The induced map in cohomology

03 H*(I3;Z) — H*(H; Z)
is given by
vi~ B, V2o, v3—{,

g ﬁfzh rs—0, vs— Byvn.
In (3.21) we showed that the cokernel of ¢f is isomorphic to
Zoyp@ZL/2ps DZL/2p8*D - ®ZL/2p7'D -
®L/I2YDL/ 2By ®L/25yy® -+ ®LI2BL KD -+

On the other hand, from (4.13), the image of ¢35 contains the subalgebra gen-
erated by B, ¢, By v, and in particular, all elements of the form 855 vy,
i > 0. Since other elements in Im(¢3) have already appeared in Im(e7), we
have the following.

PROPOSITION (4.18). The cokernel of ¢i® ¢35 is isomorphic to

Zoyp@Z/2p8 DL/2p5*D - DL/ 2p; ' D -
@Z/2YDL/2y{ DL/ 2v{*D - DL/ 2vE'® -+,
where deg(p¢') =4i+1 and deg(y¢') =4i+3.

5. The Final Computation

From the Mayer-Vietoris sequence of the triad (Sp(4, Z); G, I'¢; H), we have
0— coker(p{ "' @¢f ") — HU(Sp(4, Z); Z()) — ker(o{@¢§) —0, (5.1)
where o] @® ¢35 are the induced homomorphisms

ot @ 3 HX(G; Z2)) @ H*(T3; Z2)) — H*(H; Z(3)

between cohomology groups. Thus, it remains only to determine the kernel
and cokernel of ¢]@® ¢3 and to solve the extension problem in (5.1).

We determined the cokernel of o7 @ ¢3 at the end of the preceding section.
An immediate consequence is that for ¢ odd, there exists an isomorphism

H9YSp(4,Z); Zz)) = ker(¢{D¢3).
On the other hand, for g even, there are three group extensions:
0—> Zey[p] > HXA(Sp(4, Z); Zz)) — ker(of@e}) —0,  (5.2)
0— Z/2[p¢ 15 H¥¥2(Sp(4, Z); Z(yy) — ker(of 2@ 3 "2 —0,  (5.3)
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0— Z/2[y¢"1 -2 HY*4(Sp(4, Z); Zip)) — ker(of H@pd ) —0,  (5.4)

where i > 0.

PROPOSITION (5.5). The cohomology H?*(Sp(4, Z); Z,)) is isomorphic to
Z,DZ/2, and the group extension in (5.2) takes the form

0— Zyy[0] - Z/12®Z ) — Z/4DZ/2— 0.

As is well known [LW, p. 206], the homology H;(Sp(4,Z); Z/2) is a cyclic
group of order 2, and so the torsion subgroup in H*(Sp(4, Z); Z,)) is iso-
morphic to Z/2 by the universal coefficient theorem. Because the rank of
H*(Sp(4, Z); Z,)) is known to be 1 [BL], we must have H?*(Sp4, Z); Z) =
Z,@Z/2. As with the groups G, H, and I‘z, there is a Z/2 direct sum-
mand of H*(Sp(4,Z),Z,)) with a generator B in H?*(Sp(4, Z); Z ). This
comes from the sign homomorphism Sp(4, Z) — Z /2, which factors through
Sp(4,Z/2) = X¢. Explicitly,

H*G;Z»5)=Z/2[go]®Z/4[g,] and HTG;Zp) =Z/2[»].

By our previous computations, g, and »; map to the class 8 in H 2(H; 7))
and g, maps to 0. Cancelling off the terms corresponding to the sign homo-
morphism in (5.2), we have

0— Zy[p] 2> Zpy— Z./4[g] — O;

clearly, 8 must be multiplication by 4 in this short exact sequence.
PROPOSITION (5.6). The group extensions (5.3) and (5.4) do not split.

To prove that the sequences (5.3) and (5.4) are not split extensions, it suffices
to show that the mod 2 reductions of d(p¢’) and d(y{?), i >0, are zero in
H*¥*2(Sp(4, Z); F,) and H**4(Sp(4, Z); F,), respectively. Using the Mayer-
Vietoris sequence (1.1) with F, coefficients, this is equivalent to showing that
the mod 2 reductions of p¢’ and v¢' lie in the image of P1D p3.

From (3.7) we see that the reductions of the classes p¢’ and y¢* are 6,53
and 6,62' !, respectively. Hence it follows from (3.17) that ¢}(7y;7ys) =6 163,
For the other extension, we have that y¢’ reduces to 6,67’ *1. Furthermore,
this class is the image of y;y;vi@®z* +25.

PRrRoOPOSITION (5.7). The element g, gﬁ@O of
HY* (G Zoy)) ®HY ('35 Zz)

lies in the kernel of oi'**@¢3'*2. The restriction of the extension (5.3) to
the summand Z./4[g,gi®0] gives a Z./8 summand in H***(Sp(4, Z); Z);
that is, .

0—Z/2[p¢']— Z/8 —  Z/4[g1gi®0] —0
= | |

0— Z/2[p¢'1— H*+2(Sp(4, Z); Z2)) — ker(of 2@ 3 t%) — 0.
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PROPOSITION (5.8). Let i > 0. The element g5 — v} lies in the kernel of
o1 @ ¢3". The restriction of the extension (5.4) to the summand Z./8[g}—v}]
gives rise to a Z./16 summand in H*(Sp(4, Z); Z5); that is,

0— Z/2[y¢'1— 7/16 — Z/8[gi—»i] —0
\= | |

0— Z/2[v¢'1— H*(Sp(4, Z); Z3)) — ker (o' @ ¢3') —> 0.

In order to prove (5.7) and (5.8), we first observe that the Z /4 class g, g} is
mapped to zero by ¢ *2 and so Z /4[ g, g4 @ 0] represents a direct summand in
ker(¢4'+2@¢4'+2) On the other hand, the Z/8 classes g; € H*(Sp(4, Z); Z)
and vy e HY(T'¢; Z) both map to {'e H4(H Z), so their difference g3 — v} lies
in the kernel of ¢; ‘@go

To show (5.7) and (5.8) we will demonstrate that, by restricting the group
extensions (5.3) and (5.4) to a summand in ker(¢] @ ¢3) different from
Z/4[g,gi@®0] and Z/8[gi —»}], we obtain a split extension. Since the group
extensions do not split by (5.6), the only possibility is that the restrictions to

the summands Z/4[g,g5@0] and Z/8[ g} —»] form a nonsplit extension.

We can view our setting as that of a cofibration A—er 2 x /A, with

A= BH, X = BT'YvBG, and X/A= BSP(4, Z). Suppose we are given a direct
summand Z/2"[b] in H*(X;Z) which lies in the kernel of f*. A necessary
and sufficient condition for lifting Z/2"”[b] to a summand in H*(X/A;Z)
by p* is that there exists a class ¢ in H*(X, F,) such that the mth-order
Bockstein operation 3,, takes ¢ to b mod 2 and f*(c) =0. For example, con-
sider the Z/4 summand generated by gZ@®0 in H*G; Z)®H*(I'Y; Z). The
mod 2 reduction of gZ@0 is the class y#@0 which in turn lies in the image
of second-order Bockstein yZ@0 = (3,[v;7,@0]. Since ¢} (y;73) =0, it fol-
lows that the summand Z/4[g?@®0] in ker(of @ ¢3) can be lifted to a Z/4
summand in H*(Sp4, Z); Z).

In (5.12), we work out a set of algebraic generators in ker(¢7@® ¢3) which
include [ g, g3®0] and [g3 — V3] Applying the above criterion to these gener-
ators, it can be shown that all the summands but [g,g{@0] and [g} —»4] can
be lifted. Note that if a summand Z/2’[«] can be lifted then its tensor prod-
uct with Z/2/[b], j =i, can also be lifted. For example, ker ¢} is spanned by
the following: g, g2 ... 8183, gigs, ..., 8185, gigl, ... . Since in the above we
have shown that Z/4[g1 @ 0] can be lifted, it follows that all the summands
Z/4[g1g (@0] (i=2, j=0) can be lifted to H*(Sp(4, Z); Z). Applying this
technique to the aforementioned generators of ker(¢]@® ¢3), we obtain the
proof of (5.7) and (5.8).

To determine ker(o]@® ¢3), we observe that from the homomorphism

P1D 3 H*(G; Z(z))@H*(on; 7)) — H*(H; Z5)

we can factor out H*(G; Z,)) in the domain as well as the image of ¢f
in the range. On the corresponding quotients this gives rise to an induced
homomorphism
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@5 HX(T3; Zy)) — H*(H; Z3))/Im .

Similarly, by interchanging the role of ¢ and ¢3, there is an induced homo-
morphism

From the definition of these homomorphisms it is easy to see that there are
exact sequences

0 — ker o] — ker (i@ ¢3) — ker 35— 0, (5.9
0 — ker ¢35 —> ker(p]® ¢3) — ker g7 —> 0. (5.10)

Since ker ¢} has been determined in (3.21), we can study ker(o7@ ¢3) by cal-
culating ker 5.
Recall that coker o] = H*(H; Z;))Z/1m ¢7 is isomorphic to the direct sum

Zoyp@Z/2pfDL/2p5* D - DL/2p8'® -+
@®Z/2yDZL/2iyD - DL/2B - D -,
and the image of @5 consists of the summands

Z/2BY@ZL/2B* Y@ - DL/2B ¢ yD - --.

An elementary calculation shows that the rank polynomial 3 rank(Im ¢3)t?
of Im @3 is of the form ¢3/(1—¢?)(1—¢*). Combining this with the known
structure of H*(I'y; Z ), we have the following proposition.

ProrosiTION (5.11). As a graded abelian group, ker 3 is isomorphic to

Ker &% = Z/8@®gq—l(Z/2) g =0 mod4,
$2= @qu/Z otherwise,

where g, are the coefficients in the polynomial

S g 19— 1+34+ 14+ 15+ 48
&2 (-2 (1= 1%

To complete our analysis of ker(¢]@® ¢3), we observe that the group exten-
sion in (5.9) is a split extension. For there is a commutative diagram

0 — ker o3 — ker(p1@ ¢3) — ker 7 — 0

f

ker ¢7.

Using the explicit description of ker ¢7 in (3.21), it is not difficult to see
that ker ¢} is a direct summand in ker @ and hence a direct summand in

ker(o1 @ ¢3).

ProroSITION (5.12). The kernel ker(oi@® ¢3) is isomorphic to ker o @
ker @5, and as a graded abelian group it has the following decomposition:
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28®@., Z/4®®;,1Z/2 q=0mod4,
ker(pi®¢3) =< De, Z/A® D, Z/2 g=2mod4 and q>2,
Dy, Z/20Dg,Z/2 g=1 mod4,

where eg, f,, &, are respectively the coefficients in the polynomial

1+ 4+ 415 +148 12
9= ’ t9= ’
28 == %"=y
t5
Ejl‘th_

C(1=t)(A—-tY

Finally, the proof of Theorem (0.1) is immediate from (5.7), (5.8), and (5.12).
To get the answer, all that is required is to replaceithe Z /8 factor in ker(o}'@®
©53) by Z./16 and a Z /4 factor in ker(o{' V2@ 3'*2) by Z./8.

References

[Ba] W. L. Baily, Introductory lectures on automorphic forms, Publ. Math. Soc.
Japan, 12, Princeton Univ. Press, Princeton, NJ, 1973.

[BC] D. J. Benson and F. R. Cohen, Mapping class groups of low genus and their
cohomology, Mem. Amer. Math. Soc. 90 (1991), no. 443.

[Br] K. Brown, Cohomology of groups, Graduate Texts in Math., 87, Springer,
New York, 1982.

[BL] A. Brownstein and R. Lee, Cohomology of the symplectic group Sp(4,Z),
part I, Trans. Amer. Math. Soc. 334 (1992), 575-596.

[CL] R. Charney and R. Lee, Characteristic classes for the classifying spaces of
Hodge structures, K-Theory 1 (1987), 237-270.

[Co] F. R. Cohen, On the mapping class group for punctured spheres, the hyper-
ellpitic mapping class groups, SO(3) and Spin©(3), preprint.

[G1] E. Gottschling, Uber die Fixpunkte der Siegelschen Modulgruppe, Math.
Ann. 143 (1961), 111-149.

, Uber die Fixpunktuntergruppen der Siegelschen Modulgruppe,

Math. Ann. 143 (1961), 399-430.

[LW] R. Lee and S. Weintraub, Cohomology of Sp,(Z) and related groups and
spaces, Topology 24 (1985), 391-410.

[Le] G. Lewis, The integral cohomology rings of groups of order p3, Trans.
Amer. Math. Soc. 132 (1968), 501-529.

[Ma] J. P. May, A general algebraic approach to Steenrod operations, The Steen-
rod algebra and its applications, Lecture Notes in Math., 168, pp. 153-231,
Springer, Berlin, 1970.

[Mi] J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Stud., 72,
Princeton Univ. Press, Princeton, NJ, 1971.

[Mo} S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987),
551-5717.

{MKS] W. Magnus, A. Karass, and D. Solitar, Combinatorial group theory, 2nd
ed., Dover, New York, 1976.

[G2]



208 ALAN BROWNSTEIN & RONNIE LEE

[Ru] D. Rusin, The cohomology of the groups of order 32, Math. Comp. 53
(1989), 359-385.

[Sn] V. Snaith, Topological methods in Galois representation theory, Wiley, New
York, 1989.

[SE] N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math.
Stud., 50, Princeton Univ. Press, Princeton, NJ, 1962.

[Th] C. B. Thomas, Characteristic classes and the cohomology of finite groups,
Cambridge Stud. Adv. Math., 9, Cambridge Univ. Press, Cambridge, UK,

1986.
Alan Brownstein Ronnie Lee
Department of Mathematics Department of Mathematics
Rutgers University Yale University

Newark, NJ 07102 New Haven, CT 06520



