Coarsely Quasi-Homogeneous Circle
Packings in the Hyperbolic Plane

ZHENG-XU HE

1. Introduction

Let J be a triangulation of an open topological disk. By [HSI1, Cor. 1.5] (and
[Sc]), there is a circle packing Pym in the complex plane C, unique up to
Moébius transformations, whose graph is combinatorially equivalent to the
I-skeleton 3V of J and whose carrier is either the unit disk U or the whole
plane C. We call the graph 3V hyperbolic if the carrier of Py is U, and
parabolic otherwise. For any vertex v in 3V, its valence is defined to be the
number of edges of 3 with an endpoint at v. The graph 3 is said to have
bounded valence if there is a uniform bound on the valences of its vertices.

The 2-manifold |J| is naturally endowed with the unique (singular Rie-
mannian) metric so that every 2-simplex is isometric to a unit equilateral tri-
angle in the Euclidean plane. With this metric, there is also a well-defined
conformal structure in the manifold. By Koebe’s uniformization theorem,
|3] is conformally equivalent to either U or C. When 3® has bounded va-
lence, the ring lemma of [RS] (see Lemma 2.2 below) implies that | 3| is con-
formally equivalent to U if and only if 3V is hyperbolic. In the following,
we will consider |J3| as both a metric space and as a Riemann surface.

Let K =1 be a constant. A (not necessarily continuous) map f: X - Y be-
tween two metric spaces is called a coarse K-quasi-isometry if for each pair
of points # and v in X,

d(u,v)
K

and if for each point w in Y there is some # in X such that d(w, f(u)) <K,
where (by an abuse of notation) we have used d to denote the metrics in both
X and Y. A metric space X will be called coarsely quasi-homogeneous if there
is some K =1 such that for each pair of points # and v in X there is a coarse
K-quasi-isometry A: X — X with A(u) = v. Our main theorem is as follows.

—K=d(h(u), h(v)) =<Kd(u,v)+K, (1.1)

THEOREM 1.1. Let 3 be a triangulation of an open topological disk such
that 3N is hyperbolic and of bounded valence, and let Py be a circle pack-
ing whose carrier is U and whose graph is combinatorially equivalent to 3.
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If | 3| is coarsely quasi-homogeneous, then there is a positive uniform lower
bound for the hyperbolic radii of the circles in Pyw.

It is easy to prove that the hyperbolic radii of the circles of the packing Psm
in the above theorem have a uniform upper bound (see Lemma 2.1). In par-
ticular, Theorem 1.1 implies that |J| is quasi-isometric to the Poincaré disk U
by some homeomorphism which maps the vertices in J to the centers of the
corresponding circles of Pym and maps the edges to the corresponding geo-
desic segments.

Let G be a finitely generated group. Then there is a word metric on G
which is well-defined up to quasi-isometries. Moreover, with this metric G is
coarsely quasi-homogeneous. In particular, any metric space that is coarsely
quasi-isometric to G is also coarsely quasi-homogeneous. As a corollary to
Theorem 1.1 we obtain the following result, which is equivalent to a theo-
rem of G. Mess stating that: If a finitely generated group is coarsely quasi-
isometric to a complete Riemannian manifold of “bounded geometry” and
if the Riemannian manifold is conformally equivalent to U, then the group
is coarsely quasi-isometric to U. See [Me] for details.

CoroLLARY 1.2. Let G be a finitely generated group equipped with a word
metric. Suppose that there is a triangulation 3 of an open topological disk
such that |3| is coarsely quasi-isometric to G. If 3 has bounded valence and
|3| is conformally equivalent to the hyperbolic plane U, then G is coarsely
quasi-isometric to U.

It follows by the works of P. Tukia, A. Casson, and D. Gabai that a finitely
generated group G which is coarsely quasi-isometric to U is actually a Fuchs-
ian group. Based on some results of N. Varapoulos on recurrent random
walks on groups, Mess [Me] also showed separately that if |3| in Corol-
lary 1.2 is conformally equivalent to C, then G is virtually abelian and hence
coarsely quasi-isometric to C. We do not know if this result can also be
proved using circle packings.

The proof of our main theorem starts with the following simple obser-
vation.

LeMMA 1.3. Let ¢ be a circle in U. Let m(c) be the conformal modulus of
the annulus bounded by c and dU, and let ryy,(c) be the hyperbolic radius
of c. Then

(1.2)

™41
e™m(c) _1>'

rhyp(c) = log(

In particular, ryy,(c) is bounded from below if and only if m(c) is bounded
from above.

Thus, in order to prove the theorem, it is enough to show that for ¢ in Py
the moduli m(c) are uniformly bounded from above. This will be achieved
using the argument of transboundary extremal length of [Sc].



Quasi-homogeneous Circle Packings in the Hyperbolic Plane 177

The author is very much indebted to the referee for helpful suggestions as
well as for providing the proof for the remark after Lemma 2.1.

2. Some Lemmas
This section contains some elementary results on circle packings.

LEMMA 2.1. Let 3 be a triangulation of an open topological disk, and let
P be a circle packing in U whose graph is combinatorially equivalent to 3V,
If the graph 3V has bounded valence then there is some constant C,, de-
pending only on the maximal valence of 3V, such that the hyperbolic radius
of any circle in P is bounded by C,.

Proof. Let c be a circle in P. Since J is a triangulation of a 2-manifold, the
circles of P that are tangent to ¢ form a closed chain of length, say, k. As
3 has bounded valence, k is bounded from above.

By some Mobius transformation of U (which preserves the Poincaré met-
ric), we may assume that c is centered at 0. Now it is elementary to see that
the Euclidean distance between ¢ and dU should not be too small in order
for a closed chain of k circles in U surrounding c¢ to exist. This implies that
the hyperbolic radius of ¢ is bounded. 1

ReMARK. Under the hypotheses of Lemma 2.1, let the valences of the ver-
tices of 3 be bounded by k,. Then ko= 7 (see e.g. [BS] or [HS2]). There is
an obvious circle packing Py, in U in which all circles have the same hyper-
bolic radius and each circle is tangent to a closed chain of k, other circles.
Let ok, denote the hyperbolic radius of the circles in Pk,. Then the hyper-
bolic radius of any circle of P in Lemma 2.1 is bounded by 6éx,. Here is a
proof due to the referee and based on the maximum principle. Suppose that
there is a circle of P, say c¢j, whose hyperbolic radius is strictly bigger than
0k,. Let 0 <a <1 be a constant such that the map f(z) = az takes ¢j to a
circle whose hyperbolic radius is still strictly bigger than 6x,. Since a <1,
J(P) is contained in some compact subset of the hyperbolic plane. It follows
that there is some circle f(c) in f(P) whose hyperbolic radius rady,,( f(c)) is
maximal. In particular, radyy,(f(c)) = radyy,(f(cp)) > radyy,(c*), where ¢
is some circle of Pr,. We now compare the flower of f(c) in f(P) to the
flower of ¢* in Px,. Since the valence of f(c) in f(P) is bounded by k,, which
is the valence of ¢* in Py, and since radyy,(f(c)) > radyyp(c*), it is elemen-
tary to see that there is some circle in the flower (i.e. the first generation) of
J(c) whose hyperbolic radius is strictly bigger than radyy,(f(c)). This con-
tradicts the maximality of rad;,(f(c)).
The following lemma is proved by Rodin and Sullivan [RS].

LeEmMA 2.2 (Ring Lemma). Let 3 be a triangulation of an open topologi-
cal disk, and let P be a circle packing in C whose graph is combinatorially
equivalent to 3V, If the graph 3V has bounded valence then there is some
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constant C,, depending only on the maximal valence of 3V, such that the
ratio of the Euclidean radii of each pair of tangent circles in P is bounded
by C2.

LEMMA 2.3. Let 3 and P satisfy the conditions in Lemma 2.2. Suppose
there is a circle ¢y in P which is centered at 0. Then there exists a constant
C,, depending only on the maximal valence of 31, such that for each circle
CFCy in P,

Feuc(€) = C3dEuc(O: c), 2.1)

where rg,.(c) denotes the Euclidean radius of c and dg,.(0, ¢) is the Euclid-
ean distance between 0 and c.

Proof. Transforming P by a similarity (fixing O if necessary), we may as-

sume that rg,.(c¢) =1. Then we need to show that dg,.(0, ¢) is bounded from

below by some constant. Let ¢’ be a circle of P which is tangent to ¢ and

which intersects the line segment joining 0 and the center of c. By Lemma

2.2, we have

rEuc(C) _ 1
C, G,

If ¢’=cy, then dg,.(0, ¢) = rgy.(co) = reuc(c’) and (2.1) follows by (2.2). So
we may assume that ¢’# ¢y and as a consequence 0 is not contained in the
disk bounded by ¢’. Then it is elementary to see that the radius of ¢’ tends to
0 if dg,(0, ¢) tends to 0. By (2.2), it follows that dg,.(0, c¢) is bounded from
below. O

(2.2)

rEuc(c’) =

Let M be a Riemannian 2-manifold and let X be positive. A connected sub-
set D < M is called K-nondegenerate if

(diam(D))? < K -area(D). (2.3)

Let S'=R/(27Z) and let Rx S! be endowed with the product metric. Let
J=log: C*=C—{0} - C/(2wiZ) =R x S! be the logarithm function.

LeEmMA 2.4. Let 3, P, ¢y, and c satisfy the conditions in Lemma 2.3. Let
D(c) be the disk bounded by c. Then J(D(c)) € R x 8! is C,-nondegenerate
Jfor some positive constant C, which depends only on the maximal valence
of 3U,

Proof. For p and q in D(c), the ratio of the norms of the derivatives of J
at these two points is |J'(p)|/|J(@)|=]|q|/|p|- By Lemma 2.3, this ratio is
bounded by 2C5+ 1. Then it is easy to see that J(D(c)) is C4-nondegenerate
for C;,=4(22C;+1)¥/=>. a

3. Proof of Main Theorem

We will prove the following lemma, which implies Theorem 1.1 in virtue of
Lemma 1.3.
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LemMA 3.1. Let 3 and Pso satisfy the conditions in Theorem 1.1. Then
there is a constant C such that, for each pair of circles ¢y and cj in Py,

m(cg) < Cm(cy).

Proof. For each pair of points « and v in |3V, let d(u, v) denote the mini-
mal length of paths in |3V| joining # and v. Since 3 has bounded valence,
it is easy to see that the metric spaces (|3V|, d) and (3%, d) are both coarsely
quasi-isometric to |3|. In particular, the hypotheses of Theorem 1.1 imply
that (39, d) is coarsely quasi-homogeneous. Let vy and vg be the vertices of
31 which correspond to the circles ¢y and ¢, respectively. Let /: 3 — 3
be a coarse K-quasi-isometry such that #(vy) = vj, where K =1 is some con-
stant independent of v, and vg. We may assume that for v # vg, A(v) # vg.

For ¢ in Pym, we will denote by v, the vertex of 3% corresponding to c,
and denote by #(c) the circle such that vy, = #(v,). We also write d(c, ¢’) =
d(v,., v.-). For each positive k, let 9T, (c) denote the set of all circles ¢’ in Pya
such that d(c, ¢’) < k. Then, for each pair of tangent circles c¢; and ¢,, we
have d(h(c,), h(c,)) < Kd(c;, c;) + K=2K; therefore the union of circles in
I,k (h(cy)) is a continuum joining A(c;) and A(c,). For each circle ¢’ +# ¢g
of Pym, let E(c*) denote the union of all circles in 9, ;(c*) except pos-
sibly c5. We then have the following lemma.

LeEmMMA 3.2. Let ¢; and c, be two tangent circles in Pyn with ¢, + ¢g. Then
E(h(cy)) contains a continuum joining h(c,) and h(c,).

Proof of Lemma 3.1 (continued). Changing Pym by a Mdbius transforma-
tion of U, we may assume that ¢, is centered at 0. Let 7: U — U be the M6bius
transformation which maps cg to a circle centered at 0. Let A(cy, dU) be the
annulus bounded by ¢y and dU, and let A(cg, dU) be the annulus bounded by
ct and dU. Let G: A(cy, 0U) = (—m(cyp), 0) X S' € R x S! be the mapping de-
fined by G(z) = J(z), and let G*: A(c§, dU) — (—mi(cg), 0) x S'S R x S! be
defined by G*(z*) =JT(z*), where J is the map in Lemma 2.4. By an abuse
of notation, for each closed curve I" which bounds a Jordan domain in
R x S, let us denote by area(I") the area of the Jordan domain bounded by
I'. Then, by Lemma 2.4, for ¢*+ ¢ we have

diam?(G*(c*)) < C4-area(G*(c*)). (3.1

A similar inequality holds for G(c) where ¢ # c,.

For any 0 in S, let L, = {ne'®; >0}. Let ¢}, c,, ... be the sequence of cir-
cles of Pym—{cy} which intersect L, so that c¢; is tangent to ¢y, ¢, is tan-
gent to ¢, and so on. Then these circles form a continuum in A(cy, dU) join-
ing cq to the circle at infinity dU. By Lemma 3.2, U;~; E(#(c;)) contains a
continuum in A(c§, dU) joining h(cy) = c§ to dU. Hence, U~ G*(E(h(c;)))
contains a continuum joining the two ends of (—m(c{), 0) x S'. It follows that

m(cy) < >, diam(G*(E(h(c)))). (3.2

c#co,cNLy+0

Integrating this with respect to 8 € S, we obtain
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2em(c*) < >, diam(G*(E(h(c))))diam(G(c)).

C#Cy

By the Schwarz inequality, we deduce that
dr’lm(c*)’< Y diam?*(G*(E(h(c))))- S diam?(G(c)). (3.3)

C# ¢ C#Cyp
Since 3V has bounded valence, the number of circles of Py in E(k(c)) is
uniformly bounded. And because / is a coarse K-quasi-isometry, for each
circle ¢*+# cg, the number of E(h(c))s for which c¢*< E(h(c)) is also uni-
formly bounded. Hence there is some constant Cs > 0 such that

S diam?(GHEM(C)=~VCs T 3 diam*(G*(c*))

C#Cy CFCy C*EE(h(C))

<Cs Y diam?(G*(c*)).
c*#cp

By (3.1), this implies that
S diam*(G*(E(h(c)))) < C,Cs 3 area(G*(c*))

c#C cr#cp
< C4Cs-area((—m(cg), 0) x S1)
= C,Cs-2wm(c*). (3.4)
Similarly,
S diam?(G(c)) = C4-area((—m(cy), 0) X S1) < C4-27m(c).  (3.5)
c#

Combining (3.3) with (3.4) and (3.5), we obtain
412m(c*)? < 4x*(Cy)>Csm(c*)m(c).

Thus m(c*) < (C,)*Csm(c). ' O
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