A Picard Theorem for Projective Varieties

PETER HALL

In an earlier paper [3], the author proved a Picard theorem for maps of the
entire plane C into a certain algebraic variety. The method of that paper
seemed not to go to the heart of the matter, and it was obscure how far the
theorem could be generalized. In the present paper we prove a more general
Picard theorem by a method that seems to be the appropriate one for the
problem, and we give examples to show that our result is nearly the best
possible. The main element of our new method is a parametrization of a
monomial variety that is familiar to students of toric varieties ([5, Introduc-
tion], [9, Prop. 1.2]). The use we make of this parametrization is of course
completely different from theirs.

Let V be an irreducible algebraic variety in CP”, possibly singular. Let
I1y, ..., IT, be independent hyperplanes of CP”. Consider a holomorphic map
f:C—-Vsuch that the image of f does not meet Il,,...,II,. Suppose that
none of the sections VNII;, k=0,...,n, is contained in the union of the
others. Then a theorem of Green [2, p. 66] (for related results see Lang [6;
7)) asserts that f is algebraically degenerate in the sense that its image lies in
a proper hypersurface section of V.

When can this conclusion be strengthened to say that the image of f lies
in a section by a hyperplane? Green gives an example [2, p. 62], similar to
our Example 1, to show that this is not always so. In the present paper The-
orem 2 gives a sufficient condition in terms of the intersections of V with
Iy, ..., II,,, and Theorem 3 relates this to our earlier paper [3]. The techni-
cal result needed to obtain Theorem 2 is Theorem 1. We apply the Borel lem-
ma to show that the Zariski closure Z of f(C) is a monomial variety and
then parametrize it in the manner to which we referred above. Our result is
almost that Z is a tforic variety [9, Thm. 1.4], but the definition of a toric
variety requires such a variety to be normal, which is irrelevant for our pur-
poses. It would be possible to apply Theorem 1 to obtain refinements of
Theorem 2 that referred to higher orders of contact, but in the absence of
applications we have not discussed these.

When I wrote the first version of this paper I was not aware that the con-
struction was standard in the theory of toric varieties. I am indebted to an
anonymous referee for the suggestion that my argument must correspond to
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something in the literature. For my invitation to Washington University,
where the first version was written, I thank G. R. Jensen. The 1989 Roever
Lectures at Washington University, in which W. Fulton spoke on toric vari-
eties, stimulated my interest in the subject.

The proof of Theorem 1 will rely on value-distribution theory, but will
not require any new estimates. The analytical part is contained in the Borel
lemma in its original version. We remark that Picard theorems for other do-
mains can be obtained by applying other versions of the Borel lemma, as
Green has done [2]. We now state the Borel lemma in the form in which we
shall use it.

BOREL LEMMA ([7, Chap. VII, Thm. 1.1], [8, Art. 57]). Let g¢,..., &n:
C — C* be nowhere-zero holomorphic functions satisfying the identity

ey go+ - +gn=0.

Then there is a partition of the indices 0, ..., m such that each subset E of
the partition has these properties:
(1) There exists a function hg: C —» C* such that Joreach jeE, gi=a;hg
identically for some constant a;.
(2) There holds the identity

(2) E gj E ajhE—O
JjeE JeE

Briefly, the Borel lemma asserts that the only identities of the form (1) among
nowhere-zero holomorphic functions are the trivial ones.

THEOREM 1. LetIl,,...,I1, be n+1 independent hyperplanes in CP" and
let f: C— CP" be a holomorphic curve that does not meet 11, ...,I1,. Let
Z be the Zariski closure of f(C). Then there is an algebratc torus Tand an
isomorphism

n
lT—)Z—'U Hk
k=0

such that the translations of T extend to an action of T on Z.

An algebraic torus is by definition the Cartesian product of finitely many
copies of C*, considered as an algebraic group ([4, p. 104], [5, p. 1], [9, p. 4]).

Proof. Take homogeneous coordinates xy, ..., x,, on CP” so that the coordi-
nate hyperplanes are Iy, ..., I1,,. We shall show that the Zariski closure Z of
JS(C) can be defined by monomial equations in x,, ..., x,, where a monomial
equation is one having exactly two terms.

If Z=CP" the result is immediate. Otherwise, take any finite set of equa-
tions defining Z. Consider any one of these equations, say of degree d,

0
(3) E ap(o)"”’p(n)xg( )'” x;?(n) =0.
p(0)+---+p(n)=d
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Let (fo,...,.f») be an expression for f in the coordinates (x,, ..., X,). Since
JS(C) does not meet the coordinate planes, each f} is a nowhere-zero holo-
morphic function. Therefore any product of d of the f} is a nowhere-zero
holomorphic function. Since f(C) lies in Z, the f;, satisfy (3) at every point,
and we have the identity

0
? Ty, SE e S =0,
PO+ +pln)=d

We apply the Borel lemma to (4), letting each g; be a term in (4) with a non-
zero coeflicient. The Borel lemma yields a set of identities in the f}, each of
which is of the form

©®) FED e SO = cf O £1,

where c is a constant and the sets of indices (p(0), ..., p(n)) and (g(0), ...,
g(n)) are distinct. The identity (5) gives the equation of an algebraic locus

(6) xfO. . xpW =exgO . xg™

that contains f(C). From each such identity we obtain a locus; because of
the identity (2) in the Borel lemma, the intersection of these loci is contained
in the hypersurface defined by the original equation (3).

Let

n
k=0

We now proceed to show that Y can be identified with an algebraic torus.
The argument that follows appears to be standard in the theory of toric vari-
eties [5, Introduction], but we have not found a convenient reference for it.

We start from a finite set of monomial equations defining Z and success-
ively eliminate the x;. The typical monomial equation is equation (6), in
which we may assume without loss of generality that p(n) > g(n). Solving
for x,,, we have

(7) X = (ex§O=PO 5 atn=0=p(=0y1/(pm)=q(n))

If there are any more equations, we substitute for x,, in them using equation
(7), obtaining a new set of monomial equations in x,, ..., x,,_; which may
contain fractional powers. The effect of substituting for x, may be to make
some of the equations trivial, in the sense that they now have the same mo-
nomial on each side. If any equations remain after discarding these trivial
equations, we repeat the process to eliminate another variable (without loss
of generality) x,_;; then we eliminate x,,_,, and so on.
At the end of this process we have a set of equations

xp=bpxfE . xf Kk

_ r(k,0) L rk+1k
X1 = D1 560 xil )

- r(n,0 rin,n—1
Xp=b,x{™ O xrta=D
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for some k, 1 < k < n. We may substitute back to eliminate x;, ..., x,_; from
the right-hand side and obtain equations of the form

— s(k,0 s(k, k-1
xp=Cpxge0 . xf k=D
_ s(k+1,0 stk+1,k—1
X +1= Ch1X5 ... xk(_l )
) :
— s(n,0 s(n,k—1
Xp=Cpx§ ™0 x k=D,
Regard

n
S= CP"——kUO I, = (C*)"

as an algebraic torus with (1,...,1, ¢, ..., ¢,) as the unit element. We use the
equations (8) to define an algebraic homomorphism ¢ : (C*)* - S such that
im¢ =Y. For j=0,...,k—1, let 6(j) be the lowest common denominator of
s(k,j),...,8(n, j). The components of ¢ in the coordinate system x,, ..., X,
will be denoted ¢y, ..., ¢,. We define ¢ by setting

(1) P

ti i=0,...,k—1
9 ((F0s s kD) =3 ' storsti : LT
(9) ity k-1)) {citg(O)s(z,O)m (U=DSGk=D g g

Then ¢ is an algebraic homomorphism, and so ¢ induces an isomorphism
of algebraic varieties between Y and T = (C*)*/ker ¢, which is an algebraic
torus [4, p. 101]. It is clear from the formulas (9) that the translations of T
extend to an action of 7 on Z. tl

THEOREM 2. Let VC CP" be an irreducible algebraic variety. Let f: C -V
be a holomorphic curve that does not meet n+1 independent hyperplanes
Iy, ..., I1, of CP". Suppose that the image of f does not lie in any proper
linear subspace of CP". Then, after reordering the hyperplanes I1,, ...,11,,
the line L; has contact of order at least 2 with V at the point p;, fori=0,1,
where

n n—2
L0= n Hk’ le Hks
k=2 k=0
n n—1
po=NI, p= 1.
k=1 k=0

Before proving Theorem 2, we give three examples showing that the conclu-
sion cannot be greatly improved. Note that in particular the conclusion im-
plies that the intersection with ¥ of the union of the Il;, counting multiplici-
ties, cannot be a divisor with normal crossings.

Example 1. The twisted cubic given with respect to the inhomogeneous
parameter ¢ by (1, ¢, ¢?, ¢3) lies on the smooth quadric surface Q C CP? de-
fined by the equation

XoXr— X2+ XoX1—X1Xr—X1 X3 +X2=0.
0X2— X1 +X0X3—X1 X2 —X1 X3+ X3
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By setting ¢ = e* we obtain a full holomorphic curve f:C — Q such that
f(C) does not meet the coordinate planes. In this example none of the sec-
tions of Q by the coordinate planes is contained in the union of the others.
The tangent planes to the surface Q at (1, 0, 0, 0) and (0, 0, 0, 1) do not coin-
cide with any of the coordinate planes, which shows that the conclusion of
Theorem 2 cannot be strengthened to include a condition on tangent planes.

Example 2. The construction of Example 1 can be performed with curves
other than the twisted cubic. The cuspidal quartic (1,7, ¢2,¢t*) lies on the
smooth quadric surface Q given by

XoXy—Xi+XoX3—x3=0,

and the holomorphic curve determined by setting ¢ =e* does not meet the
coordinate planes. However, the configuration of this example is somewhat
special in that the plane x, =0 is tangent to Q at (0, 0,0, 1).

Example 3. We now describe an example where the Zariski closure of the
holomorphic curve is 2-dimensional. The Veronese surface V is the embecd-
ding of CP2in CP° given in terms of the inhomogeneous coordinates (s, )
on CP2?by (1, s, ¢, 52, st,t%). The surface V lies on the smooth quadric hyper-
surface O C CP° given by

XoX3—XE4+XoXs—X34+X3x5—x7=0.

Setting s =e? and ¢ =e"%%, we obtain a holomorphic curve f: C— Q such
that f(C) does not meet the coordinate hyperplanes and the Zariski closure
of f(C)is V.

Proof of Theorem 2. We might use the map ¢ constructed in the proof of
Theorem 1, but it seems better to derive Theorem 2 from Theorem 1 itself.
Let € be the composite map

. n
T->Z-\ II,CcCP".
- k=0

Take homogeneous coordinates (xy, ..., x,) on CP” so that the coordinate
hyperplanes are I, ..., II,. Let (e, ..., €,) be an expression for € in the co-
ordinates (xg,...,X,). Since e does not meet II,,...,II,, the regular func-
tions €y, ..., €, have no zeros, and so they are constant multiples of charac-
ters on 7.

The ratios pjx =€, /€; (0 < j <k <n) are constant multiples of characters
on 7, and by the assumption that f(C) is not contained in a proper linear
subspace of CP" none of the pj is constant. Let U C T be a 1-parameter sub-
group such that none of the pj; is constant on U. Let u be a coordinate on
U =C* We have

(10) e;(u)y=B;uP), i=0,...,n,

for some nonzero constants B; and integers 3(i).
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Since none of the p;; is constant on U, the 3(/) are all distinct. Reorder
the indices (0, ..., n) so that the 8(7) are a strictly increasing sequence. As in
the theorem, let

n
Lo“—'kmz sz {(XOs ’xn) Xy = _xn_()},
n—2
L1= I_Ik=[(x0,...,x,,):x0=---=xn_2=0};
k=0

n
Po= n sz(ls(),""o)y

n—
P1= ﬂ Hk=(os"'s 0’ 1)-
k=0

We see from (10) that the Zariski closure { of ¢(U) passes through p, and
its tangent at p, is L. Since ¢ lies on V, the ideal of V is contained in the
ideal of ¢{; this implies that the tangent to { at p, is tangent to V at p,. There-
fore L, has contact of order at least 2 with V at p,. By a similar argument,
L, has contact of order at least 2 with V at p,. This completes the proof of
Theorem 2. ' O

In our work on the Gauss map of a minimal surface, the conclusion was
that a certain holomorphic curve lay in a linear subspace of codimension 2.
We now prove a more general theorem with that conclusion, from which
Theorem 2 of [3] may be derived. We shall need an application of the Borel
lemma due to Green.

THEOREM [1, Thm. 2). Let h: C— CP" be a holomorphic curve that omits
m+ 2 distinct hyperplanes. Then the image of h lies in a proper linear sub-
space of CP",

THEOREM 3. Let VCCP” be an irreducible algebraic variety and let T1,,
..., I1,, be independent hyperplanes of CP”. Suppose that V does not pass
through the intersection of any n of 1, ...,I1,. Let f: C— V be a holomor-
phic curve that does not meet 11y, ...,I1,. Then the image of f lies in a linear
space of CP" of codimension 2.

Proof. By Theorem 2, f(C) lies in a hyperplane A of CP”. We must show
that f(C) is a linearly dependent subset of A.

Each of the hyperplanes I1, (k=0,...,n) meets A in a hyperplane P, of
A. The image of f does not meet any of the Py. If the P, are all distinct, then
the theorem of Green given above proves that the image of f is a linearly de-
pendent subset of A.

Hence if f(C) does not lie in a hyperplane of A then two of the P, must
coincide, say Py= P,. Then Py, ..., P, are independent, because Il,...,II,
were independent. We may now consider f as a holémorphic curve map-
ping into some component W of VN A and not meeting the linear spaces
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Py, ..., P,. By Theorem 2, if f(C) does not lie in a hyperplane of A, the vari-
ety W must pass through two distinct points p, and p,, each of which is the
intersection of n—1 of the linear spaces Py, ..., P,. Either p, or p; must lie
on P, and hence be the intersection of n of the linear spaces I, ...,II,,. Be-
cause this contradicts the hypotheses, Theorem 3 follows. U
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