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1. Introduction

Let H%(D) denote the Hardy space of the open unit disc D. The isometric
isomorphism of H2(D) onto the closed subspace H? of L?of the unit circle
is a map that is well understood. In fact, much of our knowledge about H?
functions has been derived by an exploitation of the properties of this map.

The Dirichlet space D is the space of analytic functions f in D with finite
Dirichlet integral; that is,

p()={{1r@Pdae) <,
D

where dA(re')=(1/w)rdrdt denotes the normalized area measure on D.
It is well known (and easy to verify) that D is contained in H*(D). It thus
follows that the above-mentioned isomorphism maps D into a subset of L%,
and for problems involving variations within the class of Dirichlet func-
tions it is important to know how changes in the boundary values affect the
Dirichlet integral.

In his investigations about minimal surfaces, Douglas [9] used the follow-
ing formula for the Dirichlet integral of f:

D=5 | [ fle™)—f(e®)

472 Jo Jo eit—e’s

This or similar formulas have also been used by other authors; for exam-
ple, Beurling used one in his original proof [3] that the Fourier series of a
Dirichlet function converges everywhere except perhaps on a set of loga-
rithmic capacity zero. In 1960 Carleson proved a formula that expresses the
Dirichlet integral of f as a sum of three nonnegative terms, involving re-
spectively the Blaschke factor of f, the singular inner factor, and the outer
factor (see [6] and also Corollary 3.6 below). As one application of this we
mention a result of Brown and Shields, who used Carleson’s formula to
show that the “cut-off” operation, which maps a Dirichlet space function f
to the outer function defined by |g|=min{|f|, 1} on the unit circle T, does
not increase the Dirichlet integral (see [4, p. 284)).

2
dt ds.
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Let fe L' (= LY(T)). We assume that f(e’) equals the nontangential limit
of its Poisson extension whenever the latter exists. For { € T we define the
local Dirichlet integral of f at { by

fle"y—£()

eil—¢

If f($) does not exist, then we set D¢(f)=-oco. Note that it follows from
Douglas’ formula that one can obtain the Dirichlet integral of f by integrat-
ing the local Dirichlet integral with respect to normalized Lebesgue measure
on T. The definition of the local Dirichlet integral was motivated, of course,
by Douglas’ formula and by the results about 2-isometric operators that
were proved in [13].

An operator T on a separable complex Hilbert space JC is called a 2-
isometry if

2
dt.

Dy(f) = 217]_ S;w

|T2x|?— | Tx|?=|Tx|*—|x|*> forall xe3C.

This definition is due to Agler [1]. It follows from the definition that any
2-isometry T satisfies | 7x| =] x| for every x € 3C, and that the spectrum of T’
is contained in the closed unit disc; for details, see [12]. Thus, 2-isometries
are examples of operators that do not belong to any of the classes that have
been studied extensively. For example, 2-isometries in general are not con-
tractions or hyponormal operators, yet their spectral theory relates them to
the unit disc.

In [13] it was shown that any 2-isometric operator 7, which also satisfies
MN,>07"3=(0) and dim ker 7*=1, can be represented as multiplication
by z on a Dirichlet-type space D(u). Here p denotes a finite nonnegative
Borel measure on T. We shall see in Section 2 that the space D(u) as defined
in [13] coincides with the space of all H? functions f such that D¢(f) is in
L(p); that is, fe H*and §y Di(f) du(§) <co.

It is easy to see that the Dirichlet shift (M, D), that is, multiplication by
z on the Dirichlet space with the norm

3=17Ee+ [l 7@ daw),
D

is a 2-isometry. Hence the restriction of (M,, D) to any nonzero invariant
subspace must be a 2-isometry as well. In fact, it was shown in [13] that every
invariant subspace of the Dirichlet space is of the form fD(my), where m;,
is the absolutely continuous measure on T defined by dm,= (1/2x)| f|* dt.
Thus, a systematic study of 2-isometric operators and the D(u) spaces will
in particular produce information about the invariant subspace structure of
the Dirichlet shift.

A connection of the local Dirichlet integral to the Hilbert spaces of square
summable power series considered by de Branges and Rovnyak [8] was
pointed out to the authors by D. Sarason. It turns out that the space of all
H? functions with finite local Dirichlet integral at ¢ eT equals the space
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M(F—S*)={(F—S*)g, ge H?}, where S* denotes the backward shift on
H?and the norm on M(¢ —S*) is chosen so that { —S* is an isometry of H?
onto M(¢—S*). These particular spaces have been considered by Sarason
(see [16, §8]). We shall give a few more details in Section 2.

In the present paper we shall prove an analog of Carleson’s formula for
the local Dirichlet integral of an H? function (Theorem 3.1), and we shall
indicate how our formula implies Carleson’s. In particular, we shall see that
the local Dirichlet integral of an inner function equals the absolute value of
its angular derivative (see Section 3 for definitions).

Furthermore, as in the case of the classical Dirichlet integral, it will follow
that cut-off operations do not increase the local Dirichlet integral. As a con-
sequence we shall show that every function in D(u) can be written as the
quotient of two bounded functions in D(u) (Corollary 3.8). This extends a
result for the Dirichlet space D that was stated and proved in [14].

From our formula for the local Dirichlet integral, one can easily deduce
that any inner function which defines a (bounded) multiplication operator
on D(p) must be a 2-isometric multiplication operator. In Section 4 we shall
prove a result that implies that the converse to this statement is true as well:
If a multiplication operator M, on D(p) acts as a 2-isometry, then ¢ must
be an inner function. This can be viewed as an extension of the well-known
fact that the isometric multiplication operators on H? are given exactly by
multiplications with inner functions.

Finally, in Section 5 we apply the local Dirichlet integral to some ques-
tions about cyclic vectors in the Dirichlet space. In fact, all of our results are
true in the generality of all D(p) spaces. Recall that a function f in D(p) is
called a cyclic vector if the polynomial multiples of f are dense in D(u).
Corollary 5.5 implies that, if g is cyclic in D(x) and if | f(z)|=]|g(z)| for all
z €D, then f must be cyclic. This answers a question of Brown and Shields
in [4].

In Corollary 5.6 we answer another question of Brown and Shields by
proving that two bounded functions f and g are cyclic in D(u) if and only
if their product fg is.

2. The D(u) Spaces

Throughout this paper we shall only be interested in A 2 functions with finite
local Dirichlet integral. If fe H?, then we shall use the symbol f to dencte
both the analytic function fe H?(D) defined on the open unit disc D and
its nontangential limit function fe H2< L*(T), which is defined a.e. on the
unit circle T. We shall start out with some elementary observations, which
easily follow from the definitions.

Fix ¢ eT. For a complex number « and an H -function f define

fle")—a

eil—¢

2
dt.
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It is clear that I.(f, o) can be finite for at most one aeC. If I.(f, o) =0
for every a € C, then D¢(f)=o0. On the other hand, if I;(f, ) is finite for
o € C, then the function g defined by

fle")—a

2.1) gle')= o

is in H2 It follows that f= o+ (e’— {)g € H?, and we shall show in a mo-
ment that f({) = «. Thus, we obtain D (f)=inf{I(f, a): a € C].
Now recall that, if g is any H? function, then

(1-|z|»)|g(z)|*~> 0 as |z]—>1, zeD.

This can easily be verified by using the Szegd kernel function, kz(ei’ ) =
1/(1—Ze"), and the dominated convergence theorem.
If g € H? satisfies (2.1), then for z e D we have
2_ 2 lz— ¢l® 2 2
| f(z)—el*=[(z- ) g(z)] = - (1-]z])]g ()]
(1-|z|»
It follows that f(z) — « if z— ¢ in any oricyclic approach region
O,(8) =[zeD: |z— > < x(1—|z).

This implies, of course, that « = f({), the nontangential limit of f at ¢.

Summarizing the information gained above, we see that an H !-function f
has a finite local Dirichlet integral at { e T if and only if there is a complex
number o such that I.(f, o) <oo. If I(f, o) is finite, then o= f({) (the non-
tangential limit of f at {), the oricyclic limit of f exists at {, and I.(f, ) =
Dy(f).

We state and prove the following proposition for the sake of complete-
ness. The proof is the same as in [7].

PROPOSITION 2.1. Let {e€T. If fe H? such that Dy(f) <o, then the
Fourier series of f at ¢ converges to f({).

Proof. For an integer k = 0 we let f(k) denote the kth Foprier coefficient of
S 1f g is the H? function associated to f by (2.1), then £(0) = f({) — £2(0)
and f(k)=g(k—1)— ¢g(k) for k> 0. Thus,

3 J0s=16)- 52O+ 3 8k=Drk gk

=f(§)—8(mE" > f(§) as n—ooo, O

In order to explain the connection between the local Dirichlet integral and the
Dirichlet-type spaces that arose in [13] in the context of analytic 2-isometries,
we need to recall a few definitions. For a nonnegative finite Borel measure p
on T, define the harmonic function ¢, by

1—|z|?
T |§—2z[?

0

?,(2) =S dp($).
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If =0 then let D(p) = H?; otherwise define D(u) to be the space of all H 2
functions f such that

Sglf’(z)lzsoﬂ(z) dA(z) <oo.

D

Here we use dA to denote normalized area measure on D, dA(z) = (1/7)r dr dt
if z=re'. A norm on D(u) is given by

| FR=17Be+ [ I/ @Pe da@),  reDw.

D

In particular, the classical Dirichlet space D equals the space D(m), where
m denotes normalized Lebesgue measure on T. We already pointed out in
the introduction that one obtains Douglas’ formula for the Dirichlet integral
by integrating the local Dirichlet integrals D.(f) with respect to Lebesgue
measure on T. This fact generalizes to D(u)-integrals for arbitrary p.

PROPOSITION 2.2. Let u be a nonnegative finite Borel measure on T. If
fe H?, then

2.2) [ Dsn due) = [ [ 7@ Peut2) da).

D

Proof. An application of Fubini’s theorem to the right-hand side of (2.2)
shows that it suffices to verify the identity for unit point masses . Further-
more, a simple change of variables implies that we may assume ¢ =1.

We shall first prove the proposition for polynomials g. Since ¢ is a finite
linear combination of monomials of the form z”, (2.2) will follow if we es-
tablish that for each n, me NU {0},

ds.

1 qur eins___l eims_l

[fey@yrman@ =5 | "l e=

D

Here P (e”) = (1—|z|*)/|e” —z|* denotes the Poisson kernel at e’ € T.
In fact, we shall show that each side of the equation equals min{n, mj}:

ny\r{., mys — 1 n+tn—1___1___ 2z iln—m)t it
SDS(Z Y (@) P(1) dA(z) = 2nm Sor > SO eitn=mip (it dt dr

1
=2nm S prtm=lpin=m| g,
0

_ 2nm
n+m+|n—m|

=min{n, mj};

1 Szﬂ— eins_l eims_l 1 Szﬂ n—1 " m—1 il
- - ds = — iks ils
2w Jo es—1 e¥s—1 s 27 Jo ,Eoe 1‘::06 ds

=min{n, mj.
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To finish the proof we must show that

— ’ 2 1- IZI 2
Dy(f)= Snjlf @F
for arbitrary H? functions f.

First assume that f€ H? such that D;(f) <. Then f has a finite radial
limit f(1) at 1, and we may define an H 2 function g by g(z) = (f(z) —f(1))/
(z—1). Choose a sequence of polynomials {g,]} that converges to g in H>
Then the sequence {p,}, p,(z)=f(1)+(z2—1)q,(z), converges pointwise in
D to the function f. Also, the definition of p, implies that D,(p,—f)=
lg,—gl%2— 0. It now follows from the first part of the proof that {p,} is a
Cauchy sequence in D(6,); thus {p,} must converge to fe€ D(§;) and

HIf’(z)lsz(l) dA(z) = lim SSlp;(z)lsz(l) dA(Z)

H— 00
D

dA(z)

= lim Dl(pn)

n—o0

=D (f).
Now suppose that fe D(6,). By Corollary 3.8 of [13] (the polynomials
are dense in D(u)) we may choose a sequence {p,,} of polynomials such that

\pa— 112 =12s— £ 12+ [ || P22 - /@) PP(D) dA(2) 0.
D
Then it follows from the above that the polynomials g,,,

pn(z) —pn(l)
z—1

Qn(z) =

’

form a Cauchy sequence in H 2 Hence the sequence {q,] converges to a
function g in H2 For each fixed z € D we have

pn(z)"‘pn(l)
z—1

=q,(z)—g(z) and p,(z)—- f(z).

It follows that p, (1) converges to some complex number «, and we have
2(z2) = (f(z)—a)/(z—1) € H% Hence I,(f, o) = | g|?2< 0, and also D,(f) =
I,(f, a) <co. Thus, the above implies that

{{Ir@Ppr.) da@ =Dy .
D
This concludes the proof of Proposition 2.2. O

The following corollary improves the results of Section 4 of [13].

COROLLARY 2.3. Let feD(u). Then the oricyclic limit of f exists at u-
a.e. boundary point ¢ € T. Furthermore, the boundary value function f is in

L*(u) and
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@3) 2/ B=1/12=§ 170 duc).

Proof. It follows from Proposition 2.2 that any function f in D(u) has a
finite local Dirichlet integral D.(f) for p almost every { € T. It now follows
from the discussion preceding Proposition 2.1 that the oricyclic limit of f
exists at all those { € T where D(f) is finite.

We observe that, for any f with D(f) <o,

2f(z) = $F () _ f(z) f($)
z—=¢§ z—¢§
Hence, from the H2-orthogonality of the functions on the right-hand side,
we obtain

+ /().

2fR) =S| _
z2—¢ H2 z2—¢
which is equivalent to D¢(zf)—D¢(f) =|f( )% The identity (2.3) follows

by integrating this with respect to x and by noting that |zf|%2—|f]%2=
for any fe H> E]

2
Rariteli

H

In the case where p = m =normalized Lebesgue measure on T, the theorem
deals with the Dirichlet space D= D(m). We note that in this case much
better results than Corollary 2.3 were obtained in [11]. In fact, it is shown
there that every function f in D has a finite tangential limit at m-a.e. €T,
where the approach region can be taken to have exponential contact with
T at ¢.

However, we point out that in the case where p is a point mass, p= i,
our result is best possible in the following sense: If {«,} €D approaches ¢
and {«,,} is not contained in O,(¢) for any « > 0, then there exists a function
S€D(6;) such that | f(a,)|—c as n— co.

Indeed, the existence of f will follow from the uniform boundedness
principle if we show that the evaluation functionals A, are not pointwise
bounded. To this end let f,(z)=(1— Ianlz)’/z(i’ Z)/(l—anz) It now fol-
lows easily from Proposition 2.2 that | f,|? = < 3, while the assumption on
{a,} implies that { f,(«,)} = o as n— oo,

For a function fe D(p) we shall frequently use the nontangential limit
function f and the fact that fe L?(x) NL2(m). As a notational help, we
shall use f(¢) to denote a limit that exists a.e. [u], because fe D(u) (or,
more specifically, because fe D(6;)), rather than f (e"), which will denote
the limit that exists a.e. [#], because fe H>2

We now return to the connection of the spaces D(6;) to the de Branges
spaces M (§—S*) mentioned in the introduction. Fix ¢ e T and let S denote
the unilateral shift, that is, the operator of multiplication by z on H2. The
space IM(§—S*) < H?is defined to be the range of the operator {—S* A
Hilbert space norm | |4 can be defined on 9M({—S*) so that {—S* acts as



362 STEFAN RICHTER & CARL SUNDBERG

an isometry from H? onto M({—S*). Thus, if f=(F—S*)ge M(F—S*)
for some g e H?, then

[£15= (€= S*) g5 = gl

PROPOSITION 2.4. The spaces M (¢ —S*) and D(é;) coincide with equiv-
alence of norms. More precisely, we have

113 =]/ *+De(f)=Dy(zf) forany feH>

Proof. Let feD(6;). Then we can define the function g by
S(z)=f(§) _
z—¢
The assumption that fe D(8;) implies that ge H 2, Hence
S-S . fR)-fE)
4

g(z)={f()+4z

-y ¢ ¢ =f(2),

(§—S*g(2)=f()+2
and thus fe M({—S*) and

113 = 1€ = S") el3 = gl2=]2(0)|*+ | S*g |32
=|f(D)|*+De(f)=D(zf).

The last equality follows from (2.3).
Now, if f=(f—S*)ge M({—S*), then

f=(—5%)g=5(g(0)+(z—{)S*g).

Hence with o= {g(0) we have (f—a)/(z— §) = S*g; thus D.(f) =|S*g|%z2,
that is, feD(5;). D

3. A Formula for the Local Dirichlet Integral

In this section we shall derive a formula for D,(f) for an arbitrary H 2 func-
tion f. This formula is an analog of Carleson’s formula [6], and we shall
show that it implies Carleson’s formula. However, our approach is quite
different from Carleson’s proof.

For the rest of this paper we have adopted the standard notation that
0-(Fo0) = 0. Note that, in the notation for the Blaschke factor B of the H?
function f, we certainly allow finite Blaschke products and understand that

THEOREM 3.1. Let ¢ €T, let fe H? and let f= BSf,, that is, let
it

f(z)= ff[il- %< exp{—j Z,,

| -2

be the factorization of f into a Blaschke product, a singular inner factor,
and an outer factor. Write u(e') =log| fy(e')|. Then

l(
+2 da(t)} exp{—l—s +2 log|f(e")] dt}
-z 2w J el
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Di(f) = 2 Po(OLSoIP+ [ o rlz do(1)| fo()?

1 SZW eZu(e )_e2u(§‘)_282u(§')(u(eit)___u(g-))
27 Jo leit—¢|2

If either of the canonical factors of f is absent, then the corresponding sum-
mand in the expression for D¢( f) will be 0.

+ dt.

First we note that the integrand of the last integral is always nonnegative.
To see this we introduce a function that we shall also use in the proof of the
theorem. Define ¢: R— R by

d(x)=e>*—1-2x.

It is easy to check that ¢ takes only nonnegative values. Furthermore, if 8
is any real number, then

(3.1 e —e26_2028(x—B)=e?Pp(x—B)=0 vxeR.

Thus, it follows that the above integrand is nonnegative.

If f is an arbitrary H? function, then since {{} ST is a set of Lebesgue
measure zero the value f,({) may or may not exist as the nontangential limit
of the outer factor of f at {. In this case the above formula must be under-
stood in the following sense: If there is some way to define | fy($)| so that
the right-hand side of the equation is finite, then D (f) is finite and the equa-
tion holds with this choice of | f5(¢)|. In this case it follows from the above
formula that D;(fy) is finite as well, and this implies that f,({) exists as the
oricyclic limit of f(z) at {. On the other hand, if the nontangential limit of
JSo(z) does not exist at ¢, or if it exists and equals « € C, and the right-hand
side of the above equation is infinite with | fo(§)| =|«/, then it is infinite for
every choice of | fo($)] and D(f) =

Finally, we point out that if fo( {) =0 then the whole formula reduces to

§ = | fo(e™)]?
0 |elt §-|2

which immediately follows from the definition of the local Dirichlet integral.

D (f)= dt,

Proof. We shall prove Theorem 3.1 via a sequence of lemmas and prop-
ositions. The strategy is as follows: First we shall show that D.(f) =
[(/(2)=(E/tz= D32 is the limit of [(f(2) =)/ (z=Nlp2 as A=¢
nontangentially. From this it will follow that for any H? function of the
form ¢f, where ¢ is inner, one has

D (¢f) =D§(‘P)|f(§')|2+D§(f)-

Thus, Theorem 3.1 may be proved by considering the inner and the outer
factor of f separately.

Furthermore, the approximation of D¢(f) by |(f(z)—f(\))/(z—N|%:2
will show that, if ¢ is an inner function, then D;(¢) equals the absclute
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value of the angular derivative of ¢ at ¢ (definition below). The angular
derivatives of inner functions have been determined by M. Riesz [15] and
Frostman [10]; thus, for that part of the above formula involving the inner
factor, we shall refer the reader to the literature.

Finally, as the last step, we shall verify the formula for outer functions f
in H2

We start with a lemma, whose proof we omit, as it is an elementary (and
standard) computation.

LEMMA 3.2. Let \eD and fe H?. Then

fR-f0 > _ 1 Szr | f(e™)]? dt_lf(k)lz
z—N gz 2w Jdo |[1—Nei|2 1—|\|2

1 SZvr PiCOIPiN &

" 27 Jo |1—N\eit|2

dt.

Next we fix some notation. For { € T we define the nontangential approach
region T, () ={AeD: |A\—¢|<«(1—|\])}. We say that A — ¢ € T nontangen-
tially if there exists k>0 such that A= ¢, Ae ' ({).

LEMMA 3.3. Let {eT and fe H? For \eD set

JS(@)—=f(N)
zZ—N

(@) If fe D(3;), then |g\|32 < (14 «)>D(f) for each x>0 and \e
T.(§), and | g\|%2 = Di(f) as N\ — § nontangentially.

(b) If there is a sequence {\,} €D, {\,} = ¢ (unrestrictedly) such that
{Ilg)\n"Hz} is bounded, then fe D(6;).

Consequently, |g\|%2— D¢(f) as N— ¢ nontangentially, whether D¢(f) is
finite or infinite.

a\z)=

Proof. (a) Let fe D(8;); then the function g(z) = (f(z)—f({))/(z—¢) is
in H?and |g|%,2=D¢(f). Thus, f(z)=f({)+(z— ) g(z) and, for \e D,

S@) =S _ (z=He) (A= eN)

a2)= zZ—N\ Z—A\
¢-2 (z)—g()
— — _——————————————-g _
= g(z)+(A=Y) P a—
By Lemma 3.2 we have
g—eMW|* _ 1 SZ« g™ . leM
Z—N\ g2 27 Jo |1—Nei|? 1—|\2

1

= m”g“%ﬂ-
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Hence, for Ae I',(¢{),

(1PN e B
sk (141 m)uguH (1+0D5)

Furthermore,

kN

1 SZW [§=A?
Z—\ |1—Neit|2

as A — ¢ nontangentially by the dominated convergence theorem. Thus, g, — g
as A— { nontangentially, and so |g\|%2— |g|3,2=D,(f). This proves part
(a) of the lemma.

(b) Now assume that {\,} =D, {\,} - { (unrestrictedly), and {|g, |2} is
bounded. Then { g,} will have a subsequence which converges weakly to a
function g e H2. By possibly renaming the sequences we may assume that
{g),) — g (weakly). Weak convergence implies pointwise convergence, thus
we see that {f()\,)} must converge to some a€ C. From this we see that
g(z) =(f(z)—a)/(z— ¢) € H? This is equivalent to fe D(5;). O

=20 ) |g(e™)[*dt - 0.

By combining Lemmas 3.2 and 3.3 we can now show that the proof of The-
orem 3.1 can be split into two parts: one corresponding to the inner factor
and one to the outer factor of f.

LEMMA 3.4. Let ¢ €T and let ¢ be an inner function and fe H>
(@) If D(f) <o, then

3.3) Di(of) = De(0)| f()|*+ De(f).
(b) If De(f) =00, then Dy(¢f) = 0.

We point out that according to our convention c-0=0; thus, if f({)=0,
(3.3) then becomes Dy (¢f) =D¢(f), whether D (p) is finite or infinite.

Proof. For Ae D consider
“ of — sof ) |2

H2

i iny|2_ 2
=2ﬂ_ Sz /(e =le/ )] dt (byLemma 3.2)

0 ll_.— it|2
_ S?ﬂf|90f(€”)|2*|f()\)|2+|f()\)|2—|¢f()\)|2
27 Jo [1—Nei|2
1o [feP—] fON)? , 1 2 Jo(e™)P—]o(N)|2
=3l oA |
(because |p(e”)|=1a.e. [m])
_ /=) 2
Bl e ‘*‘lf()\)l ————)\ . (by Lemma 3.2).




366 STEFAN RICHTER & CARL SUNDBERG

In particular, we have

ef—efN) |* _ | S-S
Z—A w2 | z—=N |52
thus (b) follows from Lemma 3.3 by letting A — { nontangentially.

To prove (a) we assume that D.(f) <o and distinguish two cases. First,
if £($) #0then f(A) — f({) as N — ¢ nontangentially. Hence in this case (3.3)
follows again from the above equation and Lemma 3.3 by letting A — ¢ non-

tangentially. Finally, if f({) =0 then we have

2

1| @)=, 1 ] feD)]?
D)= 27rg eit—¢ di= ZwS eit—¢ dt
ity 12
o ECIpe :

Now recall that a function f: D — D is said to have an angular derivative at
a point ¢ eT if there exists a we T such that (f(\)—w)/(A—{¢) tends to a
finite limit as A\ tends to { nontangentially. If it exists, then this limit is called
the angular derivative of f at ¢, and we shall denote it by f’({). It is a part
of the Julia~Carathéodory theorem (see [5, §§298-299]) that f has an angu-
lar derivative at ¢ if and only if

1 —
liminf—m=d<oo,
aor 1[N
and that in this case d =] f’({)|. Thus, it is consistent to set | f'()| =0 if f
does not have a finite angular derivative.

PROPOSITION 3.5. If an analytic function f:D — D has a finite angular
derivative at ¢ €T, then fe D(8;) and D (f)=<|f'({).

If ¢ is an inner function, then ¢ € D(6;) if and only if ¢ has a finite angu-
lar derivative at ¢ and D¢(f) =|¢'($)|.

Proof. If f maps the unit disc into itself, then | f(e/)] <1 a.e. [m]; thus,

f=fVF _ 1 SZW FAGH il PACN Y
Z—=N g2 27 Jo |1—Neit|2
1 c2r 1—|fON)?
o <35 )o [i—nei 2 &
' _ 1=
1—|\|?
_ 1—{fN)] 1+]f(N)]
1—|\| 1+|\
If f has a finite angular derivative at ¢{, that is, if
lim inf Mzd«n,

rot 1=\
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then clearly | f(\,)|— 1 for some sequence {\,}— {. Thus, the first part of
the proposition follows from Lemma 3.3(b).

The second part follows as well, because if ¢ is an inner function then we
actually have equality in (3.4). ]

Note that Proposition 3.5 implies that if an analytic function f: D — D hasa
finite angular derivative at ¢, then the Fourier series of f converges at { (see
Proposition 2.1).

As mentioned above, the angular derivatives of inner functions have been
determined by M. Riesz and Frostman ([15], [10]). For a simple proof of
these results see [2, Thm. 2]. In fact, let ¢ be an inner function, that is, let

_ o &j a;—2 Seit'f‘z }
Z)= —— ———expl—\| — do(t)t,
N)gh@h@zp{ehz()

where o is singular with respect to Lebesgue measure. Then
2% 2

. ——|eis__§-|2 do(s).

This holds whether the above expression is finite or infinite.

In light of the equality of the space D(é;) and the de Branges space
M(¢—S*), Proposition 3.5 is similar to Theorem 6 of [16]. The difference
lies in the proofs and in the fact that we establish actual equality of terms
rather than just equivalence.

To finish the proof of Theorem 3.1, we only have to verify the formula
for outer functions. Thus, from now on we shall assume that fe H?2, f#0,
and that | f(\)|=e*™, where

@)= 3 Pu )+
Jj=1

u(\) = 517? S Py(e")log| f(e™)| dt.

The harmonic function # has nontangential limits u(e’”) at a.e. eeT,
ue L'(m), and u(e”)=1log| f(e")| a.e. [m].
For |\| =<1 define
1 ¢2n eZu(e“)_eZu()\)_2eZu()\)(u(eit)_u()\))
27 So leit—\|?
This expression exists in [0, o] for each Ae D and for a.e. Ae T [m].
We need to show that I({) = D (f). We note that for Ae D,

dt.

I\ =

1 r2r u(e™) u(\) 1 20 u())
3.5 . = = - .
3-5) 3 bo N ST 2n ) eii—n %
Hence it follows that
1 (2n p2ue™ _ g2u)
I(\) = -
(M) 2w So |eit—\|2 dt
(3.6) ity|2 2 2
_ 1 SZW | f(e)|*=[fN)] di = S=F(N) \eD
27 Jo |eit—\|? Z—N |u? '
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The integrand in the definition of I(\) is always nonnegative (see (3.1));
thus, it follows immediately from Fatou’s lemma and Lemma 3.3 that, if
u(N) — u(¢) as A — ¢ (nontangentially), then

(3.7 I($) =lim I(N) = D¢ (f).

Furthermore, if D (f) <eo, then f(N\) — f({') as A — { nontangentially, hence
also u(\) — u(<). This means that if #(\) does not converge to u({) then
D (f) =, and we see that (3.7) holds without restriction. The reverse in-
equality is trivially true if 7({) = co. Hence the proof of the following claim
will conclude the proof of Theorem 3.1.

CLAIM. If I({) <o for some choice of u(<$), then u(\)— u($) as A\—¢
nontangentially and D (f) <I({).

Proof. If I(¢{) is finite for u({) = —oo, then
- (e — 262 u(e™) —u(§))

I(5)= :
(=5-1, ei—g]? dt
1 o p2ute™
T 27 So leit—¢|? dt
f 2
=l7=¢1.
=D;(f)-

Now assume I({) < oo for u(¢) > —co. We shall first show that u(\) = u({)
as A — { nontangentially.
To this end recall the definition of the function ¢: R - R,

d(x)=e>*—1-2x.

We note that ¢ is convex, ¢(x) =0 for all xe R, and ¢(x) =0 if and only if
x=0.

Now factor e2“) out of the integral for 7({), and observe that the as-
sumption implies that

2r p(u(e™y—u(§))
o e <o
We have
(N~ u(§) = ¢(2i | Prey ey —uie)) dt)
m

< 517}— S Py(e)p(u(e™)—u(¢)) dt  (by Jensen’s inequality)
2 p(u(e™)—u(s)) le' —¢|?
o leit—¢2 leit—\|2

2x Pp(u(e”)—u(f))

dt

-k

< (1+K)2(1=|\]?) 217rS dt
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for \in the nontangential approach region I',({). Thus u(A\) = u(¢) as A= ¢
nontangentially.
In order to see that D (f) < I({) we consider

I($)—1I(N)
i Szw eZu(eit)_eZu(i‘)_zezu(f)(u(eﬂ)._u(g')) »
T 27 Jo Iei’— §'|2

or p2u(e™) _ ,2u(N)
IS € ¢ " dt (by(3.6)

s |eit—N\|?
1 S (e p2ute™) _ p2u() _ 2e2E) (u(e’) —u(s))) 1 — 1 dt
27r [eit_g-lz Ieit_ )\Iz
. 1 Szw ezu(e"’)_ezu(g)_zezu(f)(u(eiz)_u(g.)) ~ eZu(e")_eZu()\) u
27 [eil—\[2 lei —\[2
1 2= e:’-“(e”)—e?‘”m—Ze"'“m(u(e"’)—u(g‘)) |eft_§-12 4
= - —— |dt
o | EENE ()
1 o 82“()‘)—-82“(”—282”“)(11()\)——u(;’))
+=—| NP dt (by (3.5).

The integrand in the last integral is nonnegative and the first integral con-
verges to zero by the dominated convergence theorem as A — { nontangen-
tially. Furthermore, by Lemma 3.3 we have I(\) - D.(f) as A— { nontan-
gentially. Thus I({) —D(f) =0, and the claim follows. This also concludes
the proof of Theorem 3.1. ]

As a first corollary we obtain Carleson’s formula [6].

COROLLARY 3.6 (Carleson). Let fe H? and let f=BSfy, that is, let

f@=T1I /8 ﬁ’—z—exp{—-s ’t“ d (t)}
(04 e

j= ll I 1
1 e’ +z it
xexp{hg ogl f(e )ldr}

be the factorization of f into a Blaschke product, a singular inner factor,
and an outer factor. Write u(e’’)=log| f(e')|. Then

Hlf’(z)l2 dA(Z)

D

=7 S Pyemren s+ [ (7

27 Jo j=1

2

m do(t)]f(eis)|2 ds

dtds.

1 Szﬂ_ 1 SZW (eZu(eH)_eZM(eis))(u(eit)_u(eiS))
27 Jo 27 Jo |eit—eis|2
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Proof. We shall use Theorem 3.1. The Dirichlet integral of f,
[lir@paac,

D
equals the L(T, m) norm of D(f) (by Douglas’ formula; see also Proposi-
tion 2.2). Thus, since | f(e”)|=|fo(e*)| a.e. we need only check the sum-
mand dealing with the outer factor of f. If f is an outer function, then by
Theorem 3.1 we have

[§1r@rdac

D
. 1 SZWD ) d
- 27‘_ 0 els(f) A
{ 2 1 (on ezu(e"’)_ezu(e"‘)_Zezu(e"‘)(u(eit)_u(eis»
- S S ¢ dt ds
2m Jo 2w Jo leit—eis|2
11 (2r 1 p2r e2u(e”)_eZu(eis)_2e2u(eis)(u(eit)__u(eiS))
_1 S S i dt ds
227 do 27 Jo |eit—eis|2
11 r2r 1 ¢2n ezu(e"s)__ezu(e"’)_zezu(e"‘)(u(eis)_u(eit))
2 S S i dt ds
227 Jo 2w Jo |eis —eit|2
or 2 2u(ei’)_e2u(eis) ue™y—u(e™
_ 1 S 1 S (e ‘ )(.(e )—u( ))dtds. 0
27 Jo 2w Jo |eit—eis|2

In [14] it was shown that every function in the Dirichlet space D can be
written as the quotient of two bounded functions in D. In fact, this result
holds for analytic functions with finite Dirichlet integral on any connected
open set in C. For the case of the disc one can prove this result using cut-off
functions (see below). These functions have been used in [4] (see Lemma 7,
also compare [14, Remark 3, p. 154]). We shall now show that one can use
Theorem 3.1 to show that the local Dirichlet integral of the cut-off func-
tions is bounded by the local Dirichlet integral of the original function. This
implies that every function in D(x) can be written as the quotient of two
bounded functions in D(x) for any nonnegative finite Borel measure pu.

For x € [—o0, ) let x, = max{x, 0} and x_ = min{x, 0}. We leave the
proof of the following lemma to the reader; by separating several cases it
can be proved using techniques from elementary calculus.

LEMMA 3.7. Let F(x,y)=e*—e’—e(x—y) for (x,y)eR? and let
F(x,—w)=e*forxeR. Then F(x,,y,)<F(x,y)and F(x_,y_)<F(x,y)
for all xe (—o, ) and y € [ —, ).

To define the cut-off functions mentioned earlier, recall that any function f
on T with log| f| e L! determines an outer function f; by
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”+z

Jo(2) =exp[% S o

with | fo(e™)|=]|f(e")| a.e. If fe H?, then by a cut-off function of f we
mean the outer functions determined by min{| f|, «} or min{]f|~!, «} for
some ax € R.

loglf(e”)l dt}

COROLLARY 3.8. Let ae(0,) and feD(6;). Suppose f=1f, is the
inner-outer factorization of f. Let ¢q be the outer function determined by

| 0ol =min{| fy|, &}, let o = Iy, and let Y = o/ fo. Then f= ¢/, ¢,y € H",
lelo=c,  |¥|e=1,
and ¢,Vy,1/y € D(8;) with
D(p) =D (f),
D.(Y)=D(1/¥) = (l/az)Dg(fo)-
Consequently, every function in D(p) can be written as the quotient of two

bounded functions in D(p).

Proof. Itisenough to consider the case o = 1. The general case follows from
this one by applying it to the function f/«. Furthermore, if ¢, is the outer
function determined by minf{| f;|, 1}, then

1 (efl+z

ootz =expl 5 | £
Thus, with ¢ = Ipgand ¢ = o/ fy, we clearly have f= ¢/y, |¢|. =<1, and
|¥]o=1. It now follows from Lemma 3.7 and Theorem 3.1 that D¢(pg) <
D(fo). In particular, the expression for D (¢,) in Theorem 3.1 is finite for
the boundary value choice |¢g($)| = min{| £({)|, 1}. By the remark following
Theorem 3.1, this implies that the oricyclic limit of ¢ exists at ¢ and that its
absolute value equals |po(¢$)|=minf| ()], 1}. Hence we see that |¢y(¢$)|<
| £(£)|. Thus, by applying Theorem 3.1 (or Lemma 3.4) to ¢ = Ip,, we obtain

D(¢) =D(I)|o(O)|*+Di(0o) < De(f).
Finally, the definition of y implies that

l og_ If(e”)ldf}

1, 1 ”+z
E(Z)—eXp{Z{S

Thus, from Lemma 3.7 and Theorem 3.1 we see that D (1/y) < D(f). Also,
since || =<1 we have

¥/ (2)]=1¥2(2)]|(1/¥Y (2)| = |(1/¢) (2)].

Hence, from Proposition 2.2 applied with p= §;, we obtain

Di(¢) = D(1/¥) = De(f). U

% log. | foe™) .
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4. Inner Functions and 2-Isometries

It follows from the results of Section 3 that, whenever ¢ is an inner function
and fe H? such that ¢f e D(n), then f and ¢2f are also in D(x) and the
2-isometric relationship is satisfied, that is,

@.1) 2 f 12 =lefI2=1ef12- 112

In fact, since | f ||ﬁ= |/ |]%12+ij( f)du($) we need only check the above
identity for D;. If ¢f € D(8;), then by Lemma 3.4

De(ef) = De(0)| £(§)*+De(f).
Thus it follows immediately that fe D(5;). If f({) =0, then clearly
Dy(ﬁﬁzf) —Dgr(ﬁof) =D§(¢f) "Dg-(f) =0.

If f(§)#0, then D¢(¢) must be finite. This means that the inner function
¢ has a finite angular derivative at ¢ (Proposition 3.5) and, in particular,
le(£)| =1 so that D¢(¢?) =2D(p) and

Di(¢%f)=2D(0)| f()*+Dc(f).
Thus ¢2fe D(;) and
D(0%f)—D(of) = D) | of ()|*= De(0)| S()|*= De(ef ) — D (f).

In Theorem 4.2 we shall establish a converse of this statement. First we
prove a lemma stating that functions in D(6,) approach their boundary value
at a fast rate, at least from within nontangential approach regions.

LEMMA 4.1. If ge D(6;) then

g\ —g(9)]?

e 0

as \— ¢ nontangentially.

Proof. There exists a function 4 e H? such that g(\) = g($)+ (A=) AN).
Then, for \ in the nontangential approach region I',({), we have

lg(N)—g($)]?
1—|\|?
because he H?2. O

< k(1=|\DAV2 -0,

In the following, unless stated otherwise, all limits will be understood to
mean nontangential limits.

THEOREM 4.2. Let u be a nonnegative finite Borel measure on T, and let
o be a complex-valued function on D such that f, of, ¢*f € D(p) for some
nonzero function f. Then ¢ is the quotient of two inner functions if and
only if (4.1) holds for f and zf.
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In particular, a multiplier ¢ on D(p) acts as a 2-isometry if and only if
@ is an inner function.

Proof. We almost proved the “only if” part of the theorem above. In fact, if
o= ¢1/p, (Where ¢; and ¢, are two relatively prime inner functions), then it
follows from the assumption ¢2f e D(p) € H2that f= ¢2g for some g e H>
The inner function ¢2 expands the norm in D(p), so g € D(p). We now re-
peatedly apply the result that multiplication by an inner function acts as a
2-isometry, obtaining

le?fli—lefli=leteli—le1v22li=le12li~ 0222
=lerergli—leseli=lefli- 1112

Of course, the same argument also works with zf in place of f; hence,

o2z f 12— ez fa= ez 2=z f )2

Now assume that ¢ and f satisfy the two 2-isometric identities of the
theorem. Since f, ¢f € H? we see that ¢ must be a function in the Nevann-
linna class, thus it will have a boundary value function on T that is well de-
fined a.e. Then

0=[e*fli—2lesIi+1/1
=102/ =20 of P+ 2+ | De(0®))=2Dy(ef)+ Dl ) dp(s)

27
= 51;; SO (lel?=1?| f|*dt+ ST D(92f)—2D(of)+De(f) du().

We shall show that the integrand of the second integral is nonnegative for
p a.e. ¢ This will conclude the proof, because it will imply that both inte-
grals are zero and, as the integrand of the first integral is nonnegative it must
vanish a.e., that is, |¢|=1a.e.

Before we can show that Di(¢%f) — 2D (¢f) +D(f) = 0a.e. [u], we need
to make a few preliminary observations.

We know that f, of, 0%f € D(6;) for p a.e. {€T. For any such { the
numbers f({), (ef )(§), and (o2f)({) exist as the oricyclic limits of f(\),
(ef)(N), and (o2f)(\). We thus have

(22O = 2|(N)(O))*+] LD =1im] (02 )N 2= 2[( ) N2+ F(N)
=lim(|e(\)[*=1)?[f(N)|*=0,
where the limits are oricyclic limits as A — ¢.

Recall from Theorem 2.3 that |zg|2—|g|2={|g()|*du() for any ge
D(p). By applying this to f, ¢f, and ¢2f, our two assumptions imply that
0=(le’zfli—2lezfl;+12/1D) — U’ fli—2lef i+ 111D

= §1(*N O = 2NN+ AN du(§).
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We saw above that the integrand of the last integral is nonnegative a.e. [u];

thus [(02f)()* =2 NP+ A(DI*=0a.e. [n].

Now recall from Lemma 3.2 and 3.3 that
| (1 (2 |gle™)? PNk
D =] - —
s(8) i‘}{ 5 1—seiz ¥ l—mz}
for any ge D(8;). We fix { € T such that f, of, ¢*f e D(5;) and

4.2) (@2 ()2 =2( /) () +] f(5)|?>=0.
Then

Di(0%f)—2D¢(of ) +D¢(f)

_ e (1 e (lee)P=1)2fe™)P . (eMP=12LON)]?
- tim o | i—rerp ¥ E

We shall show that the term on the right converges to zero as A — { nontan-
gentially. This will conclude the proof, because it will show that the left-
hand side of the equation is nonnegative for pu a.e. ¢.

We must consider two cases.

(@) f(¢)#0. In this case, it follows from (4.2) that ¢(\) approaches a
limit of modulus 1 as A - { nontangentially, say ¢(\) = ¢(¢), |¢($)|=1. By
our assumption f, ¢f € D(8;), and hence from

of —of(§) _ o— s0(s°)f+ mf_f(s“)
z—¢ z— —¢
it follows that ((¢— ¢($))/(z—{)).f = g€ H% We evaluate at \ and obtain
g(\)
k —
e(N)=o(5)+(N— S')——f()\)
Thus,
(eMP=1D2IFMI? _ A= $PleMP@+ A= ¢llgMI/IFMD?
1—[A[2 1—[A?
as \— { nontangentially, because f(\)— f(¢)#0, and (1—|\])|g(\)]>—0
since ge H?2

(b) f(¢)=0. In this case f(\)—0, and thus from | 2f(\)| = |(02/)(§)| <
it follows that |¢f(N)|— 0=|(of)($)|. Hence

(2 NP = (2NN = 21N+ F()*=0
by (4.2). We can now use Lemma 4.1 to finish the proof:

(eMP-D2SONP _ 2/ 0P, lef P | SO
1—|\J2 1—|\[2 1—|A[2 " 1=|AJ2

as A — { nontangentially. O

-0
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5. Approximation of Functions in D(4;)

In this section we shall answer some questions of Brown and Shields (see
[4], or [17]) about cyclic vectors in the Dirichlet space. All our results are
valid in the generality of all D(x) spaces. The results will follow from Theo-
rem 5.2 below, which states that D ( f,) <4D(f), where f.(z) = f(rz), 0<
r < 1. This can be used to show that, if fe D(p) and ¢ € H* such that ¢fe
D(p), then ¢, f— of (weakly) in D(x) (Lemma 5.4).

Before proving the next lemma we include a word of caution: If D (f)<
oo, then g= (f—f())/(z—{) € H? and D¢(f) =|g|%2. However, the rela-
tionship between D;(f;) and |g,|% is more complicated (see the proof of
Theorem 5.2).

LEMMA 5.1. Let ¢t €T, ge H? and r<1. Then
(1-r2)2Dy(g,) < gl %2

Proof. This will follow from an elementary computation with Taylor coeffi-
cients. Let g(z) =% g(n)z"; then

gr(z)_gr(g‘) ___ X A nzn_g-n
R .
) n—1
=Y &(myr" Y zkgroiok
n=1 k=0
= §( > g(ﬂ)f”s“")?"“z"
k=0\n=k+1

= 5 (Penig)r) T2

where P, denotes the orthogonal projection of H?2onto z¥H 2 for k € N. For
Ne D let &, denote the Szegd kernel at A, that is, ky(z) =1/(1—\z) and k,,
satisfies (f, ky)2=f(\) for each fe H2 Then (Piky)(z) = NzFk\(z), so

that
2

gr(z) —gr(r)

D;‘(gr)= z_g.

H2

=2 l(g’Pk+lkr§')H2|2

) o«
<lalip 3 1Py ik, lhe=
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= g|3: k§0r2k+2"zk+1kr§‘"%12
1
2
SllglfHZ(T_r—z)z'-

THEOREM 5.2. Let fe D(6;) and 0<r<1. Then D.(f,) <4D(f).

Proof. f has a finite local Dirichlet integral, hence there is a function g € H?
such that l|g||§,z=D§,(f) and f(z)=f($)+(z—¢)g(z). Thus forany 0 < r < 1
we have

_ 2
sy =|7 _{’ ; —¢(1- )___’Z_gfsff) .
<2|gl22+2(1-r)2D,(g,) <4|gl}2=4D ()

by Lemma 5.1. * O

LEMMA 5.3. Let o€ H® and fe D(3;). Then ¢f € D(8;) if and only if
S(§)=0or o€ D(6;). Furthermore,

D(ef) =2(||2 De(f) +| f(9)|2De(9))
and

| f()*De(e) =2(J 0|2 D (f) + Di(of ).

If f($) =0 then one even has Di(¢f) <|¢|%D:(f), while the second in-
equality can be replaced with the trivial observation that the right-hand side
is nonnegative.

Proof. We use the identity
of —ef(§) - f(s“) o— ()

T=r v + /() pamp
Our assumptions imply that ¢(f—_f(¢)) / (z—¢) e H? Hence
of —ef(§) p— (%)

e H? ifandonlyif f(§) eH?2.

z—=¢ o z=¢

This is equivalent to the first statement of the lemma. Also,

2
Dy(of) = O <alelz e—e@)
— 2 g‘ H?
=2(|I¢|!§OD;(f)+If(s“)|2D;(so))-
Similarly,
. _ 2
FOPDy= [ EEE - o LED <2yt +Iol D).
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Finally, if f($) =0 then ¢f({) =0, because ¢ is bounded. Thus,

2
Dy(ef) = l S S

(P——- —

Z2—$ || Z2—¢

We can now easily prove the result stated in the introduction to this section.

2
=lels = lel%Dy(f). O
H

LEMMA 5.4. Letoe H®and fe D(u) such that of € D(p). Then ¢, f — of
(weakly) in D(u).

Proof. Clearly ¢, f— ¢f pointwise in D, hence it will suffice to show that
|erf1,is bounded independently of r <1. Notice that |¢, f| g2 =<|¢|w|.f]z2
and that p is a finite measure, so it will be enough to check that D¢ (¢, f) is
bounded independently of r and {. The case when f({) =0 follows imme-
diately from Lemma 5.3. If f({) # 0, we then have

Dile, /) =202 D)+ f(§)2Ds(e,))  (Lemma 5.3)
<2(J 0|2 D () +4| f(D)]*D(9)) (Theorem 5.2)
< 2|2 De(/)+8(I 9|2 De(£) + Dylef)) (Lemma 5.3)
< c(|ol% De(f) +D(0f)). O

For our convenience we proved only weak convergence in the previous lemma.
However, the polynomials are dense in D(u) for any measure p, so one can
use a standard argument to show that f, — f even in the D(u) norm.

Using the preceding lemmas one can now answer some of the questions
posed in [4] and [17]. We shall illustrate this with two examples.

If fe D(n), then we shall denote by [ f] the smallest invariant subspace
of the operator of multiplication by z. Thus [ f] is the closure of the poly-
nomial multiples of f. A function fe D(u) is called a cyclic vector if the
polynomial multiples of f are dense in D(u), that is, if [f]=D(n). It is
clear that any cyclic vector in D(x) must be an outer function, but for many
measures u there are examples of noncyclic outer functions in D(u). Pres-
ently there is no known necessary and sufficient condition for the cyclicity
of a function f even in the case of the Dirichlet space D. For more informa-
tion about cyclic vectors in the Dirichlet space we refer the reader to [4] or
the survey [17].

COROLLARY 5.5. Let f,ge D(p). If |f(z)| =|g(z)| for all ze€ D, then
igl € f]). In particular, if g is cyclic then f is cyclic.

This answers Question 3 of [4] for the D(u) spaces. It also generalizes Theo-
rem 1 of [4].

Proof. The assumption implies that ¢ = g/fe H®. If r <1, then clearly
o, f el f] (approximate ¢, with polynomials uniformly in a neighborhood
of D). Also ¢f = ge D(u), so by Lemma 5.4 it follows that g e [ f]. But this
implies that [g] S [ f]. O
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It is easy to check that, for any two functions f and g in D(u) NH, their
product fg is also contained in D(u) N H . In [4] it was shown that, if f, g€
DN H* such that fg is cyclic in D, then both f and g must be cyclic. For the
converse the authors obtain a partial result, leaving the general case as an
open question (Question 8 of [4]).

COROLLARY 5.6. Let f,ge D(p)NH™. Then fg is cyclic if and only if
both f and g are cyclic.

Proof. Suppose fg is cyclic. For each zeD we have | f2(z)| < | f]|&(z)l;
thus Corollary 5.5 implies that g must be cyclic. By symmetry, f must be
cyclic as well.

Now assume that both f and g are cyclic vectors. Since [f]=D(u) it
is enough to show that e[ fg]. Since g is cyclic we may choose a sequence
of polynomials {p,} such that p,g—1in D(n). Let p,g = ¢,/¥, be the
cut-off functions of Corollary 3.8 (a=1) satisfying |¢,lcw |¥a]e=<1 and
D¢(¢,), Di(¥,,) = D¢(p,g). We note that |y, p,gf(z)| <|p,gf(z)]; thus, by
Corollary 5.5 it follows that ¢, f=y,p,efelp,gflclgf].

We shall show that ¢, f— f (weakly). Since p,g=¢,/¥,— 1in H?, one
can show that ¢,(z) —1 for each zeD. This was done in [4, Lemma 6,
p. 283] for ¥, (z), and this implies the result for ¢,(z). It now follows that

lenf12=lens P2+ | Dytons) duts)
<1/ B+ | D +1712 Dt dp()

<|/12+1/1%] Pagl-

The last term is bounded, because p,g—1in D(u). Thus {¢, f} converges
weakly to f, and so fe[gf]. O

We note that one can relax the hypothesis of Corollary 5.6 by merely assum-
ing that f, g, and fge D(un). Using the cut-off functions of Corollary 3.8
and the results of this section, one can show that for a general D(u) func-
tion f= ‘P/\b, where ||§0"coa "‘l’"oo =<1 and D{(@)st(‘l/)st(l/¢’) SD;'(f) as
in Corollary 3.8, one has [ f]={¢], and that ¥ and 1/y are cyclic in D(u).
Thus, the general problem of the cyclicity of f, g, and fg is equivalent to the
case handled in Corollary 5.6.

References

1. J. Agler, A disconjugacy theorem for Toeplitz operators, Amer. J. Math. 112
(1990), 1-14.

2. P. Ahern and D. Clark, On inner functions with H? derivative, Michigan Math.
J. 21 (1974), 115-127.

3. A. Beurling, Ensembles exceptionels, Acta Math. 72 (1939), 1-13.



A Formula for the Local Dirichlet Integral 379

4. L. Brown and A. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer.
Math. Soc. 285 (1984), 269-304.

5. C. Carathéodory, Theory of functions of a complex variable, v. 11, Chelsea, New
York, 1960. |

6. L. Carleson, A representation formula for the Dirichlet integral, Math. Z. 73
(1960), 190-196.

7. P. Chernoft, Pointwise convergence of Fourier Series, Amer. Math. Monthly 87
(1980), 399-400.

8. L. de Branges and J. Rovnyak, Square summable power series, Holt, Rinehart
and Winston, New York, 1966.

9. J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33
(1931), 263-321.

10. O. Frostman, Sur les produits de Blaschke, Kungl. Fysiogr. Séllsk i Lund 12
(1942), 169-182.

11. A. Nagel, W. Rudin, and J. Shapiro, Tangential boundary behavior of func-
tions in Dirichlet-type spaces, Ann. of Math. (2) 116 (1982), 331-360.

12. S. Richter, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math.
386 (1988), 205-220.

» A representation theorem for cyclic analytic two-isometries, Trans.
Amer. Math. Soc., to appear.

14. S. Richter and A. Shields, Bounded analytic functions in the Dirichlet space,
Math. Z. 198 (1988), 151-159.

15. M. Riesz, Sur certaines inégalités dans la théorie des fonctions avec quelques
remarques sur les géométries non-euclidiennes, Kungl. Fysiogr. Séllsk i Lund 1
(1931), 18-38.

16. D. Sarason, Doubly shift-invariant spaces in H?, J. Operator Theory 16 (19386),
75-97.

17. A. Shields, Cyclic vectors in Banach spaces of analytic functions, Operators and
function theory (S. C. Power, ed.), pp. 315-349, NATO Adv. Sci. Inst. Sec. C:
Math. Phys. Sci., 153, Reidel, Dordrecht, 1985.

13.

Department of Mathematics
University of Tennessee
Knoxville, TN 37996-1300






