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This note investigates, in the setting of Riemannian manifolds with bound-
ary, the ideas that in ordinary Riemannian manifolds fall under the heading
of “cut locus”. The new features, which we illustrate by examples, are due
to the fact that minimizers can bifurcate and merge. Thus there may exist
open sets each of whose points p has the property that every point g suffi-
ciently far from p has more than one minimizer from p. We show (Theorem
1) that for any p and almost all g, there is a natural way to choose exactly
one minimizer from p to g. This simple construction applies uniformly to
all complete, connected Riemannian manifolds with boundary. In conse-
quence, we may extend a substantial part of the classical theory to manifolds
with boundary.

THEOREM 1. Let p be a point of a complete, connected Riemannian mani-
Jfold with boundary M. The set of points that have two minimizers from p
with distinct terminal velocity vectors has measure zero in M. The comple-
ment of this set can be expressed as a union of “primary” minimizers dis-
Dplaying tree-like branching behavior.

Throughout, M will denote a connected, metrically complete, and C* Rie-
mannian manifold with C® boundary. Geodesics will be locally minimizing
curves parameterized proportionally to arclength by [0, 1]. Recall that geo-
desics are C! and that any two points of M are joined by a minimizer. For a
general reference on geodesics in Riemannian manifolds with boundary, see
[ABBI1]. Cut loci in manifolds with boundary were previously investigated
by Wolter in his dissertation [ W2], to which we refer below.

1. Primary Minimizers

It is shown in [ABB2] that geodesics can bifurcate only by involution, that
is, by unrolling from the boundary. The considerable difficulty of the proof
is due to the fact that a geodesic may contact the boundary in, say, a Cantor-
like set. We now state this theorem precisely; with a view to its use here, it is
stated as a uniqueness theorem for given terminal position and velocity.
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THEOREM 2 (Cauchy uniqueness for geodesics in manifolds with boundary)
[ABB2]. For a given point r on the boundary, there is a distance b > 0 such
that if two geodesics in M of length b have the same terminal velocity vector
at r and trivial common terminal segment, then one of them lies entirely
(except for r) in the interior of M. For all the boundary points within a
compact set, the distance b can be chosen uniformly.

Theorem 2 allows us to select preferred minimizers. The intuition under-
lying the following definition is that of wavefront pinching; see Example 1
below.

DerINITION 1. For two minimizing geodesics v and o from p to g, we say
that v is preferred to o (or “y > ¢”) if they have the same terminal velocity
vector at g, and just before their common terminal segment (which may be
trivial) v has a nontrivial segment in the interior of M but ¢ does not. A pri-
mary minimizer from p to q is one that is preferred to all others having the
same velocity vector at g.

THEOREM 3 (Existence and uniqueness of primary minimizers). For each
minimizer from p to q, there is exactly one primary minimizer from p to q
having the same terminal velocity vector.

Proof. 1t is easy to verify that the relation “=" is a partial ordering of the
minimizers from p to q. Note that if y= ¢ and ¢ = 7, then two possibilities
may occur: the common terminal segment of v and ¢ may contain that of ¢
and 7, or vice versa.

Theorem 2 implies that this partial order is linear on the family of mini-
mizers from p to g having a fixed common terminal velocity. That is, for
any two distinct minimizers from p to g with the same terminal velocity,
one of them is preferred to the other. A primary minimizer is maximally
preferred, and certainly unique because of the linearity.

To get the existence of these maximally preferred minimizers from p to
g, we show more—namely, that in proceeding back from ¢, only a finite
number of bifurcations need be considered. (There can be, however, con-
tinuous families of bifurcating minimizers; see Example 2 below.) Choose
the constant b of Theorem 2 uniformly for all boundary points in the closed
ball in M of radius d(p, g) about p. We may also take b to be a uniform
radius of bipoint uniqueness for this ball, so that any two points within dis-
tance b of each other determine a unique minimizer [ABB1].

For a given nonprimary minimizer from p to g, we obtain the primary
minimizer having the same velocity at g as follows. Consider the family § of
all minimizers from p to g having the given velocity at g. Proceed back from
q to r along the maximal common terminal segment rq of this family. We
show that some minimizer in § has a segment of length b in the interior of
M immediately preceding r. If not, then r is not a bifurcation point, by
Theorem 2, and so moving back from r on members of §, bifurcations must
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occur arbitrarily close to r. By Theorem 2, there is a sequence of minimizers
vn in § such that y, has a segment of length b in the interior immediately
preceding a point r,,, where r,, converges to r. Thus there exists a limit mini-
mizer v in § that has rq as a terminal segment, and has a segment of length
b with identically vanishing acceleration immediately preceding r. But then
Theorem 2 and the maximality of rg imply that this segment also lies in the
interior. Clearly, at most d(p, q)/b repetitions will produce the desired pri-
mary minimizer. 0O

2. Examples

The first example illustrates the intuition underlying the definition of primary
minimizer, and the second, the possible existence of continuous families of
minimizers from p to g having the same terminal velocity.

ExaMpLE 1. Let M be the Euclidean plane with an open circular disk cen-
tered at the origin and a smoothed tubular neighborhood of a vertical half-
line removed, as pictured in Figure 1.

Figure 1

It is possible to position the second obstacle so that pairs of geodesics
emanating from any point p on the negative x-axis and bearing on opposite
sides of the disk come together tangentially and at equal lengths at a point
g on the second obstacle. Extended beyond g, these geodesics bifurcate by
involution to reach all points of the “shadow” region 4 of that obstacle.
Thus, each point of A4, including ¢, has two minimizers from p; these have
the same terminal velocity and have minimizing extensions.

Running from g to the disk, there is a curve shown in dashes, each of
whose points also has two minimizers from p. These have different terminal
velocities and do not have minimizing extensions. Observe that the wavefront
from p, that is, the distance-circle centered at p, is separated into branches
by the disk; coming around either side of the disk, these two branches collide
to form the dashed curve. The top branch of the wavefront is squeezed by
the second obstacle and extinguished at g, leaving only the bottom branch,
whose orthogonal trajectories are the primary minimizers, to sweep across A.
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ReEMmARK 1. In Example 1, p must be chosen carefully in order to obtain
nonprimary minimizers from p. However, by reflecting Example 1 about the
y-axis and letting A’ be the reflected image of A, we obtain a space that con-
tains an open set A’ of points p, from each of which there are nonprimary
minimizers. Furthermore, the property of containing nonprimary minimizers
is a robust phenomenon. For instance, it is clear that any small perturbation
of Example 1 contains such minimizers. Thus, if one wished to avoid work-
ing with nonprimary minimizers, the best one could hope is that—for most
Riemannian manifolds with boundary M—most points p in M have the
property that all minimizers from p are primary (equivalently, that distinct
minimizers from p to any point have distinct terminal velocities). Our aim
is, rather, to give a uniform analysis that works for all cases.

ExaMmpLE 2. Let M be a standard 2-sphere with two antipodal small open
disks removed, and let M be its universal cover. Then M has two boundary
components, S and S’, covering the two boundary circles of M. Choose
a great semicircle in M joining two antipodal points on these two bound-
ary circles, and consider an arc from p € S to p’e S’ that covers it. Extend-
ing this arc through p’ to ¢’ by adding a nontrivial segment of S’ gives a
minimizing geodesic y of M. Then v belongs to a 1-parameter variation of
minimizers from p to ¢q’, all of which have the same terminal velocity (see
Figure 2). Within this 1-parameter family there exists one minimizer having
a trivial segment on S’, and that one is the primary minimizer from p to q'.
In the figure, we view M as a strip in R? carrying on its interior a metric of
constant positive curvature invariant under translation of the strip.

s' P' q'

-

Figure 2

3. Proof of Theorem 1
We restate Theorem 1 as follows.

THEOREM 1. For any given point p, let M*( p) consist of the points q all of
whose minimizers from p have the same terminal velocity vector. Then the
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complement of M*(p) has measure zero, and M*(p) is the union of the
unique primary minimizers from p to each of its points. The traces pq of
these minimizers satisfy the branching condition

pq1N pg,=pq; for some q;. (1)

Proof. It is proved in [ABB3] that M*(p)—{p} is precisely the subset of
M on which the distance function from p is differentiable. Since the distance
function is Lipschitz continuous (by the triangle inequality), it follows that
its set of nondifferentiability has measure zero in M [F, 3.1.6].

By the existence and uniqueness theorem for primary minimizers (Theo-
rem 3), M*(p) consists of those points that are joined to p by unique pri-
mary minimizers. Further, a primary minimizer y from p lies entirely in
M*(p) if its right-hand endpoint does. Indeed, if x is an internal point of vy
then there cannot be two minimizers with distinct terminal velocities from p
to x, because then it is easy to see (as in the classical case) that y would not
be minimizing. Thus M*(p) is expressible as the union of unique primary
minimizers from p. If two of these have a common point, then—since any
truncation of a unique primary minimizer from p again has this property—
(1) follows. O

Our proof that M*(p)—{ p} is the set of differentiability of the distance func-
tion d, extended an earlier theorem of Wolter, who proved that the interior
of M™*(p) —{ p} is the maximal open subset on which d,, is C![W2]. Theorem
1 requires us to consider the remaining points of M*(p) —{ p} because we do
not know whether they form a set of measure zero.

4. Unique Minimizers and the Cut Locus

First we recall the classical situation, where M is a Riemannian manifold
without boundary. Let G, be the space of all geodesics from p in the uni-
form topology, and let G be the subspace consisting of minimizers from p
that are uniquely determined by their right-hand endpoint. Then G, is con-
tractible, since a geodesic does not minimize past a point that has multiple
minimizers. In addition, the right-hand endpoint map is a homeomorphism
from G, onto a set whose complement has measure zero in M, namely the
points having unique minimizers from p. The manifold M itself is homeo-
morphic to the identification space under the endpoint map of the closure
of G, in G,. Note that under the homeomorphism of G, with its space of
initial velocity vectors, the endpoint map becomes the exponential map and
we obtain a more familiar description. However, the pathspace formulation
given here is more suitable for extension to manifolds with boundary, which
lack classical exponential maps.

How well does this paradigm apply if M is a manifold with boundary?
As Example 1 makes clear, the set of points with unique minimizers from p
need not be dense in M; indeed, the set having multiple minimizers might
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well contain most of M, both metrically and topologically. However, if we
work instead with primary minimizers (causing no change in the classical
case, where all minimizers are primary), the paradigm works rather well, as
the following corollary shows. As before, G, denotes the space of geodesics
from p in the uniform topology.

CoROLLARY 1. The space G, of primary minimizers from p that are uniquely
determined by their right-hand endpoints is contractible. The endpoint map
carries Gy injectively onto a subset M*( p) of M whose complement has mea-
sure zero. The identification space under the endpoint map of the closure of
G, in G, is homeomorphic to M.

Proof. The first two statements follow from Theorem 1. Since M is finitely
compact, any sequence of minimizers from p of bounded length has a sub-
sequence converging to a minimizer [Bu, p. 24]. It follows that the restric-
tion of the endpoint map to the closure of G; is closed and hence is an
identification onto its image; and that the image of the closure of G; is the
closure of its image, namely M by Theorem 1. ]

Recall that the image M™*(p) of G, under the endpoint map is the set of
points all of whose minimizers from p have the same terminal velocity vec-
tor. In Example 1, this set consists of g and the complement of the dashed
curve. Here, taking the closure of G, in G, adjoins sets homeomorphic re-
spectively to a closed interval (consisting of minimizers to points of the
dashed curve including ¢ that lie above the disk) and a half-closed interval
(consisting of minimizers to points of the dashed curve not including g that
lie below the disk). Note that, unlike the classical case, topological informa-
tion may be lost by projecting the pathspace G, to M; that is, the primary
minimizers in G, may not vary continuously with their endpoints, and so
the injective map from G, onto M*(p) may not be a homeomorphism. In
particular, M *(p) need not be contractible in the topology induced from M,
only in that inherited from Gj.

For manifolds without boundary, the cut locus of p is the closure of the
set of points having more than one minimizer from p. Equivalently, it is the
locus of points to which there is a minimizer from p having no minimizing
extension. The equivalence of these two definitions involves the well-known
theorem that geodesics do not minimize beyond a conjugate point and, to
get the implication from the second to the first, the fact that the exponential
map is never injective in a neighborhood of a conjugate point [Bi; W1]. The
cut locus may also be described as the closure of the image of all many-to-
one identifications by the endpoint map from cl(G;) onto M; that is, as the
glueing locus. The cut locus has measure zero in M.

Applying the first of these approaches to manifolds with boundary, we
may define the cut locus of p as the closure of the set of points that have two
primary minimizers from p. This definition agrees with the usual one when
the boundary is empty, and can be formulated independently of primary
minimizers as follows.
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DeriNiTION 2.  The cut locus of p is the closure of the set of points having
two minimizers from p with different terminal velocities.

Earlier, Wolter analyzed the relationships between Definition 2 and several
variants [ W2], all of which have similar behavior with regard to the properties
and examples to be discussed below. Included are formulations in terms of
nonminimizing extensions; these seem a little less natural in manifolds with
boundary than in the classical case because a geodesic can end at the bound-
ary, either transversely or tangentially. However, in the interior of M the cut
locus as defined above coincides with the closure of the set of points that
have a minimizer from p with no minimizing extension [ W2]. Note that there
certainly may be cut points that lie on extendible minimizers, for instance
the point ¢ in Example 1. Such cut points may even lie in the interior of M,
as Example 3 below shows; this answers a question raised in [ W2, p. 49].

In Example 1, the cut locus of p is the dashed curve, including g; this
agrees with the glueing locus. Its complement is contractible, although not
contractible along minimizers from p because these may pass through q.
However, we shall construct an example in the next section (Example 3) for
which the cut locus as defined above does not even have simply connected
complement, and does not agree with the glueing locus. We know of no ex-
ample where the complement fails to be connected. It is not known whether
the cut locus must have measure zero, or even have empty interior.

5. Wavefronts

Now we investigate the ways in which the cut locus of Definition 2 diverges
from the classical case. In particular, a key classical feature is the contracti-
bility of the cut locus complement. Our analogue for manifolds with bound-
ary is provided by the contractibility of the pathspace G, (Corollary 1). Ex-
ample 3 below shows that this analogy cannot in general be pushed further:
specifically, that the complement of the cut locus need not be simply con-
nected. Similarly, in the classical case the cut locus of p may be regarded as
the locus of points near which the wavefront from p develops self-interfer-
ence. Example 3 shows that in general the cut locus may be too small to sat-
isfy this interpretation, in the sense that there may fail to be a contmuous
assignment of minimizers to its complement.

ExampLE 3. We start by rotating Example 1 about a vertical axis through
D, to obtain a solid torus obstacle and a second, unbounded obstacle. We
complete the example by inserting a ball blocking the lower path to g. This
interferes with part of the lower branch of the wavefront between the torus
and the unbounded obstacle. The vertical half-plane cross-sections that do
not intersect the ball will be just as in Figure 1, while the others will require
detours of the lower geodesics about the ball, as pictured in Figure 3.

In these latter cross-sections the region A is swept out by the upper branch
of the wavefront, which collides with the lower branch along cut points that
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Figure 3

pass below the unbounded obstacle and extend beyond it. The lower geo-
desics will not necessarily be in vertical planes, but they are nevertheless
elongated by the presence of the ball, so that the upper paths provide unique
minimizers to points of A. The detour is illustrated in Figure 3 for the sec-
tion through the center of the ball; the elongated geodesics are in this section
because of symmetry. Note that there is a noncontractible loop encircling
the cut points that extend beyond and below the unbounded obstacle in all
sections intersecting the ball.

Now consider the sections next to the two vertical half-planes that are
tangent to the ball. Figure 1 shows the pattern of the geodesics in such a sec-
tion. On the side of this section away from the ball, region A is swept out by
the lower branch of the wavefront, as in Example 1. On the other side, for
which the lower geodesics are elongated by the presence of the ball, region
A is swept out by the upper branch of the wavefront. In the transition sec-
tion, these two branches of wavefront have a sheet of degenerate collision,
that is, the minimizing geodesics which are their orthogonal trajectories co-
incide on the region A. Because the collision is degenerate, this transition
region A is not included in the cut locus of Definition 2. However, in order
to obtain a continuous map from the cut locus complement to the corre-
sponding primary minimizers from p, one would have to enlarge the cut
locus by adding the region A in each of the two transition sections. Simi-
larly, it is clear that the cut locus would have to be enlarged substantially in
order to achieve any continuous assignment whatever of minimizers from p
to the points of the cut locus complement.

In general, continuity of the primary minimizers is achieved on the com-
plement of the glueing locus, defined above as the closure of the image of
all many-to-one identifications by the endpoint map from cl(G;) onto M.
The following proposition is easily verified.

ProrosiTioN., The complement of the glueing locus of p is the maximal
open set on which the primary minimizers from p are single-valued and
continuous.
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By omitting the words “and continuous” here, one obtains the complement
of the cut locus instead. Example 3 shows that the two loci need not agree.
We remark that in flat surfaces with boundary, the two may be shown to
coincide.

In general, the glueing locus need not have measure zero. For instance, by
a construction similar to that of Example 3 one can produce a Cantor set of
sheets of degenerate wavefront collision, forming a set of positive measure.
Moreover, the complement of the glueing locus need not be a connected set.
This may be seen in Example 3 by moving an appropriately hollowed-out
obstacle into position just tangent to one of the sheets of degenerate collision.
It is an open question whether the complement must be contractible in man-
ifolds with boundary for which the cut locus and the glueing locus agree.

In a general manifold with boundary, one might still ask whether there
always exists a contractible dense subset S and a map from S to the space of
minimizers from p that is continuous in the topology of the intrinsic metric
on S. Examples similar to those mentioned above show that such a formula-
tion is not obvious.
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