Multipliers and Cyclic Vectors
in the Bloch Space

LEON BROWN & A. L. SHIELDS*

I. Introduction

In this paper we study the cyclic vectors in @&, the Bloch space with the weak*
topology, and in ®,, the “little” Bloch space with the norm topology. A re-
sult is obtained which implies that every outer function in ®(®,) is cyclic.
We also obtain a simple characterization of multipliers in & and &,.

The Bloch space ® in the open unit disc D in the complex plane is the
space of all those analytic functions fsuch that (1—|z|?)f’(z) is bounded in
D. We norm ® as follows:

1) 1f1=1/(0)|+sup{(1—|z|*)|f"(z)|: z € DJ.

With this norm & is a Banach space and ®, a closed subspace. Here ®,,
sometimes called the “little” Bloch space, denotes the set of those fin ® for
which (1—|z|?)f’(z) - 0 as |z| 1 1. For information about & and ®,, see [1]
and [2].

The space B with the norm (1) is isometric to the second dual BF* (see
[9]). Furthermore, the polynomials are norm dense in &, and in &§, and
are weak* dense in 3. Note that @ is not norm separable.

We have a growth estimate for Bloch functions (see, e.g., [3, Eq. (4)]):

@ /(@) = {1+log ar l} 171

Thus ® is contained in L? (the analytic L? functions in D) for p <co. For
the Hardy spaces we have H*C @, but H” is not contained in ® for any
p <oo; also, @ is not contained in the Nevanlinna class.

The second section of this paper deals with multipliers in 3. A complex-
valued function ¢ in D is called a multiplier on ®& if ¢® C &. By M, we de-
note the operator of multiplication by ¢: M, f=¢f (fe€ ®@). The set of all
multipliers will be denoted by M(®). An application of the closed graph
theorem shows that M, is a bounded linear transformation on . Hence it
has a finite norm |M,|.
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In the third section we study (weak*) cyclic vectors for the space ®. These
are the function f in & whose polynomial multiples are weak* dense in
(i.e., they are cyclic vectors in the weak* topology for the operator of multi-
plication by z on ®). Note that a duality argument yields the fact that if fisin
®y, then fis (norm) cyclic in &, if and only if it is weak* cyclic in 3. When
we refer to cyclic vectors in @, the weak* topology is always understood.

In [3], Anderson, Ferndandez, and Shields show that if f is outer and
bounded, then f is cyclic. Theorem 3 shows that the outer requirement alone
is enough to ensure that a Bloch space function is cyclic.

II. Multipliers in the Bloch Spaces

THEOREM 1. The following are equivalent:

(@) ¢ is a multiplier on ®;
(b) ¢ is a multiplier on ®;
() pe H” and

1
’ =0 '
|$'(z)| ((1_|z|)10g(1/(1—|Z|))>

Proof. (a)=(c) We thank the referee for suggesting the following proof;
our original proof was more complicated.

Suppose that ¢ is a multiplier of ®. Then by [5, Lemma 11] ¢ € H* and
|p(z)| <|M,|. Let zoe D\{0} be arbitrary. We complete the proof of the
implication (a) = (c) by showing

4| M, |

(1—|zo[)log(1/(1—|zo]))
—if

(%) lo’(z0)| =

Let zo=re’. Since L(z) =log(1—e~"z) is in & and ¢ is a multiplier of &,

we have
leL| =|M,||L|=2|M,]|.
It follows that

(1—-]z|*)|¢"(z)L(z)| < 2|M, |+ (1—|z|*)| e(z) L (z)]
<2|M,|+2]¢|o=4|M,|.

Hence
4|M,|

(1—|z]?)|log(1—e~"z)|
To see that (*) holds set z =z, and replace 1—|z¢|? with the smaller value

1—|zo. _
(b) = (¢) Given zo=re'?#0and « in (0, 1), let

lo’(z)| <

o

La(z)=(%log(l—e‘iaz)> .
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A calculation shows that L, € 8, and sup,|L,| =k < +oco. In a manner simi-
lar to the proof of (a) = (c), one obtains that if ¢ is a multiplier of &, then,
for each «,

. (1—|20[?)|(log(1—|z0|)/z0)"|
cnce,

(1—|zo|) log(1/(1—|z0])) -
(c)=(a) Assume fe B, pe H™, and

1
"(2)|=0 .
o) <(1—|zl)10g(1/(1—|z|)))
Note that (¢f) = ¢of '+ ¢’f and we have

1
|(80f')(2)|5||<P||oo|f'(2)|scl—_—|z‘f|~
For |z]=1 we have | f(z)| < Clog(1/(1—|z])), which implies |(¢'f)(z)]| =<
C/(1—|z|). Thus ¢fe ®.
(c) = (b) One can easily show that if fe ®, then f(z) =o(log(1/(1-r))).
Using this fact, the proof is similar to the proof of (c) = (a). O

LEMMA 1 (see [3, Lemma 1] or [4, Prop. 2]).

(@) If {f,} C B then f,— 0 weak* if and only if f,(z)—0 for all z in D,
and sup| f,| <.

(b) If {f,JCB®B, 0=a<]l, then lim f,— 0 (as o T 1) weak* if and only if
lim f,(z) >0 (a11) for all z in D, and lim sup| f,| < .

REMARK. Both (a) and (b) remain valid if ® is replaced by B, and weak*
is replaced by weakly.

Let [ /] denote the weak* (norm) closure in ®&(®,) of polynomial multiples
of f. Set | flo=sup,(1—|z|)| f(z)] if it is finite.

LEMMA 2. IfgeM(®y) =M (®B) then

(@) fe®q implies gfe[f]) (norm topology);
(b) fe® implies gfe[f] (weak* topology).

Proof. (a) We show that if ge M(®,) and fe B, then g,(f)e[f], where
g.(z)=g(tz). One easily shows that if P, is the partial sum of the power
series for g, then P, f— g, f (norm). Thus we have g, f is in the closure of
polynomial multiples of f, which implies g, fe[f]. For ze D, g,(z2)f(z) —
g(z)f(z). Furthermore,

l&.f]= ||g,f’+f(g,)’||o+Ig(O)f(O)I
=|glolf1+15(&) lo+]|/(0)g(0)].
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If |z|=r and |z| = 7, then

/@) (g 2) (1—r?)| = c1og(L)z|gf(tz)|(1_,«)

1—r

sCIog(1 L )maxlg (ty)|(1—r)

ly|=r

<C log(—l—_l_—r> max|g’(y)|(1—r)

y|=r
<C (by Theorem 1).

Thus, by Lemma 1, g,f — gf weakly and the proof is complete.
(b) The proof is essentially the same for fe ; we omit the details. ]

III. Cyclic Vectors in the Bloch Spaces

LEMMA 3. If f,ge® then

I(f=sDeglo=1S"lolg o
Here g,(z) =g(tz) for all ze D.

Proof. Since f(z)—f(tz)= jfz S’ (integrating along the radius), we have

@ =S| =1 | a-n"ar

1—rt
1_

=|f"]olog
Also, if x=(1-r)/(1—tr) then

: o 1—rt I—r\ o 1
g(l—r (l—tr B "

is bounded by (1/e)loge for0<f=<land 0<r<1.
We proceed with the proof as follows: If 0<7<1and 0 <r<1 then

|(f(z)—f(t)tg’(t)|A—r)<|Sf’ llolog( )Ig(tz)l(l—tr) ——tr;

1—rt\ 1—r
=|f’ o1
<1/ lolelolog( =+ ) 1=
<|/"ol&’ lo-
LEMMA 4. If fe H*C®, ge®, and fge®, then fgelg].

Proof. For ze D, (f,£)(z) — (fg)(z). We have (f,g)'=/f,g'+g(f))’, and
[(igM o= 1Sillg o= 1Sl |03

[/ glo=1(g—8) S lo+ 18/ lo
<lg’lolf"lo+128S o5
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l&f lo=1(S2)— (/&0

=|(f8) lo+]S]wlg’ lo-
Thus

(/) =]/ (0)g(O)|+] S lol& lo+1(/8) o +2]f]&lo
and f,g — fg weak*, which completes the proof. O

REMARK. If g and fg arein ®, then f,g — fg weakly and we have fge|g]
(norm).

THEOREM 2. If f,ge®, |f(z)|=|g(z)| in D, and g is cyclic, then f is
cyclic.

Proof. We have g/fe H” and (g/f)f=gelf], which implies that f is
cyclic. 0

PROPOSITION 1 (see [3, Cor. to Prop. 1]).

(@) If fis cyclic in H®™ (with the weak* topology) then f is cyclic in 8.
Note that f is cyclic in H” if and only if f is outer (see [8, Thm. 5.5}).
(b) If fis cyclic in ® then f is cyclic in L2.

REMARKS. (a) This result also follows from the fact that the identity i:
H® - ® is weak*-weak* continuous and i: ® — L2 is also weak*-weak*
continuous. We omit the details.

(b) In [3], Anderson, Fernandez, and Shields exhibit singular inner func-
tions that are cyclic in B(®;). One has a complete description of the singu-
lar inner functions that are cyclic in L2 from Korenblum [6] and Roberts [7]
(see also Shapiro’s notes [10]). Namely, the singular measure must put no
mass on any closed set of dD that is “thin” in the sense of Beurling, Carle-
son, and Hayman (see [4, p. 274] for these references and for the definition
of the sets). It is still an open question as to whether this condition is suffi-
cient for a singular inner function to be cyclic in ®.

We conclude this paper with the following theorem.
THEOREM 3. [If fis an outer function in ®, then f is cyclic in ®.
Proof. Let

1 = e'+z :
g(z) =exp{2— S - loglg*(e”)ldt},
i

— elt__z
where f*(e'') = f*(¢t) =lim,;, f(re’’) a.e. and
. 1 if | £ =1,
*( Y| — *(O) =
|g*(e™)|=|g*(1)] {lf*(f)| it |/l =<1.

We see that ge H* C @ is an outer function and therefore cyclic in &. Fur-
thermore,
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T

g@)|=exwl 5 | Puoytogle o) ar}

Sexp{% S;Pz(t)logjf*(t)ldt} =|f(z)|, zeD,

where P, is the Poisson kernel for the point z.
The result follows from Theorem 2. L

1.
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