Embedding Theorems for Spaces
of Analytic Functions via
Khinchine’s Inequality

DANIEL H. LUECKING

1. Introduction

We show how known embeddings of sequence spaces into spaces of analytic
functions on the unit disk D (and other domains) can be combined with
Khinchine’s inequality to obtain lower estimates on expressions like

J 17 da.

These lower estimates allow us to obtain necessary conditions on the mea-
sure p on D in order that there exists a constant C with

(], o aw) < el

(Here || f]| denotes the norm appropriate for the space of analytic functions.)
In each of the cases presented here, the necessary condition coincides with
a sufficient condition obtained by straightforward estimates. Moreover, this
necessary and sufficient condition reduces to the characterization of the mul-
tipliers between certain related sequence spaces. The spaces of analytic func-
tions considered include the Bergman spaces, the mixed norm spaces, and
a new class of spaces: the analytic functions belonging to certain weighted
tent spaces. There is essentially no restriction on the exponent s and the ex-
ponents defining the spaces of analytic functions. Moreover, more general
expressions than the L°(x) norm may appear on the left-hand side of the
above inequality.

Let D be the open unit disk in the complex plane C and let A” denote
the Bergman space of analytic functions f on D whose L? norm || f||, &
(fp|f|? dA)'? is finite (dA is area measure). Let p denote the pseudohyper-
bolic metric

p(z,w) ¥
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on D and
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h¥log 1+e
l—p
the hyperbolic metric. Let {z,} be a separated sequence in D. This means
the separation constant vy =inf{h(z;, z,,): m+# k} is positive. In [1], Amar
proved a theorem of which the following is a special case.

AMAR’s THEOREM. If the separation constant v of {z,} is sufficiently large,
then the operator T defined on AP by T(f)r= f(zi)(1—|zx|)?”? maps AP
onto I”,

(Amar proved the corresponding theorem for weighted Bergman spaces in
the ball and the polydisk in C”, n=1.) Amar’s proof may be divided into
two parts, given by the following two lemmas.

LEMMA 1. Define the operator S on sequences by
(1 _ Iznlz)M—ZIP
(1 _Zn Z)M

where M>1+1/pif p>land M>2/p if p<1. Then S is bounded from
1P to AP whenever {z,} is separated.

S((an)) =2 ay

LEMMA 2. Let vy be the separation constant of {z,}; then |[I—TS|;»_. ;» con-
verges to zero as vy tends to . That is, TS is invertible for v sufficiently
large, whence T is onto.

The proofs of these two lemmas are remarkably similar (but it does not seem
feasible to derive one from the other). Both lemmas have been extended to
other contexts by Coifman and Rochberg [3] and Rochberg [16]. In [11] this
author used Amar’s theorem to characterize those measures p =0 on D sat-
isfying for 0 < g < p: There exists a constant C > 0 such that, for all f e A?,

1/q
(fireaw)“ < iz, 0.

Amar’s proof is easy to extend to the operators 7\ defined by

T = F 2z 1=z, D" 2P,

and with it the characterization of measures p satisfying the following is
also possible: There exists a constant C > 0 such that, for all fe A”,

1/q
(flrmpean)” < el 2

There now exist two further results analogous to these, which characterize
measures satisfying Carleson-like inequalities. The spaces of analytic func-
tions involved are, respectively, the so-called mixed norm spaces and the
Hardy spaces. These results, however, use the same method of proof, which
may be outlined as follows:
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(1) Prove the analogue of Lemma 1.

(2) Prove the analogue of Lemma 2, and deduce the analogous interpola-
tion result (the surjectivity of the appropriate mapping 7).

(3) Prove that small perturbations in {z,,} (in the hyperbolic metric) yield
small perturbations in 7 and combine this with the interpolation result
of item 2 to obtain a necessary condition for the analogues of (1.1)
and (1.2). (The sufficiency of the condition is usually a straightforward
estimation.)

One of the two results alluded to above may be found in [7], where Jevtic¢
has solved the analogue of (1.1) for mixed norm spaces. In fact he has solved
a much more general problem. The other is in [13], where the author has
solved the analogue of (1.2) for the Hardy spaces. For mixed norm spaces,
part 1 of the proof outline was accomplished by Ricci and Taibleson in [15],
part 2 is due to Jevti¢ in [6], and part 3 appears in [7], also by Jevtié. For the
Hardy space, all three parts appear in the original version of [13]. The final
version of [13], however, uses a different proof that skips from part 1 to the
solution. It is the purpose of this paper to explain the method, to show that
it also neatly solves both (1.1) and (1.2) in the other two settings, and to
derive some new results using the method and some extensions of it.

In the next section we illustrate the method in the case of unweighted
Bergman spaces. The solution to (1.1) in that case is known and, as men-
tioned, the solution to (1.2) can be obtained in the same way. Moreover, the
Bergman space is a special case of the mixed norm spaces, which we treat in
Section 4. Nevertheless I feel that it is useful to treat the simplest case sepa-
rately in order to get a feel for the arguments before other complications are
introduced. In Section 3, we cover some necessary background material on
mixed norm spaces of analytic functions, prior to solving the mixed norm
analogue of problems (1.1) and (1.2) in Section 4. A similar pair of sections
follows in which a new space of analytic functions is introduced and studied;
these are the tent spaces of analytic functions. The tent spaces of measurable
functions were introduced in [2]. In [13], the solution of problem (1.2) for
Hardy spaces required the introduction of “weighted” tent spaces: the ana-
logue of tent spaces with more general measures in place of Lebesgue mea-
sure. Similar results were obtained independently by Harboure, Torrea, and
Viviani in [5]. We will see that there are no analytic functions in the original
tent spaces, but that analytic functions in weighted tent spaces arise natu-
rally. In Section 5 we develop the background material on these spaces and
in Section 6 we solve the analogues of problems (1.1) and (1.2). The final
section discusses the relationships among these spaces and discusses some
related questions.

2. Embedding Theorems via Khinchine’s Inequality

In later sections I will obtain new results along the lines of (1.1) and (1.2),
but in this section I will illustrate the method by obtaining an essentially
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known result in perhaps the simplest case, the unweighted Bergman spaces
AP,
Define the Rademacher functions r; by
1 0=<¢t—[t]<3,
ro(t)=
o(4) {-—1 t=t-[t<1;
r,(t)=ro(2"t), n>0.

Then Khinchine’s inequality is the following.

KHINCHINE’S INEQUALITY. For 0 < p <o there exist constants 0 < a,< B, <
o such that, for all natural numbers m and all complex numbers c,, c,,...,
Cms We have

m ) p/2 1
o Slot) =
j=1 0

Let us establish the following theorem using only Lemma 1 and Khinchine’s
inequality. First, select any convenient 6y with 0 <éy< oo and let D(z) =
D(z,80) & {w: h(z, w) < 8).

m

p m p/2
> erj(t) dtSBp( EICJ‘IZ) .
Jj=1 Jj=1

THEOREM 1 (essentially in [12]). Let 0<q < p <oo. For a measure p=0o0n
D, the following are equivalent.

(a) There exists a constant C such that, for any f € A?,

1/q
(flrmeaw) " <cir,. @

(b) The function z+~ p(D(z))(1—|z|*)~2~" belongs to LP"?~9(dA), ihe
dual of LP'9(dA).

Note: The parameters p, g, n, 6y, and the measure p are regarded as fixed.
The letter C will be used to stand for various constants (not necessarily the
same one in every occurrence) which depend at most on these parameters
and the measure u. '

Proof. We will begin with the necessity of condition (b). To this end sup-
pose u satisfies (2.1) with C independent of f. Put

__n (= |z[HY2

Y= arz;"

where {z;} is some separated sequence with separation constant §,/2 and
infy|z;| > 0. Then by Lemma 1 there are constants M and C such that

1/l = C(Zlaxl”)'?,

whence

| dus (Sl

1 — |z, |2YM~2/p |
”Eak( |z4])
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In this inequality, replace a; with ry(¢)a, (so that the right side does not
change) and then integrate with respect to ¢ from 0 to 1. After Fubini’s theo-
rem and Khinchine’s inequality this yields

2(1_|zkI2)2M—4/p q/2 y
o, (Sl ) e = C(Slayl”)”

Now we observe that X p(z,)(z) < C(1—|z,[*)/|1 —Z;z| for some constant C,
and that there is a constant N = N(§,) such that each point z belongs to not
more than N of the disks D(z;) (see Lemma 3). This allows us to estimate

Elaqu M(D(zk))

(l_lzkl)Zq/p+nq

_ S 5 |k |?X Dz

(1 — Izkl)Zq/p+nq

/2
<maX{Nl—q/2 I}S Ela |2 XD(zy) q du
= ’ k (1—|z,|)y4/p+2n

2 (l—lzkl
=C S(Elakl [1—z, z[PM+2n

Now put by =|a,|? and conclude that the sequence

p(D(zy))
(1 — Izk|2)2q/p+nq

2M -4/
) p

ql/2
) du=cSladny.

belongs to the dual of /7’9, whence

( w(D(z)) )”’“"q) ‘oo

(1 _lzkl2)2q/p+nq

Using (1—|zx|?)* < CA(D(zy)), we can write this as
(I_Izk|2)2+nq

and we see a discrete version of the condition we require. To get the con-
tinuous version, observe the following.

pl(p—q)
) A(D(zy)) <o (2.2)

(1) Since the argument thus far is independent of the size of &y, inequality
(2.2) will hold when {z,]} has separation constant 8, and D(zy) is re-
placed with D(z;) = D(z, 28¢).

(2) It is possible (see Lemma 4) to select {z;} with separation constant §,
and inf;|zy|> O such that the collection {D(z;)} covers D.

Now notice that if z is in D(z;) then the whole disk D(z) lies in D(zg).

Now, whenever z € D(z;),

pDRE) . D)
(1_|z|2)2+nq—' (l_lzk|2)2+nq’

whence
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pH(p—q)
X( p(D(2)) ) dA(z)

(1_|z12)2+nq

p(D() PP
SE SD(Zk)((l_IZI2)2+nq) dA(z)

(1—|zg[?)2+na

The first inequality is from observation (2) above and the last inequality is
from observation (1) about (2.2). Thus we have shown that (a) implies (b).

To get the other implication, we proceed exactly as in [12]. The following
is an outline: First, show that

|f(n)(z)|q5

p/(p—q)
) A(D(zx)) < +0o.

C
(1—|Z|2)2+"q

| 1r19aa.
D(z)

This is a relatively routine normal families argument. Next, integrate this
inequality with respect to p and use Fubini’s theorem to obtain

p(D(w))
(1—|w[?)2+na

[lrm@iedu@ =c s

Finally, apply Holder’s inequality to get (b) from (a). O

It should be pointed out that this method of using Khinchine’s inequality
gives the correct necessary condition for inequality (2.1) even when g > p,
namely that u(D(z))(1—|z|?)~2~" should be bounded; but that result is ob-
tained much more easily by substituting the function

row( ey

(1—az)?
into (2.1).
Two results used in the proof are the following two essentially well-known
lemmas. The arguments used appear in a more general context in [3].

LEMMA 3. Given 0<6<e< o, there is a constant L = L(0, €) such that if
{24} satisfies infy, ., h(zy, z2,) = 0 then every z € D belongs to at most L disks
D(Zk, E)-

Proof. Because of the conformal invariance of 4, we may suppose that z=10
and we need only show that D(0, €) contains at most L of the points, where L
depends only on & and e. Now the measure d»(z) & (1—|z|%)~2 dA(z) is con-
formally invariant, so »(D(z, 6/2)) is independent of z. The disks D(zy, 6/2)
are disjoint, and if z; € D(0, €) then D(z,,6/2) C D(0,e+6/2). Thus, if L
is the number of z; in D(0, ¢) then

v(D(0, e+6/2))

L=—"D0.5/2)

d
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LeEmMA 4. If 6y>0then thereis a sequence {z,} CD such that h(zy, z,) = 6
Sor all k + n, inf|z,| >0, and

L,_(J D(Zk, 50) =D.

Proof. Let z; be any point with #(z;, 0) =6,/2, and let z, be any point with
h(zy,2,) = 6p. Given 21,25, ..., Zx—1, Select 2 & Uj-‘;ll D(zj,0¢) such that
h(z;, z;) is minimized. This defines the sequence {z;} inductively. Clearly
h(zZy, 2,) = 8o whenever k # n. If any z € D is not in U%~ D(z;, 8o) then (by
the choice of z;) for all kK we have h(z;, 2x) < h(z,, z). This is impossible be-
cause of Lemma 3 with 6 =6, and € = h(z;, 2). Cl

As a final note before going on to more complicated embedding theorems,
we observe that the Rademacher functions are not the only sequence that
could be used in the proof of the theorem: If ¢ happened to be 2 then any
bounded orthonormal set could be used, and otherwise any bounded ortho-
normal sequence satisfying the left half of Khinchine’s inequality could be
used—for example, the exponentials {e”®} with {n,} any lacunary sequence.
However, the inequalities for vector-valued series which are used later may
require the stochastic independence that the Rademacher functions possess.

3. Some Technical Results for Mixed Norm Spaces

Having seen the method at work in a case where the result was already known,
we turn to some more complicated applications. These will include charac-
terizing measures involved in inequalities like (1.2) but with the functions f
in a mixed norm space and its mixed norm on the right-hand side.

The mixed norm spaces are the spaces A”9, defined for any 0 < p, g < o®
as the collection of functions f analytic on D with finite “norm”:

wr (LY 02 - glp \l/q
llfllp,q=(§0(§0 | f(re)] da> dr) .

As mentioned in the introduction, an embedding theorem for these spaces
was proved by Jevti¢. To state his result, let us first define a partition of the
disk into disjoint sets Q;;, which are of roughly equal size in the hyperbolic
metric. For each j=1,2, ..., let us divide the annulus {z: 27/ <1—|z|<2'"}
into 2/*! equal pieces by means of equally spaced radii. Number these sec-
tors arbitrarily as Q;;, i=1,2,...,2/*!. The whole collection is a disjoint
cover of D except for the origin. What I mean by “roughly equal size” is
that if z;; are the centers of the Q;; then there exist positive numbers 0 <4 <
€ < oo independent of i and j such that

{2t h(z,2;) <8} C Q;; C{z: h(z,z;) <€l (3.9

The Q;; will be used to replace the finitely overlapping cover D(z;) of Sec-
tion 2.
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JEVTIC’s THEOREM [7]. For a measure p on D and positive numbers s <p
and t < q, the following are equivalent:

(a) There is a constant C independent of f such that

t/s\1/t
(=], 1r@rdae) ) clfln
J NI YOy

Sor all fe AP1,
(b) The measure satisfies

2(2(IL(Qt_j)I/szj(l/p+I/q))u>u/u oo,

J
where 1/u=1/s—1/p and 1/v=1/t—1/q.

Note that Jevti¢’s theorem reduces to the analogue of (1.1) when s =¢. Here,
I will extend Jevti¢’s results by putting no restrictions on the exponents in-
volved and by considering the effect of differentiation. Problems like (1.1)
were also considered by Gadbois in his thesis [4]. The problem he considered
was like Jevtié’s in that he too allowed a mixed norm on the left, but of
a different type. His solution also placed restrictions on the exponents in-
volved. His result was a characterization of those product measures g X » on
[0,27) X (0, 1) such that there exists a constant C with

) t/s 1/t
(S (S | f(re‘”)lsdy(0)> du(r)) <Clflp.a
0,1) [0, 27)

for all fe A”9. His methods required the restriction that p=s and 7 >gq.
Both Jevti¢ and Gadbois also considered weighted mixed norm spaces. We
could also do that, but the statements of already unwieldy inequalities would
become more so. Thus, we will leave it to the interested reader to put in the
appropriate factors in order to obtain the results for weighted spaces.

Before I can extend these theorems, I will need three results. The first is
an extension of the Khinchine-Kahane inequality to quasi-Banach spaces by
Kalton [8]; the second is a simple characterization of multipliers between
mixed norm sequence spaces due to Kellog {91; and the third is an analogue
of Lemma 1 for mixed norm spaces due to Ricci and Taibleson [15].

LemMA 5 (Khinchine-Kahane-Kalton). Let X be a quasi-Banach space
with quasi-norm |- || and let 0 < p < g <oo. Then there exist constants a=
a(X, p,q) and B= B(X, p, q) such that for any positive integer m and any

X15X25 ... Xm € X we have
p 1/p 1 q 1/q
dt) S(S dt)
0

(,
(o )"

Ek:fk(t)xk %rk(t)xk

2 (8 X
K
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A quasi-Banach space is a vector space with a quasi-norm. A quasi-norm is
a function from X to [0, o0) which has all the properties of a norm except
that the triangle inequality is replaced by:

there exists a constant C such that ||x+y| < C(||x||+|»|) forallx,yeX.

The constants ¢ and B in the lemma actually depend only on p, g, and C. A
particular example of a quasi-Banach space is L?(dy) for any p > 0 and any
measure p. The quasi-norm is the expression

1/p
17 eran = ({1117 )

and the constant C in the definition of quasi-norm can be taken to be
max(1, 21771,

Our applications of the Khinchine-Kahane-Kalton inequality will be of
the following sort. We will have an inequality of the form

(i

where ||(a;)|| is some norm on a sequence space that can be defined solely in
terms of |ag|. If both sides of this inequality are raised to the s power and
the resulting inequality integrated in ¢ from 0 to 1, then the integrals with
respect to ¢ and » may be interchanged. The inner integral can be estimated
from below as follows:

q s/q 1/s
du(ﬂ)) d»m) <Cl@l, (32

% ri(t) ay fi(r, 0)

/q

1 1 s
SOHZ ri(8) ag fi(r, || Loqan dt = aq,s(SOIIE () ag fi(r, )| Lo dt)

2r ol s/q
:aq,s(g S |22 re(t) ay fi(r, 0)|7 dt d#(a)) .
0 0

Now the scalar version of Khinchine’s inequality can be used. The effect
of the Khinchine-Kahane-Kalton inequality is that the integral with respect
to t can be brought to the center of any mixed norm expression such as
(3.2).

Forany0< p <o and 0 < g < o, let /”°9 denote the set of doubly indexed
sequences of complex numbers (c;;) such that

def q/p\V/gq
leslloa(S(Steal?) )" <o
J N

The index set may be the set of natural numbers, or it may be a finite in-
terval of natural numbers. The spaces /7, 7 and /®* are defined sim-
ilarly, with a sup|-| replacing (3|-|?)!”? in the appropriate places. We will
need the following characterization of duality for the /#'? spaces that in-
cludes the cases 0 < p, g <1. One reference that includes all these cases is
[14].
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LEMMA 6 (Nakamura). Forany 0< p <, define

1 if p=o»,
p'=1 p/(p—-1) if 1<p<oo,
oo if 0<p=l.
Then
Sup[ 2 cijby ’"(Cij)"p,qSl} =@l pr,q- (3.3)
ij

Of course, when p, g <o or if p or g equals o and the corresponding
index set is finite, this implies that the continuous linear functionals on /%7
may be identified with elements of /7>9 with equality of norms. The un-
mixed norm version of (3.3) is of course the familiar

sup

We actually need a more general version of Lemma 6. We will say that a
sequence (b;;) multiplies /77 into / S:* if there is a constant C such that

(?(?I bj;cij |5>t/s)m < C(Ej:(;‘cijlp)q/p )Uq s

thatis, [[(b;;c;)ls,e =< Cli(ci)llp, q

for all (c;;) €/”9 or, equivalently, for all finite sequences (c;;). It is easy
to see that if every finite subsequence of (b;;) multiplies /7 into 15" with
the same constant C, then the entire sequence multiplies /77 into /**%. The
collection of multipliers from 7”9 to /%! will be denoted by M(/7:9,[5).
Another obvious fact is that (b;;) belongs to M(I79, 1*") if and only if
(1b;;5) € M(IP/:9/5 |15y Finally observe that M(/*9,1"')=I7>9" from
(3.3) of Lemma 6.

=u<c,->||psl}=u<b,->u,,,, 0< p=oo. (3.4

¢ b
J

LemMa 7 (Kellog). Let 0< p,q,s,t <oo. Then
MPq, ‘]1, ) = lp’.i(q/t)’,
and consequently M(IP9,[5") = [5(P/s), 1a/t)’
Proof. This is essentially Kellog’s proof but cast in a considerably more

compact form. Suppose (b;;) is a finite sequence satisfying inequality (3.5)
with s =1 for all finite sequences (c;;). That is,

(z(;w,-jc,-ﬂ)t)msc@@]qﬂp)qm)w. 66

J

Now let' (a;) be an arbitrary nonnegative sequence, and if p > 1 put

'—1 ' .
. by T (Z;bh)yVPalt if by #0,
Y 0 otherwise;
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if p<1, put

o aj” ! if i is the first integer with b;; = maxy by,
00 otherwise.

Then from (3.6) we obtain
t/q
2N i)illpra; = Ct(z afm) :
J J
But from (3.4), sup-ing over (a;) of /9! norm 1, we see that

i€ "(bij)i"i;’)j”(q/ty <C'.

That is, [|(5i)|| o7, 1(qrey < C- As remarked, once we get this for finite sequences,
it follows for all sequences with the same constant.

For the converse, if (b;;) € 7>"9/" then (3.6) follows from two successive
applications of (3.4), the first in the i index with exponents p and p’ and the
second in the j index with exponents g/¢ and (q/t)’. O

It should be pointed out that the expression u =s(p/s)’ satisfies u = oo if
s=p,and that 1/u=1/s—1/p if s < p, with a similar remark for v=#(q/t)’.
Thus Jevtié’s theorem, part (b), states that a certain sequence multiplies /7> 9
into /!. Our results will extend Jevtié¢’s by obtaining the same conclusion
for all positive exponents.

The following theorem to be found in [15, Thm. 1.5], stated in some-
what greater generality. It is the analogue of Lemma 1 for mixed norm
spaces. For a sequence {z;} in the unit disk, re-index it in the following way:
Let {z;;: i=1,2,...} denote the points of {z;} that belong to the annulus
{z:277=<1—|z|<27/+Y}.

LEMMA 8. Define the operator S on double sequences by
(1 _ |Zij|2)M—-l/p—l/q
(1-z;z2)M

where M > max{1/q,1}+1/p. Then S is bounded from 1?9 to A”>9 whenever
{2} is separated.

S((a;)) =2 a;
ij

4. Embedding Theorems for the Mixed Norm Spaces

We precede the results on mixed norm spaces with some more preparatory
material. A continually recurring phenomenon (which we saw in Section 2)
is that the sufficient condition is easiest to obtain in continuous form while
the necessary condition is most readily obtained in a discrete form. Rather
than convert from discrete to continuous or the reverse, we first state a result
that allows us to obtain both necessary and sufficient conditions readily in
discrete form. The continuous version will still be given (if it is reasonably
accessible), but the proof that it is equivalent to the discrete version will be
omitted, being similar to the last part of the necessity proof in Theorem 1.
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LEMMA 9. For fe AP %let | f|;;=sup{| f(z)|: z € Q;;}. Then there exist con-
stants ¢y, and C, such that

cilfllp.a =10 f1i 2~ P ina = Col| fllp, - @.D

For a proof, see [15, Lemma 6.3]. The first inequality is straightforward, us-
ing the inequality | f| < X;;| f|;; X, The other inequality can be obtained by
first estimating | f|7; by a multiple of 2%/ | p,|f1¥? dA, where D;;={z: h(z, z;)) <
2¢} with z;; and € as in (3.1). Then the inner sum in the definition of the /79
norm of (| f];27/4/P+1/@) is easily estimated by an integral over an annulus.
Then it is easy to get || f|| ,, as an upper estimate because {| f(re’)|” d6 in-
creases with r.

Another result that we will need is a simple estimate of the derivatives of
a function in A”°9:

I(|f 0y 27T VPRV | g < ClI( S 13y 272D s (4.2)

This comes from estimating | | ij by 2" times the sum of | f|;; over adja-
cent Qy;, using the Cauchy integral formula.
We are now ready for one of the main theorems of this section.

THEOREM 2. Let 0< p, q,s <oo and let p be a finite positive measure on D.
Then the following are equivalent.

(@) There is a constant C such that

1/s
([ 17 an) =ity @3)

for all fe AP9, _
(b) The sequence (u(Q;;)2 "+ /P10y pelongs to 1P/)>a/),
(c) The function k(z) belongs to L'P"9>@%) ywhere

w(D(z))(1—|z|})~2~sn if s<p,s<q,
p(D)(1—|z>)~1=sP=s"  if p<s<agq,
p(D@)(1—|z|)~I~sa=sn if g<s<p,
w(D()(1—|z[)~sP=s/a=s" if p<s, g<s.

k(z)=

Before proving Theorem 2, let us indicate why (c) is the appropriate contin-
uous version of (b). This is not so much of a difficulty with the fourth for-
mula for &(z): condition (b) says that u(Q;;)(1—|z;;|*) =7 ~5/4=5" is bounded
while (c) says the same thing of u(D(z))(1—|z|?)~5/P—s/a—s", Since any D(z)
(respectively Q;;) can be covered by a fixed finite number of Q;; (respec-
tively D(z)), it is easy to see the equivalence of (b) and (c) in this case. Con-
sider, then, the first case. By the same reasoning we get

k(z)~2 #(Qij)zj(H"S)XQ,-j(Z)

in the sense, at least, that their norms are equivalent. But if we calculate the
LP/):1a/) norm of this sum (keeping in mind that the lengths of the sides of
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the Q;; are proportional to 27/) we get the same expression as the /(P/)>(@/sY
norm of the sequence in (b).

Proof. Assume (a). Using Lemma 8 from the previous section, the function

. (l_lzi_|2)M—I/p—l/q
f(z): a..z.." J -
iEj v (1-z;2)M

satisfies || f|| 5, s < C||(a;))]| 5, ;- The constant C, of course, depends on p, ¢,
M, and n. We suppose that a;; = 0 except for a finite number of indices. Dif-
ferentiating this expression n times and inserting the result into inequality
(4.3), we have
1—|z:: 2\M—-1/p—1/q
S Ea"f( | UI-) M+n
ij (1-2;2)
Replacing g;; by r;;(¢)a;;, where r;; is a re-indexing of the Rademacher se-
quence, and integrating with respect to ¢ gives
(1 _ Iz_‘IZ)M—llp—I/q
S(E i U‘ M+n
ij (1-2%;;2)
Again we use (1—|z;[?)/|1-z;z|= cxg,(z) and 1~ |zij|>= 27/ to obtain

S Slay 250 Ve+iiay o (2)dp(z) < Cll(@)3,q-
i

Now put b;; =|a;;|* and integrate to get

2 bj 2750tV 1D (O < C(Dij)| pss, g5
ij

(4.4)

s

dﬁ(z) = C*|(ap)llp, 4-

2\s/2
) du(z) < Cl(a;ip)||3, q-

for all positive finite sequences (b;;). By Lemma 6,

Q275 iPr) o sy = C-

Thus (b) follows from (a).
Now assume (b) and estimate as follows:

Slf‘"’ls dp
>, e
= 3|S5 1(Qi)

= Elf(n)l;_vj2—sj(n+1/p+1/q)u(Q’_j)2sj(n+1/p+l/q)

<||(|f P52~ VPVDY N arsI(r(Qu) 2 VPRV N ey arsy

by Lemma 6. The second factor in the last line is finite, and the first factor is
the same as

(P AR T Rt Pl

which (as remarked at the beginning of this section) is dominated by
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CllS 1y 277V VDY 4115, = ClA U3, o-

Thus (a) follows from (b) with a constant C which is a multiple of the
[(P1s)>(al5) norm of (u(Q;;)2/5 " *1/P+1/D),. raised to the 1/s power. O

We turn now to the mixed-measure generalizations of Theorem 2 (the exten-
sions of Gadbois’s and Jevtié¢’s results). Since the proofs are very similar to
that of Theorem 2, substituting only Lemma 7 for Lemma 6 and the Khin-
chine-Kahane-Kalton inequality for the scalar Khinchine inequality, the
proofs will be a little less detailed. Let us first observe that

{(r,0):re’e Qij}=R; X 1;;,

where R;=(1—2'"/,1-27/] and, for fixed j, I;; are 2/*! disjoint intervals
of length 27/ =.

TueoreMm 3. Let 0< p,q,s,t <o, let u be a positive measure on the inter-
val [0, 27), and let v be a positive measure on the interval (0,1). Then the
following are equivalent.

(@) There is a constant C such that

tls 1/¢
(S (S If‘"’(re’o)lsdu(9)> dv(r)) <C|flp.q (4.5)
0, D\Y{0,2x)

for all fe AP 19, _
(b) The sequence (u(I;;)"*v(R))* 2/ VPV . myltiplies 177 into 15'.
That is,
/s AVt j(n+Yp+1/q)y . s(p/s),t(q/ty
(L) v (R)V'2 i€l :

Note that we omit the continuous version. Unless a more efficient form can
be found, the continuous version requires the listing of nine different cases
compared to the four cases found in Theorem 2.

Proof. Assume (a). Let f be as in equation (4.4). Substitute its nth deriva-
tive into (4.5) to obtain

2 ajj -
<S(O,I)<S[O,27r) 7 (1=Zz)MEn
Do the familiar application of Khinchine’s inequality, but using the Khin-
chine-Kahane-Kalton version as outlined in Section 3. This yields

t/s 1/t
d,u(O)) du(r)) = Cl@)lp.e-

(1 _ lzijIZ)M—l/p—l/q K]

t/s
S(O l)(S[O 2 )z‘aij‘szj.s‘(n+I/p+1/Q)XR_,xI,-j(r,o)d[,b(e)) dv(r)_<_C||(aij)”fu,q-
s ,2m) i

After performing the indicated integrations, this becomes

t/s
Z(Zlaijls?-”("“/p ) M(I:‘f)) v(R) = Cll(aipl|, q- (4.6)
Jj \i

A moment’s thought reveals that this is precisely the inequality needed for
the membership of (u(Z;))*v(R;)/ 2/ +VP+VD)y . in M(179,151).
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The converse implication is obtained by estimating the integral in (4.5) by
the left-hand side of (4.6) with a;;=| f™|;;27/("+1P*+1/a)_Gince
(M(Ifj)l/sV(Rj)llt 2_](n+1/p+1/q))ij e M(lp, , JAD t)

is also sufficient for (4.6) and since this choice of a;; makes the right-hand
side of (4.6) less than C|| f||%,,, we see that (b) implies (a). O

The extension of Jevti¢’s theorem is obtained in an almost identical manner,
and I will limit myself to a statement of the result.

THEOREM. Let0<s,t,p,q <o and let p be a measure on D. Then the fol-
lowing are equivalent.

(@) There is a constant C independent of f such that

t/s\1/t
(S irmera) ) <.,
J ! ij

Jor all fe AP4,
(b) The sequence (p(Q;;)"*2/ " +VP+1Dy,. multiplies 1”9 into I; that is,
it belongs to 15P/5) ’(q/’) v

A more general version of inequality (4.5) can be conceived:

t/s 1/t
(S (S lf("’(re"")r‘dm(e)) dv(r)) = C||fp,q>
(0, D\Y [0, 27)

where the measures p, vary measurably with r. I do not yet have a good char-
acterization of such sets of measures, but I can show, in much the same way,
that there is a single necessary and sufficient condition that is entirely di-
vorced from analytic functions. It is the following:

t/s
b) SR (2la,-,-lszf“”*"f’*"‘”u,(l,-,-)) d(r) = Cl(@)lp.q
J AR

for all sequences (a;;). The sufficiency of the condition arises from the usual
upper estimate | f|< 3| f|;jxg,, while the necessity follows from the same
Khinchine inequality argument as in Theorem 3.

5. Tent Spaces of Analytic Functions

The tent spaces 77 were introduced in [2]. We will see that they contain no
analytic functions, but they just fail to: If a weighted version is introduced
with a weight which is a positive power of the distance to the boundary, then
they contain a rich set of analytic functions. This is a generalization of the
observation that the derivatives of H” functions belong to a weighted 74
space. In this section we develop a sufficiently rich theory of analytic tent
spaces for us to formulate and solve the appropriate versions of problems
(1.1) and (1.2) in the next section. For reasons that should become obvious,
we will shift our domain of analyticity from the disk to the upper haif-plane
U={z=x+iy: y>0l}.
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The tent spaces T;F are defined in [2] as spaces of measurable functions on
R ={(x, y): xeR", y>0}. They are defined for 0 < p< oo and 0 < g<
as follows:

First define for ¢ in R”, T'(¢) = {(x, y) e R%*!: |x—¢|< y}, a cone in R%*!
with vertex at (¢, 0). Then let

. dxdv\P'1 l/p
Ilflqund=f(g n(sm)!fl" y)f,,j’ ) dt) : 6.1)

Finally, T is the class of measurable functions f with || f||7, finite. More
generally, let Ig(t) ={(x, y):|x—t|<By}. Then an equlvalent norm is ob-
tained if in (5.1) we replace I'(¢) with I'z(¢) for any 8> 0.

There are technical problems with the definition when either p or g is
infinite and, when g <1, different choices for the definition can be reason-
ably justified. Nevertheless we will need the same definition for all positive
finite values of p and ¢ in the generalized version considered below.

There is a duality theorem whereby the dual of T/ is TP "whenl< p,g<
oo, the pairing being

(fi= SR"HJ‘"

dxdy S g 2 dxdy
=

A theory of tent spaces in which measures other than volume measure are
permitted has been begun independently, in [13] and [5]. Unfortunately, two
slightly different formulations were chosen, one to simplify the definition of
the norm and the other apparently to simplify the duality pairing and other
formulas. In order to promote standardization of notation, I will abandon
my approach and follow that of [5]. Thus, let 7)P(x) denote the space of
Borel measurable functions on R%*! such that the following norm is finite:

def du\P'4 1/p
(1, ") e

Thus T = TF( yVdxdy). We will explicitly allow all positive real values
of g and p in this definition, even though an argument can be made that
the definition ought to be changed when g <1. There is a duality result
which says that for 1< p, g <oo, the dual of T,P(u) is 7}{3'(;;) with the pair-
ing (f, &)= o+t f8dp. It is also true that the norm on 7P(y) is equivalent
to the one obtained on replacing I'(¢) with I'z(¢).

In the context of the unit disk D, the definitions become

. 2T d pl/q 1/p
Wi #(], ([, 00 i258) )

and I'(6) is the Stoltz angle at ¢, which is defined for real 6 as the convex
hull of the set {e°}U{z:|z| < +1/2}. (The radius v/1/2 is chosen so that the
angle made by the boundary of I'(8) at e*® is #/2. Other angles less than T,
corresponding to other choices of radius less than 1, would produce the same
space with equivalent norm.) The symbols 77, without a measure explicitly
given, denote T7((1—|z[*) ™' dA).
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There are no nonzero analytic functions in 7 on the disk or Ri. (Nor are
there any Riesz systems in 7;F on R%*1) Let us recall that the pseudohyper-
bolic metric on U=R?2 is given by p(z, w) =|z—w|/|1—W| and the hyper-
bolic metric 4 by 2 =1log((1+ p)/(1— p)). To see that T contains no nonzero
analytic functions, observe that the disk D(¢+iy) = {w: h(w, t +iy) <y} be-
longs to I'(#) when &, is sufficiently small. Thus, if fe T}, then

) C
t 1<
| ft+iy)|?= A(D(t +iy)) Spum)

whence we conclude that fe H?. Now let y,=2"" and choose §, such that
the disks D(¢+iy,) are disjoint. Then inequality (5.3) can be strengthened to

. dA
DN fe+iyy)|i = CS | f17 =5 <o, ace. (1),
n () y

Ifl"dAsCSmlfl"%, (5.3)

and we see that f(¢+iy,) —» 0 for almost all #. Thus f=0. However, for
some measures . very close to dA/y, T.P(p) contains nonzero analytic func-
tions. For instance, the derivatives of functions in H? belong to T3 (y dA).
This is just the usual square function (or Lusin area function) characteriza-
tion of H”. In fact, an easy calculation shows that any function of the form
g(2)(z—20) ™M with g bounded and M sufficiently large belongs to

ATP(a) ¥ {f: fisanalyticon Uand fe TP (y*~! dA))

if « > 0. Moreover, these functions span AT’ («). The proof of this is a rou-
tine calculation in which the lemmas to follow play a role.

Since we are going to solve the analogues of (1.1) and (1.2) for the spaces
ATP(x) the first step is, as might be expected, to obtain the analogue of
Lemma 1. The second step is to obtain the analogue of Lemma 6, the duality
result. This is mostly already done in [13] and [5], but neither article con-
sidered the duality of 7;”(x) when p <1. We will only need the duality for
certain discrete measures.

The analogues of the sets Q;; of the previous sections are the following,
also called Q;;:

O;i=lz=x+iy: 27 = y<2* 27V < x < (i+1)27)

for all integers —oo0 </, j <oo. Let z;; denote the center of the square Q;;.
Occasionally we will refer to these points as z; when it is unnecessary to con-
sider the location of individual points in the sequence. We always let x; and
Yk denote the real and imaginary part of z,; similarly, x;; and y;; are the real
and imaginary parts of z;;.

Let 7 denote the measure Y y;6;, where §; is the measure with unit mass
concentrated at the point z;. Thus T:F(7) is a space of sequences (a;), which

satisfy
plq
S( > |ak|q) dt < oo,

zyel'(1)

The duality we will need is for these spaces, and the analogue of Lemma 1
will have coefficients in these spaces.
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ProrosiTioN 1. Define an operator S on sequences by
ypi—o/e
(z—2z)M°
If M >max{l, q/p,1/q,1/p}+a/q then S is a bounded operator from T} (7)
to AT} (o).

S((a)) =2 ax

The proof will show that the only requirement on {z;} is that it be separated.
A result very similar to this was shown in [13]. In that paper, derivatives of
the Poisson kernel replace the powers (or derivatives) of the Cauchy kernel
that appear here. Also, the value of g was restricted to be 2 in [13]. How-
ever, the method to be used here and the one used there are the same. We
first state a lemma, the proof of which is straightforward. The correspond-
ing result for the unit ball in C" may be found in [17, pp. 17-18]; or see [12,
Lemma 4] for the unit disk.

LEMMA 10. Let —1<a<M-—2. Then there is a constant depending only
on a and M such that
ye C
———dA(2) < ,
SU |z—w|M (2) (Im w)yM—-a-2

and if {z;} is any separated sequence (i.e., inf, ., h(zy,2;) > 0) then there
exists a constant C depending only on a, M, and the separation constant
such that
a+2
Yk < ¢ .
x |zx—wM — (Imw)M-a-2

We also observe that the function |z — 5] satisfies a Harnak inequality. That is,
|z—b|/|w—b|< (1+ p(z, w))/(1—p(z, w)). Note that this upper bound is in-
dependent of b. In particular, if z =x+ iy belongs to I'(#) then | +iy —Z;| <
C|z—Zx|, with the constant independent of k. We use this observation in the
following lemma.

LeMMA ll. Let —1<a<M-—2. Then there is a constant C, depending only
on a and M, such that

ya—l C
S A < i
Sru) |z—b|M~1 dA(z) = (|t —Re b|+Im b)M—a-2

Proof. Using the Harnak inequality mentioned above, we can replace the
zZ=Xx-iy in the integrand by ¢ + iy at the expense of multiplying the integral
by a constant. The integrand is then independent of x, and integration gives

ya—l Soo y
—————dA(z2)=C
j‘I‘(t) |z—b|M-! @ o (|[t—Reb|?+(y+Im b)2)M-D/2

If we now estimate the denominator using

a

dy.
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(|t—Reb|*+(y+Imb)?)'/2

c(|t—Reb|+Imbd) when y<|t—Reb|+Imb,
cy when y>|f—Reb|+Imb,

then easy integrations yield the required estimate. , Ll

Proof of Proposition 1. First assume that g > 1. Then estimate the absolute
value of S((ay))(z) using Holders inequality:

q M—-a/q ylz{\l—a/q ql/q’
E|ak|q IM(E — ) . (5.4)

|z2—2 |z—2¢|M

J’k —o/e
2 k )M

Now we estimate the second sum on the right using Lemma 10:

i c

Putting this in (5.4) and then integrating with respect to y*~2 dA(z) on the
cone I'(¢) gives

a—-a/q’—2dA
S IS((ak))I"y“‘szscE|ak|qy}y—a/qS y (z)
I'(s)

(1) |z—Zx |

At this point we use Lemma 11 to obtain
2 ye o
SW(a )|y “dA=CD)|a|? .
Sr(r)l o) Zla ([t —xi |+ yp)M /e

The final step is to apply Proposition 1 of [13] with n=1and s = p/q. The re-
quirement for applying that result is that the exponent (in this case M —«/q)
divided by n (here n=1) be larger than max{1, 1/s} (here max{l1, g/p}). That
is, M > max{l, g/p}+«/q. In that proposition we let » = X|a;|?6; and its
conclusion is the inequality below:

o M—alqg plg
I~ (Stawtr = fa

(|t =xp |+ yi)M—/a

= yM—e/a plq
=S—m(SU (|t —x|+y)Mtela d”(x’y)> dt

<C Sm p(I'(2))P'9 dt

(5.5)

o0 plq
" (S Jad) " dr =l
—w\ 7, T(?)

Combining this with inequality (5.5) finishes the proof for g > 1. In case
q <1, replace the first two steps (use of Holder’s inequality followed by use
of Lemma 10) with the single estimate

M—a/q M

(Elak| |7- |M) Elakl l qu
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and continue as before. This time the exponent of y,/(|# — x|+ y;) on the
right-hand side of (5.5) is Mg — o, and the requirement to apply Proposition 1
of [L2]is that Mq — a > max{l, q/p}; that is, M > max{l/p,1/q}+a/q. U

The duality result we need is a combination of the following lemma and
proposition. The first is to be found in [13]. The second will be proved here.

LEMMA 12. Letl<p<oand1<q<oo. Then

sup{| X ax by yi|: ()| 7py =1} (5.6)

defines a norm on sequences (a;) equivalent to the 7},’3'(1) norm. If p is as
above but 0< q <1, then the supremum in (5.6) defines a norm equivalent

to the following:
o p’ \I/p’
(S (suplak|> dt)
—o\ T(f)

(This last expression might perhaps be taken as the definition of T2(r).
Unfortunately that definition, if extended to all measures, would conflict with
the definition of T given in [2]. In [13], the space defined by this expression
was called 72'{z,}. However, in our present notation we will call it 7.2(7).)
What is needed now is the extension of Lemma 12 to the case 0 < p <1.

ProrosiTiON 2. If p<1 then the norm defined by (5.6) is equivalent to the
1-1/p

norm defined by sup|a|yi
Proof. One inequality is straightforward: Apply (5.6) with b, =0 when
k # ko and by, = yi,'’”. Then |[(by)||7p(s) is bounded and bounded away from
zero independent of k. Thus the supremum in (5.6) is greater than a con-
stant times |ay, by, | yx,» which is equal to |a; | yi; 7. The other inequality is
considerably more involved and begins with an obvious geometric lemma.
If z is a point in U, let I, denote the set of points ¢ such that z e I'(¢). For an
interval I on dU, let I denote the set of z in U such that I, C I. (In other
terms, 7 is the interior of the isosceles triangle whose base is 7 and whose
base angles are 45 degrees—the so-called “tent” over 1.) L]

LeMMA 13. Iflisaninterval on 0U and t € I, then there is an endpoint a of
I such that T'(¢)\ I CTI'3(a).

Proof. The figure in R2 is easy to draw and the lemma verified by simple
geometry. The endpoint a of I is simply that endpoint nearest ¢. O

Returning to the proof of Proposition 1, let (a;) satisfy |a;| < y}’P~! and let
(b) be an arbitrary sequence in 7;7(7). We need to show that

22 @b yie = Cl(5i) || 7p(r)- (5.7)

(Without loss of generality, a; and b, are positive.) For each integer m let
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/g
Em={t:( > lbqu) >zm},
ZkEI‘3(t)

and let 1y,,, I,,,, -.. denote the decomposition of E,, into disjoint open inter-
vals. Let G, denote U, I},,,. Because the 7.7 (7) norm is equivalent to one with
I'(¢) replaced with I';(¢), the norm of (by) is equivalent to the expression

(e

where |E| denotes the linear measure of E. Now we begin to estimate the
sum on the left side of inequality (5.7). Because U,, G,\G,,,.1=U, we have

Yabyr=> X axbey

m 2, € G \Gyy 4y

—“2—22 > akbkx X1, dt

m zkEIlm\Gm+l

=23 > [ S abdt. (5.8)
m L 2 €T N Fp\G g

The second equality comes about because y; =|I,,|/2, and the last equality

is because f € I, if and only if z; €I'(¢) and because I‘(t)ﬂl,m—ﬂ unless

t € I;,,,. Suppose that g > 1. Then the last sum in the above chain can be esti-

mated by

1/q \/a’
> akka( > b,?) ( > a,?) . (5.9
2 €TONI\G iy 2k €F(ING 4y (N,

Now the set I'(#)\G,, . is contained I';(#), and if ¢ is not in E,,; then the
first factor on the right is less than 2™+, On the other hand, if # does belong
to E,, . then it belongs to some /; ,, ;. In that case I'(¢)\Gp,, is contained in
')\ I, =+1 Which, by Lemma 13, is contained in I';(a) for an endpoint a of
I; m+1. And again the factor involving by is less than 2" *! because a ¢ E,,, . ;.

Let us now investigate the second factor in (5.9): By our choice of notation,

eachzyisaz;;and 27/ < y;;<2 —/+1 Now in I'(¢) there are at most three Zij
with any given value of y;;, and in I,,, the largest y;; ; can be is |I;,,|/2. Thus

\Va’ y g’
( > a,?) s( > y,sp-”q)

ze(N Iy, zee(ONL,,

1/q
sc( > 2—j(lfp—1)q')
2-j<|llml

< C|I;,n P~

’

Putting these two estimates into (5.9) gives

EA akkaC2m|11mlllp_l.
2k e(ONI\G 4y

Putting this in (5.8) gives
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2aby=CXRY S 2" 1P dt
m 1 Ilm

=C 32" 1|'?
m !
1/p
=< C(E > 2™\, I) (because p<1)
m 1l

~e{zaie)”

= Cl(o) 1p(r)-

Finally, the case where g <1 is obtained similarly, replacing (5.9) with

1/q
akbks( > b,?) sup ay. O

2 €T(ONNG s 24, €T(UN\G 4, zi€lp,

6. The Embedding Theorem for Tent Spaces
of Analytic Functions

We need only one more observation before we solve our analogue of (1.2)
for ATP(ar). Let | f|;; be defined as in the previous section:

| f1ij = sup{| f(2)|: z € Qj;}-

Then the 7P(«) norm of an analytic function f is equivalent to the T(7)
norm of the sequence (|f/;; y,-j-‘/"),-j. To see that the sequence norm domi-
nates the function’s norm, simply observe that the integral {p¢,| f|7y*~*dA
is less than 3|Q;;| max, ¢ o [| f(2)|¥* 2], where the sum is over all i, j with
Q;; meeting I'(#). This is easily bounded above by the corresponding sum
over all i, j with z;; in I',(¢), and the rest is routine. The other inequality is
equivalent to the easy half of Theorem 2 of [13]. (Although it was done there
only for g =2, the same estimates work for all g.) Also, the T}/(7) norm of
the sequence (| f|;; y/i**/9);; is dominated by that of (| f];; »3?);;. The ar-
gument is the same as for the corresponding statement in Section 4, inequal-
ity (4.2), based on Cauchy’s integral formula.

We are now ready for the main theorem of this section. Again, let § be
any convenient positive number and let D(z) = {w: h(z, w) < 6¢}.

THEOREM 3. Let 0< p,q,s <o, let « >0, and let u be a positive measure
on U. Then the following are equivalent.

(@) There is a constant C such that

1/s
([ 17 an)” =it

Jor all f € AT} (o).
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(b) The sequence

def — —C —
wii & w(Qyj) ysela—snl,

or equivalently p(Q;;)27¢*/ “"*f), satisfies one of the following:
(i) If s<p,qthen (p;) € T(q/ﬁ,) (7). Put another way, ([L,/S) eT,) ()
where 1/u=1/s—1/p and 1/v=1/s—1/q. That is,

v/u
5( E #(Q’_j)u/szj(a/q+n+l/s)u) dt < oco.

z;;el’(1)

(i) If g<s< p then (n;) belongs to TP (7). That is, if 1/u=
1/s—1/p then

uls
S( sup ”(Q‘_j)zj(Sa/q+Sn+l)> dt < oo.

z;;€el'(2)
(i) If p=<s (q arbitrary) then (p;; y,-}‘”p) is a bounded sequence.
That is,
.“L(Qij) < Cz-—js(a/q+n+l/p)
Sforalli,j.
(c) For each of these same three cases, the function
k(z) = p(D(z))y ~se/a=sn-1

satisfies ’

(i) k(z) belongs to TFs,
(i) k(z) belongs to T,p/sY,
(iii) k(z)y'~'” is bounded.

Proof. We first prove the implication (b) = (a). If f € AT () write | f ™| <
=1 ™);5xg, so that
Lo du< S1ro m0y
= 2SO Y5 Qi) yi Sy
=D ajj 1ij Vijs (6.1)
where (a;;) = (| f™|5; ¥57*/9*") € TZ(7). The conditions on g in (b)(i)-(b)(iii)
are, according to Lemma 12 and Proposition 2, sufficient to obtain
Slf(")ls dp <2 ajj pij Vi
= Cll(aip|zz5r) < CN f 1 Tp (-

To obtain (a) = (b), apply the inequality in (a) to the function
M—al/q

f@)=2 a; ZJR—(;J_W’

using Proposition 1 to get
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—al/q

|2 T

Applying the Khinchine inequality technique gives us
2M-2a/q

s/2
S(Elaulz r ”-lemz") dp(2) = Cll(@)l|zpe)-
Now, using y;;>¢27/ and |z—Z;|™' > c2/xg,(2), we obtain
a2/ Q) =< Cliaipligpy-
If we write b;; =|a;;|® this becomes
2 bijpij yij < Cll(bipll 7eis(ry

for all nonnegative sequences (b;;) in T, "/ (7). From Lemma 12 and Proposi-
tion 2 we conclude that conditions (b)(l) —(b)(iii) must hold. The equivalence
of (b) and (c) is left to the reader. O

Ly

du(z) = Cll(@)lper)-

We note that since the H” norm of an analytic function is equivalent to
the 77 (2) norm of its derivative, Theorem 4 includes the main result of [13]
as well as some of the results of [10] and [18].

7. Further Remarks

It is possible to use these same techniques to investigate a nearly unending
array of embedding theorems. One might ask, for example, when AT (a) C
T (n), that is when there is a constant C such that

oo r/s 1/r
I 1rae) a)” =clflg
- \YT(#)

The conclusion would be: whenever

] ris s/r

(S( > aijﬂ(Qij)ZJ“S/q) dt) =< C|[(@:)l 25y
z;€l(1)

that is, whenever u(Q;7)2/*¢ multiplies T/ (7) into T{*(7). All that remains

is a characterization of the space of multlphers Another question might be:

When is AT (o) C A% (in the disk D)? That is, when is

lrp2m . tls  \1/t
(SO(SO lf(re:e)lsam) dr) < C|fllarp?

And the answer is: whenever 2/1/S*e/2+1/0) myltiplies T7(7) into /%', (Both
sequence spaces are indexed on the collection of pairs (i, j) such that Q;; ex-
ists.) It is not claimed that the solutions of these sequence space problems are
easy, or even any easier than the original embedding problems. We merely
wish to point out that the methods we have used here always seem to produce
the same necessary condition (using Khinchine’s inequality) as the sufficient
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condition (using usually straightforward estimates). And the condition is
purely a problem of multipliers in the associated sequence spaces.

We would like to close with a mention of the original embedding theorem
due to Carleson: the embedding of H? into L”(u). The methods used here
work also in that case, but they are perhaps not as reasonable to apply as
the other methods available. The Khinchine inequality part of the argument
is completely unnecessary, and so the corresponding decomposition theorem
(the analogue of Lemmas 1 and 8 and Proposition 1) becomes unnecessary.
The other part of the argument becomes little more than a disguised and
slightly complicated version of one of the standard proofs based on the non-
tangential maximal function characterization of AH”. However, the embed-
ding of H” into L9(u) when g < p does benefit from these methods (see [13,
Sec. 7D)).

References

[11 E. Amar, Suites d’interpolation pour les class de Bergman de la boule et du
polydisque de C", Canad. J. Math. 30 (1978), 711-737.
[2] R. Coifman, Y. Meyer, and E. M. Stein, Some new function spaces and their
applications to harmonic analysis, J. Func. Anal. 62 (1985), 304-335.
[3] R. Coifman and R. Rochberg, Representation theorems for holomorphic and
harmonic functions in LP, Astérisque 77 (1980), 11-65.
[4] S. Gadbois, Mixed norm generalizations of weighted Bergman spaces in the
unit ball of C", Ph.D. Thesis, Michigan State University, East Lansing, 1985.
[5]1 E. Harboure, J. L. Torrea, and B. E. Viviani, A vector-valued approach to tent
spaces, J. Analyse Math. (to appear).
[6] M. Jevti¢, Interpolation by functions in mixed norm spaces of analytic func-
tions, J. Math. Anal. Appl. 126 (1987), 556-565.
» An embedding theorem for mixed normed spaces, Rocky Mountain J.
Math. 19 (1989), 1059-1068.
[8] N.Kalton, Convexity, type and the three space problem, Studia Math. 69 (1981),
247-287.
[9] C. N. Kellog, An extension of the Hausdorff-Young theorem, Michigan Math.
J. 18 (1971), 121-127.
[10] D. Luecking, Forward and reverse Carleson inequalities for functions in Berg-
man spaces and their derivatives, American J. Math. 107 (1985), 85-111.
» Multipliers of Bergman spaces into Lebesgue spaces, Proc. Edinburgh
Math. Soc. (2) 29 (1986), 125-131.
» Trace ideal criteria for Toeplitz operators, J. Func. Anal. 73 (1987),
345-368.
, Embedding derivatives of Hardy spaces into Lebesgue spaces, Proc.
London Math. Soc. (3) (to appear).
[14] A. Nakamura, Dual spaces and some properties of 19(p), 0 < p, g < o, Proc.
Fac. Sci. Tokai Univ. 22 (1987), 11-20.
[15] F. Ricci and M. Taibleson, Boundary values of harmonic functions in mixed

norm spaces and their atomic structure, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(4) 10 (1983), 1-54.

[7]

[11]

{12]

[13]




358 DaNIiEL H. LUECKING

[16] R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J.
29 (1982), 229-236. r

[17] W. Rudin, Function theory in the unit ball of C", Springer, New York, 1980.

[18] N. A. Shirokov, Some generalizations of the Littlewood-Paley theorem, J. Sovi-
et Math. 8 (1977), 119-129; translation of Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI) 39 (1974), 162-175.

Department of Mathematics
University of Arkansas
Fayetteville, AK 72701



