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Introduction

In this paper, we deal with amplitude symmetric properties of eigenfunctions
of the Laplace operator on compact Riemannian manifolds. We prove that
all the eigenfunctions of the Laplace operator on compact Riemannian man-
ifolds with nonnegative Ricci curvature have a certain amplitude symmetry,
and that appropriate conditions on the Ricci curvature and the volume of
the manifolds yield strong amplitude symmetries of the first eigenfunctions.

Let M be a compact Riemannian manifold, A the Laplace operator acting
on smooth functions on M, and A;> 0 the first eigenvalue of A. It is well
known that

supu>0 and infu<O0
M M

for every eigenfunction u# corresponding to A;. When the equality

supu =—infu
M M
holds for an eigenfunction u corresponding to A, it is usually easier to esti-
mate N, in terms of geometric quantities of M (see [4], [6], and [9]). In [9],
Yang and Zhong asked if the above equality holds for all eigenfunctions «
corresponding to \; when M has nonnegative Ricci curvature. The follow-
ing example gives a negative answer to this question.
Consider the real projective space RP? with the standard unit sphere

S2={(x,y,2)eR,; x2+y2+7z2=1)

as its Riemannian covering space. Clearly, RP? has positive Ricci curvature.
The function f on S? defined by

2 _ 1,2 1.2 2_ 1
foy,)=2"—3x?—3y?=32"—3

induces a function # on RP?, and u is an eigenfunction corresponding to
\; of RP2 (see, e.g., [2] for the proof of this claim). Direct calculation gives
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supu=1 and infu=—l.
RP2 RP?

We study the relations between the ratio
—lnfM U
Supjs U

and the geometric properties of M. Before stating our results, we introduce
some notation.

For each positive integer &, let F; denote the eigenspace of A correspond-
ing to the kth eigenvalue \,. We say that u € & is normalized if

for eigenfunctions « of A

supu=1 and infu=-1.
M M

For every nonzero u € F there exists a unique constant ¢ such that cu is nor-
malized. Set

o (M) =inf{—infy,; u; u € F is normalized].

Since &, is finite-dimensional, we have 0 < (M) =<1. For example, it is
easy to show that

«;(S")=1 and al(RP”)=a2(S”)=% for n>1.

When o, (M) =1, supy,u =—infy,u for all ue F;. So, in this case, we say
that the £th eigenfunctions of A are amplitude symmetric.
In general, to estimate

—infy, u
SUpps U

it is enough to estimate o (M) from below. We first find a lower bound of
o, (M) for manifolds M with nonnegative Ricci curvature. The bound de-
pends only on the dimension of M.

when ue &, and u#0,

THEOREM 1. If an n-dimensional compact Riemannian manifold M has
nonnegative Ricci curvature, then

1— ﬁk, n
1 + Bk, n
where 3y, , <1 is the constant determined by

1 dt
=kn/2 4).
I JUTB D= vt

Denote the volume and Ricci curvature of M by vol(M) and Ric,,, respec-
tively, and let v, be the volume of the n-dimensional standard unit sphere.
We have the following theorem.

ozk(M) =

for all k,
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THEOREM 2. For every positive integer n and each positive number c<1,
there exists a positive number e such that, if an n-dimensional compact
Riemannian manifold M satisfies Ricyy=n—1 and vol(M)>v,—e, then
a (M) >c.

We give some technical lemmas in Section 1. Theorem 1 is proved in Sec-
tion 2 and Theorem 2 is proved in Section 3.

This paper contains the main part of my thesis at Academia Sinica Insti-
tute of Mathematics. I would like to thank my thesis advisor Professor Yan-
lin Yu for many helpful discussions, and dedicate this paper to the memory
of Professors Qi-ming Wang and Jia-qing Zhong. Particular thanks go to
Professor Josef Dorfmeister for careful reading of the manuscript.

1. Gradient Estimates

In this section, we derive some results that will be used in the proofs of our
theorems. The n-dimensional compact Riemannian manifold M dealt with
here is assumed to have nonnegative Ricci curvature. We first establish a
lemma.

LEMMA 1.1. If ue F; is normalized so that

Au=—Nu, supu=1, and infu=-1,
M M

then we have |Vu|* < \.(1—u?) <\, on M, where Vu denotes the gradient
of u relative to the given Riemannian metric on M.

When k =1, this is Lemma 2 of [9]. The proof given there works in the gen-
eral case. We need a somewhat different result, which we establish in our
main lemma (i.e., Lemma 1.11). Given a normalized eigenfunction u e &, let

1+ lnfM U 2
1'2 - T H = —VF——u—p.
(12) 8 1—infy, u Y 1—1nfMuu g
It is straightforward to check that

1.3) 0=8<1, Av=—N(v+B), and supv=1=—info.
M M

Before stating Lemma 1.11, we prove a proposition which will imply that
lemma.

PROPOSITION 1.4. Let B and v be defined by (1.2). If f is a nonnegative
Junction with continuous second-order derivative f” on [—1,1] such that

g(f')2+(n—1)f"f>o on [—1,1],

then |Vv|? < B-(f-v) on M, where B is the constant given by
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Bn sup 20=DIO= (i DULBS )
¥ reie1 (M/2)F' ()2 =(n=1)f"()f(t)

Proof. First we note that the real number B is well-defined by the given
conditions on f. Denote the covariant derivatives of v under an orthonormal
frame by v;, v;;, and v;;,, with i, j, and p ranging from 1to n. Then
Av=2 Vij, Vi=Ujis Vijp=Vjip, aNd Uy = Vip;+ 2 Vg Ryijps
i q

where (R;;,,} is the sectional curvature tensor. Hence {R;;} ={X, R;,jp} is
the Ricci curvature tensor.

Given e >0, let B, be the maximum value of |Vv|%/(fov+e¢) and let x, be
a point where this value is attained. Then, at x,,

(1.5) |Vo|?=B,-(fov+¢) >0,

(1.6) 22 v;v;j =B (f'ev)-v; for all j,

and I

a.7) 23 vU—l—ZE v;V;jj < B (f"o0)- | V|>+ B+ (f'ov)- Av.
iJj

By (1.3) and (1.5), from (1.7) we get
(1.8) 23 |v;[*+23 vivy;; < BE-(f"ov)(fov+€)— B (V+€)(fov).
iJ i,J

We may assume the orthonormal frame is chosen so that v;(x.) =|Vv(x,)|
and v;(x.) =0 for all i =2. Then (1.6) yields
v11(Xe) = 3B (fo0)(Xo).

From this and (1.3), we have the following estimates at x,:

1
2 vz E vi= Uu+ 1 (Vo -+ Up) = Vi + H(AU—UU)2

(1.9) , , 1 ,
BZ-(f'ov) +——B A (v+6)(f°v)+ £ (v+B8)%
4( —1) —1
2 Vi vljj E V; Ujlj E Ve ( _[_}I+E Up pju)
1.10) b

= —)\kIVv|2+E U,'R,'jUjZ —)\k|VU|2= —BE)\k'(f°U+E).
i»J

Combining (1.8), (1.9), and (1.10), we obtain
B < 2(n—=1)(fov+e)—(n+1)(v+B)(f'°v)
T2 (o) — (n= D) (ST v)(fov+e)
which in particular indicates that for all small enough €’s, the B,’s have a

common upper bound; hence we can assume that By=1im,_, o B, exists. Be-
cause M is compact, we can assume further that x, - xoe M as e » 0. Then
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|Vv|><By-(fov) on M
and
2(n—=1)(fov)—(n—=1)(v+B)(f">v) <5
(1/2)(f7ov)2—=(n=1)(f"v)(fov+e) |y,
These immediately imply the claim and complete the proof of the proposi-
tion. ]

Bo= M\

Now we are ready to prove our main lemma.

LEMMA 1.11. If 8 and v are defined by (1.2), then we have
|Vo|? < n\ (14 Bv)(1—v?) on M.
Proof. Define f by
f(y=(1+86)1-13).
Then it is not difficult to show that f satisfies the conditions of Proposi-

tion 1.4 and

n[g(f’)z—(nﬂ)f”f]—[2(n—1)f—(n+1)(t+6)f’]20 on [—1,11.

So, from Proposition 1.4, we obtain
|Vo|2 < nhg- (fov) = nh(1+Bv)(1—v?) on M.
This completes the proof. L]

2. Proof of Theorem 1

Assume that M is a compact Riemannian manifold with nonnegative Ricci
curvature, and let d(M) be its diameter. Fix a normalized u € &, and define
B and v by (1.2). By Lemma 1.11, we have

|Vo|? < nN\e(1+Bv)(1—v?%) on M.
Let v be a minimal path from {x e M; v(x)= -1} to {xe M; v(x) =1}, and
denote by s the arc length of . Then we obtain
|Vv|ds I dt
d(M) N\ = > .
(M)~ Sv N n(1+Bv)(1—v2) S_, (1 +B8t)(1—12)
On the other hand, from [3, Cor. 2.2] we have

d(M)-\¢ <k~2n(n+4).

! dt
| N kn2(n+4).

Define g: [0,1) = R by

Thus,
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g(s) =51 d
-1 A/(1+st)(1—12)
Then:

(1) g(0)=m<n~2k(n+4).

(2) g is strictly increasing; in fact, for se (0, 1),
1 (! 1 1 tdt
"(s)=—= — > 0.
g(s)=3 So[ JA=st)3  JJ(1+s1)3 ] J1-12
(3) lim,_,; g(s) = +oo. This comes from the following estimates:
0 dt 0 dt 0 dt
S| Lpe d_py L
—s AJ(1+51)(1—12) —s 1+1¢ 1—s
Hence, for each positive integer n, the equation
1 dt
=kn~/2(n+4
5—1 N+ xt)(1—12) ( )
in x has a unique root x =0, ,€(0,1), and 8 <4, ,. Therefore,
—infu= =F > L =P, .
M 1+6 1+Bk,n

This implies that o (M) =(1—84, ,)/(1+ B4, ,) and completes the proof of
Theorem 1. O

s1=272

g(s) >S

3. Proof of Theorem 2

Let M be an n-dimensional compact Riemannian manifold such that Ric,, =
n—1. Since the proof in the case n=11is trivial, we assume n > 1.

Fix a normalized # € &; and choose m € M so that u(m) is maximal; then
u(m)=1. We denote by N the unit sphere in the tangent space of M at m.
For each 6 € N, let /(0) be the distance from 1 to its cut-locus along the di-
rection 8. Moreover, we assume that f(p, §) do df is the volume element of
M; that is,

vol(M) = SNS;‘O) £(p.0)dpdb.

In order to prove Theorem 2, it suffices to show that when vol(M) is close
enough (but independent of «) to v, there exists a direction 6 € N such that
[(0) is close to w and u(p, 0) is close to cos p for pe (0, {(8)).
Given 0 e N, fix a small pye (0,/(8)). Let
3’ A
$o(p) = -ap—zu(p, )+ gu(p,ﬁ) for pe(0,/(8)).

Then u(p, 6) satisfies the linear differential equation in x:

x"(£)+ L2x(£) = &p(t) for te([pg, 1(0)]
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with initial conditions

J
x(po) =u(po,0) and x'(po)=—5;‘—(po,o),

where L = «/\/n. Since Ricy,;=n—1, L =1 by Lichnerowiez’s theorem (see,
c.g., [7])' SO, When pPE [pO’ [(6))s

. ou cosLp )
u(p,0)==%&(p)+ (u(po, 0)-sin Lpg+ %(Po, 0)- 0) sin Lp

(3.1 -
' sin Lpo

0
+(U(Po,9)'COSLPO—%(00,9)' )cost,

where

¢
g ‘“"I(J ) cos L= py) dt

Lo

£(p) =sin L(o—po)- |

o $p(2)

Po

—COSL(p—pO)-S sin L(¢ — py) dt.
Therefore, we only need to estimate L and &,. In order to do so, we need
more lemmas.

For r >0, denote by B(r) a geodesic ball with radius r on the standard
unit n-sphere, and by u;(r) the first eigenvalue of the Dirichlet problem of
the Laplacian on B(r). It is well known that y, is continuous on (0, +o0) and
strictly decreasing on (0, 7), that lim,_ o p;(r) = 400, and that u,(r) = n for
r=m.

LEMMA 3.2. Let €>0. If vol(M) = vol(B(u; {(n+¢€))), then \{<n+e.

Proof. From Ricy;=n—1 and [3, Thm. 2.1] we obtain

o (290,
So, if d(M)=2u;!(n+¢€) then one has
(3.4) N =nte
From Ricy,= n—1 and the volume comparison theorem, we obtain
2
vol(M) < VOI<B(B—(1T4—)>>'

Therefore, when v(M) = vol(B(u; '(n+¢€))), we must have

T AM) St

2 2
and hence (3.4) holds. This completes the proof. ]

Suppose that g is the metric tensor of M, and that V2u is the second-order
covariant derivative tensor of u relative to g. Define 4: (0, + ) — (0, + ) by
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. €
(3.5) h(e)—mm[l, —_(n+1)v,,} for ee (0, +).

Then the following lemma will be established.

LEMMA 3.6. Let e>0. If \y<n-+h(e) then

2
g =
M

A
Vau+ —ug
n

Proof. From
MS |Vu|2—~g |V2u|2=g R(Vu, Vu),
M M M

where R is the Ricci curvature tensor of M, we get

SMIVZulzs[)\1—(n—1)]§M|Vu|2.
So,

b

By Lemma 1.1,

2

A A N
Viu+ ug =S |V2u]2——15 ]Vulzs(n-—l)(~1—1>g |Vu|%
n M nm n M

AP A
(3.7 SM V2u+71ug 5n<71—1>)\,vol(M)s()\1—n))\,v,,.

Now assume that \; < n+ A(e). From (3.5) and (3.7), we see that

. ,

<(\j—n)(n+Nv,<e.
This completes the proof. ]

A
v2u+ “Lug
n

Define 6,: (0, +) X (0, §) — (0, +0) by

. (1 W . n—
0,(€, p) =m1n{zv,,_1 L_p/zsm" Ixdx,

2 sn—1
v,,—vol(B(;Q‘(n—kh(6 Un—1511 p)))),
8w

%vn-l SP/Zsin""xdx}
p

for all (e, p) € (0, +) X (0, 7). Then we obtain the next lemma.

LEMMA 3.8. Let e >0 and po€ (0, 3). If vol(M) = v, — 6,(e, py), then
there exists 8 € N such that

(3.9) 1(0)>7r——%p0 and  max  |£)(p)|=2e.

POSP=T—pPg
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Proof. Given e>0 and pye (0, 7), let
10=’n‘-—p0 and 11=7l"""%p0.
From Ric,,= n—1 and the Bishop-Gromov inequality, one knows that 0 <
f(p,0)<sin""!p and
T 1(0)
J— = inn—1 -
v,—vol(M)=v,_; §0 sin” ' pdp SNSO Sf(p,0)dpdb

1(0)

T
= U,_1 So Sin”_lpdp—SNSO sin”!pdp

=>U,_ S;rsin”"lpdp—vol(Wl)S;Sin”_lpdp
ll R —1
_vol(N— WI)S0 sin"~ pdp
= (Va1 =vol(#) | "sin" " p
1
where W, ={(0¢e N; [(0) >/} is an open subset of N. If

vol(M) =v,— %v,,_l S:rsin"_lpdp,
1

then vol(W)) = 3v,_;. Set & = (¢*v,_;sin"1p;)/8w. By Lemma 3.2, when
vol(M) = vol(B(pi !(n + h(€)))) one has \; < n + h(&) and hence, by Lem-

ma 3.6, 1
o

So, if vol(M) = vol(B(ui ! (n+ h(€)))), then there exists an open subset W, C
N such that

A 2
Vu+ ;ug f(p,0)dpdf <Eé.

1(0) x 2 4* 23..0—1
(3.10) g V2t Mgl fip,0)dp< —— = PO por pew,,
0 n U1 27
and vol(W,) = 3v,_;. Furthermore, if
vol(M) = v, — 2= g”" sin”~ pdp,

then from
1o . n—1
SN SO (sin"~ ' p— f(p, 0)) dp < v, — vol(M)

we know that there also exists an open subset W3 C N such that

1 . . 1
@1y | V(sin™ o f(p,0))dp <
and vol(W3) = 3v,,_,. If vol(M) = v,— 8,(e, po), then vol(W,NW,NW;3) >0,
and (3.10) and (3.11) hold for all § e W;NW,NW;. From now on, we fixf e
W,NW,NWj. Since f(p, 8)/sin" ! p is a decreasing function of p, we have

Spo sin"“!'pdp for 0eW;,
po/2
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ho n-1 L P
So(sm p—f(p,o))dngl(sm p—f(p,0))dp

0
f(109 0) "l . —
>({1-—F n-1 .
>< sin”—110> Siosm pdp
Hence (3.11) implies that
S, 0) = %sin"~ 11,
and

,0) . : :
f(p,0)= J(e,6) sin"~lp> 1 m”“pzésm”"‘po for pelpg, pl.

. —8
sin"~1p 2

This, together with (3.10), yields

2 62
™

ly

10 s‘
sin”~1p, Jo

A
Vau+ Lug
n

o5 2 M
S s“gdpsS Vu+ —ug| dp<
P9 n

Po

and

! !
§ "|(p) | dp < \/(lo—po)f “$Hp)dp <e.
£ 29
Therefore

2 ¢
max |£(p)] =+ | *|%o(p)] dp = 2¢.
pospSIO Po

Thus (3.9) holds for this arbitrarily fixed 6§ € W, NW, N W;. This completes
the proof. [

Now we are ready to prove Theorem 2. Fix a number e (0,1). By Lem-
ma 3.2, there exists 6;(e) > 0 such that if vol(M) = v,,— 6,(¢) then

1
L <2— —arccos \3/—1+e <2
T

and therefore

ou

2
<|Vuli, 0= M(1—u*(p,0)) <4n(1—u?(p,0)).

Because u attains its maximum value at #, we have

=0.

p=0
So, if we let py= py(€) =min{(e/8n)?, Larcsine, L arccos </1—¢}, then

3T
u(p()’e)2 1_6’
sin Lpg<sin2pg=<e, cos Lpg=cos2py=~/1—e¢,

|L(7— py) — 7| < arccos ~/1—e, cos L(w—pp) < ~/—1+¢€,

when vol(M) = v,— 6,(¢). Finally, when vol(M) = v,,—6,(5, po(€)), by Lem-
ma 3.8 there exists a direction 6y € N such that

d
u(pa 0)’p=0=1 and 'a—u(p90)
o

€
=3

du
“Z(po, 0
3 (P, 0)
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[(90)>7r—% and max |$90(p)|56.

POSP=T—pgy
Let 6(e) =min{o;(e), 6,(5, po(€))}. If vol(M)=v,—0d(e) then, for the 6,
given above,
infu <u(w—pg, 0y)
M ) ou
= |EGO(W—P0)|+SmLDO+2| g(po, 6o)

+ u(pg, 0g)cos Lpgy-cos L(m.— pg)
<etetetfl—e-fl—e-/—1+¢
=—1+4+4¢

by (3.1). This implies our claim and completes the proof of Theorem 2. [
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