GENERAL ELEMENTS AND JOINT REDUCTIONS

D. Rees and Judith D. Sally

Introduction. Throughout this paper we will be concerned with a local ring
(Q, m, k,d), where this implies that the local ring Q has maximal ideal , resi-
due field k= Q/m, and Krull dimension d. The general extension Q, of Q will
play an important role, and is defined as follows. We suppose that X;, X5, ... is
a countable set of indeterminates over . Then Q, is the localization of the ring
Q[X,, X5, ...]1 at the prime ideal m[X}, X>,...]. Q, is a local Noetherian ring,
the fact that it is Noetherian following from Proposition 1 of [1, Ch. 9]. It is a flat
extension of Q and has maximal ideal m, = mQ,, its residue field is £ (X, X, ...)
and it has Krull dimension d. It is also the union of the local rings Qp, defined as
the localization of Q[ X}, ..., Xy] at m[ X, ..., XN].

Now we come to the definition of general elements. Let I = (1, ..., ;) be a set
of ideals of Q, not necessarily distinct. We first define a standard independent set
of general elements of [ as follows. Let a(i, 1), ..., a(i, n;) be a set of generators
of I; for i=1,...,s. Write X(i, j) for X;,, where h=n;+---+n;_;+j with 0 <
J < n;. Finally, let x; =% X (i, j)a(i, j), the sum being from j =1 to n;. Then we
term the elements xi, ..., x; a standard independent set of general elements of 7.

We now define an independent set of general elements of 7 to be a set of ele-
ments Xy, ...,X; of Q, such that there exists an automorphism 6 of Q,, which
fixes the elements of Q and the elements X; for all sufficiently large i, such that
the set of elements 0(x;) is a standard set of general elements of . We shall prove
below that this definition is independent of the choice of the sets of generators of
the ideals 7; used in the definition of standard sets of independent general ele-
ments, by proving that any one set of independent general elements of / can be
taken into any other such set by applying a suitable automorphism of Q, of the
type indicated. This implies that the ideal X () =(xy, ..., X;) N Q of Q is indepen-
dent of the choice of the independent set of general elements x,, ..., x; and that
the Q-algebra Q,/(xy, ..., X;) is independent of the choice of x, ..., x; to within
isomorphism as a Q-algebra.

Now we turn to the second term in our title, joint reductions. We recall that if
I and J €1 are two ideals of a Noetherian ring then J is termed a reduction of 7
if I"+1=7rJ for some r (and hence all large r). Now suppose that I = (1;,...,1;)
is a set of d m-primary ideals of Q. Then we term a set of elements y,, ..., y; of
QO (with y; in I;) a joint reduction of 7 if, for some r,

d
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i=1
In general, joint reductions need not exist, although they do if k£ is infinite. In
particular, if I, = (1;Q,, ..., 1;Q,) then any set of independent general elements
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(x15...,Xxg) of I is a joint reduction of I,. We will, in fact, prove this directly,
and use this result to prove that y,,...,y, is a joint reduction of / for “almost
all” choices of y; in I; (i=1,...,d). We will also prove that X (/) is contained in
(»1, ..., yq) for “almost all” joint reductions yy, ..., y; of 1.

This last statement leads almost immediately to the main purpose of this paper.
In general it is not true that X (/) is contained in the ideal generated by the ele-
ments of a joint reduction of 7. We will give a counterexample with d =1. How-
ever, it is true if we restrict Q to be Cohen-Macaulay, and the proof of this is the
main objective of the second section of this paper (the first section being devoted
to the proofs of some of the general results indicated above).

In the third section we limit Q still further, in that Q is assumed to be not only
Cohen-Macaulay but also analytically unramified. We also make a slight change
of notation, in that 7 is assumed to be a set ([, ..., I;_;) of d—1 m-primary
ideals. We then consider an independent set of general elements (x, ..., xz_;) of
I and the Q-algebra L = Q,/(xy, ..., X4—1), which we show is a 1-dimensional ana-
Iytically unramified Cohen-Macaulay local ring. It follows that the integral clo-
sure L* of L in its complete ring of fractions F'is a finite LZ-module, and hence the
conductor C(L*/L) is defined. We define C(Z) to be the intersection of C(L*/L)
with Q and show that X (Z, J) contains (C([/)J)* for any m-primary ideal J. Us-
ing the main ingredient of the proof of a theorem of Skoda and Briangon (due to
Lipman and Sathaye [2]), we show that if Q is a regular local ring then C(Z) con-
tains (Z;---I;_1)*, and hence obtain the following minor extension of the theo-
rem of Skoda and Briangon:

If R is a regular local ring of Krull dimensiond and if I =(1,, ..., 1;) is a set of m-
primary ideals of R, then (I,---1;)* is contained in every joint reduction of I.

1. General results. In this section we prove a number of general results needed
in the sequel. First we show that if (x,...,x5) and (y,,...,¥s) are independent
sets of general elements of a set of ideals I = ({4, ..., I;) of Q then there is an auto-
morphism 6 of Q, fixing the elements of Q and the elements X; for large i, such
that y;=0(x;) for i =1,...,s. From the definitions given in the introduction, it is
clearly sufficient to restrict attention to the case where both sets are standard in-
dependent sets of general elements, and for this case we will state our restriction
on @ in a slightly different (although equivalent) form. We will term 6 acceptable
if it is the extension of an automorphism 6y of Qpn for some N, which fixes the
elements of O and is defined by taking 6(X;) = X; for i > N. We first deal with the
case s=1.

LEMMA 1.1. Let I be an ideal of Q and let (ay,...,a,) and (by, ..., b,) be two
sets of generators of I. Then there is an automorphism 0 of Q,,,, fixing the ele-
ments of Q so that, if x=X a;X; and y=2% b; X;, then 0(x)=y.

Proof. Let z =% a; X;+% b; X, j, and suppose also that b;=3% c;;q; and a; =
2 d;;b;. Define automorphisms o, 8 of Q,,, ,, fixing the elements of Q by taking
X,"I‘E CjiXm+j if i=m,

X)) =
x(Xi) X; if i>m;
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_ Xj+m+2 dini if j=n,
B(Xf)‘{xj if j>n;
so that a(x) =z and B(y) =z. Then, if 8 =8 ~la, 0(x) =y as required. ]

THEOREM 1.2. If I=(1,, ..., L) is a set of s ideals of Q, and if (xi, ..., Xs) and
(1, ..., Ys) are two standard independent sets of general elements of 1, then there
exists an acceptable automorphism 0 of Q, such that

0(x,-)=y,- (i=1,...,S).

Proof. The case s =1 follows from the lemma above. We use induction on s
and therefore we can assume that there exists an acceptable automorphism 8 of
Q; such that 0’(x;) =y; (i=1,...,5—1). Let N be such that ¢’ extends an auto-
morphism of Qp and fixes X; if i > N. Then we can find automorphisms « and
B of Q, arising from a permutation of a finite number of the elements X; such
that a(xs) =X a; Xn4; and B(ys) =2 b; Xy, j, where (ay, ..., a,) and (by, ..., b,)
are two sets of generators of /. It follows that a(x;) and 8(y,) can be considered
as standard general elements of I;Qp. Hence, applying Lemma 1.1, there is an
acceptable automorphism ¢ of Q, fixing the elements of Qp such that

P (0e(Xx5)) =B(ys)-
Hence we can take 0 = (8" 1¢0'c. O

Now we turn to our second general result, namely: if /= ({4, ..., I;) is a set of
m-primary ideals of Q and (x,...,x;) is an independent set of general elements
of I, then (x,...,Xxy) is a joint reduction of /. Note that we do not need the re-
striction that the ideals I; are m-primary.

First we require some notation. Let R=(r(1),...,r(s)) denote a set of s inte-
gers and let = (1, ..., I;) be a set of s ideals of Q. Then I® will denote the prod-
uct I{M-.. 17 with the convention that if r(j) <0 then I;) = Q. If

R=(r(1),...,r(s)) and r(j)>0

then R{/j} will denote the set of integers (r(1), ..., r(j)—1, ..., r(s)). If x =
(x1,...,X;) is a set of elements of Q such that x; belongs to I;, then x(IR) will
denote the ideal

xllRu}+ e +xis[S].

We will extend the definition of a joint reduction and say that x = (x;, ..., X;) is
a joint reduction of [ if 78 = x(I®) for some R; that is, we do not insist that s =d.
Note that if (xq,...,x;) is a joint reductionof Jand if I'= (1}, ..., L, ..., I;.;) is a
set of ideals of Q containing /, then (x;,...,X;4,) is a joint reduction of I’ for
any choice of the elements x5 ; in I;,; for j=1,...,¢.

As before, we will denote by I, the set of ideals (/;Q,, ..., I;Q,).

Next let 7= (¢4, ..., ¢5) be a set of indeterminates over Q. Then we will write U
for the set (¢#7°1,...,¢71), and u; for ¢,~!. We will write TR for t{®...¢5(® nega-
tive or zero exponents being allowed. Finally we define R([/) to be the graded sub-
ring of Q[T, U] consisting of all finite sums Y a(R)TR with a(R) in IR, the expo-
nents (i) being allowed to be positive, negative, or zero.
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LEMMA 1.3. Let x; be a general element of 1;. Then there exists an integer
ro(7) >0 such that if R satisfies r(j)=ry(j), r(i), with i # j being unrestricted,
then ‘

IENx; Q= x; IFV).

Proof. We divide the proof of this lemma into two parts, the concluding state-
ment of part (1) being required to complete the proof in part (2).

(1) Since u = u,u,---u, is a nonzero divisor of R(Z), the set of prime ideals as-
sociated with #”R([) is the same for all n. We divide this set of prime ideals into
two subsets: S consisting of those that contain /;#; R(I), and S, those that do not.

We now replace Q by Q, and I by I, =(1;Q,,...,1;0,), and make a similar
division of the set of prime ideals associated with u”R(Z,) into sets S,y and S,,.
Then S,; will consist of the prime ideals p, = pR(l,), where p € S;. It follows that
the element x;¢; does not belong to any prime ideal p, in S,;.

Now denote by M, the R(l,)-module (u"R(l,): x;t;)/u"R(l;). Then M, is
annihilated by (Z;¢;)N for some integer N depending on n. But M, is a finitely
generated R(/,)-module, and hence the last sentence implies that any homoge-
neous element of M, whose jth degree r(j) is large enough must be zero.

(2) Now let J denote the graded ideal of R(/,) consisting of all finite sums
2 a(R)TR with a(R) in x;Q, N lg. Then J will have a finite set of generators
(¥15 -+-» Vm) which will be of the form y; = x;¢;b;, with b; a homogeneous element
of Q,[7, U]. It follows that we can find an integer g such that #9b; belongs to
R(1,) for j=1,..., m. Hence, if zTR is a homogeneous element of J then

R —
uizT’'"=x;t;w,

where w is a homogeneous element of R(/I,) whose jth degreeis r(j)—qg—1. Now
w belongs to u9R(1,;): x;t;, and so by the conclusion of (1) it follows that w be-
longs to u9R(1,) if r(j)—q—1is sufficiently large. Hence we can find r (/) such
that, if r(j) =ry(/j), w belongs to #9R(I,) and hence zTRexjth(lg). Hence if
r(j)=ro(Jj) then x; Q, N IX=x; IR}, O

THEOREM 1.4. If (x4, ...,Xg) is an independent set of general elements of I =
Ly, ..., 1), then xy, ..., x4 is a joint reduction of 1,.

Proof. We will eventually prove this result by induction on d. We first note
that if the ideal 7,7, ---1,; is nilpotent then, for N sufficiently large,

(Il"'Id)N=(0)=(I]...Id)N+l.

This implies that if y;e I; (j=1,...,d) then (y,,...,y) is a joint reduction of /.
It also implies the case d =0.

Before proceeding to the induction, we first show that we can impose the re-
striction that (0: 1;1,---1;) =(0), which will imply that each of the ideals /; con-
tains a nonzero divisor, and hence that the elements x; are nonzero divisors.

Suppose therefore that this theorem has been proved for all local rings Q' of di-
mension d’<d and all sets of ideals I’ = ([, ..., I;) of Q’ satisfying (0: I}---I ;)=
(0). Then we will prove that it holds for all local rings Q’ of dimension d’<d
and all sets of ideals Z’ without restriction. To this end, suppose that I} 7, ---1; is
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not nilpotent; let J, = (0: (£;---1;)9) and let J denote the stable value of J, (i.e.,
the value of J, when g is large); and suppose that g is such that J, =J. Consider
the ring Q” = Q’/J and the set of ideals I/ = I;+J/J of Q”. Since dim Q”<d and
(0:17---17)=(0), it follows that, for a suitable R,

(LR =x((Lp)R) +JQ, NI~

Now multiplying both sides by (Z; - - - I;.)9 yields the required result that x is a joint
reduction of I’. Note that R is replaced by (r(1)+gq, ..., r(d’)+q).

We now come to the inductive step. We suppose that the required result has
been proved for all local rings Q of dimension <d. We further suppose that Q
has dimension d, that the ideals /; are subject to the restriction described above,
and that the general elements x; are given in standard form. It follows that we
can find N such that x; belongs to Qn. We now take

Q' = On/X10On, Ii=TI;On+Xx1On/X1ONs

and let x/ denote the image of x; in (Q’),. Then x3, ..., x; is an independent set
of general elements of the set of ideals I'= (3, ..., 1}). Hence, applying our in-
ductive assumption and lifting to Q, we have, for a suitable R,

15 S x1Q, 'l‘leéml +--- +xd!§ldl,
and this can be written
IR=x1Qe NI& + 2, IFP 4 - 4 x4 I,
Now, by suitably increasing r(1), we can apply Lemma 1.3 and obtain
IF = If 4, I g I,
and the result is proved. ]

We conclude this section with two general results. One shows the existence of
joint reductions if the field k is infinite, and the other concerns the ideal X (1) =
(x1,...,X)NQ defined in the introduction. The proofs are similar and depend
on a general lemma, which requires some additional notation. Let M be a finitely
generated Q-module. Then M, will denote the Q,-module M ®g Q,. Nextlet I =
(L, ..., I;) be a set of ideals of Q and let x = (X, ..., X;) be an independent set of
general elements of / given in standard form, and suppose that N is such that the
elements x; all belong to Qn. Then we term a set of elements y = (yy, ..., ¥s) a
specialization of x if the elements y; are derived from the set of elements x; by re-
placing the indeterminates X; by elements a; of Q. Note that y; € I; for each i. We
say that a statement is true for almost all specializations of x if there is a poly-
nomial f(X, ..., Xx) with coefficients in Q but not all in m, such that the state-
ment is true whenever f(a,, ..., ay) is a unit of Q. Note that if k is infinite, this
would imply that the statement is true for an infinite set of specializations.

LEMMA 1.5. Let M be a finitely generated Q-module, let I, x be as above, and
let M, ..., M be a finite set of submodules of M. Let 2,, ..., 2, be elements of the
submodule (x,Myz+ --- +Xx; M) N M of M. Then, for almost all specializations
Yy of x, zy, ..., 2, belong to the module y, M+ --- +y;Mj.
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Proof. A simple induction reduces the proof to the case n =1, and we will write
z in place of z;. Now we can write

2 (X5 e rs XN)=Xx181( X1 oo s XN+ - +X,8(X 5 00, XN,

where g;(X1, ..., Xun) is a polynomial in X, ..., Xy with coefficients in M;, and
the coefficients of f belong to O but do not all belong to #. We can take this f as
the polynomial f for the above definition of “almost all”.

THEOREM 1.6. Let (Q, m, k, d) be a local ring, with k infinite. Then, if I =
(11, ..., 1) is a set of d ideals of Q and x =(x, ..., Xg) is a set of general elements
of I in standard form, then

(i) almost all specializations y of x are joint reductions of I;
(i) X()=(x1Qz+ - +x30,)NQ is contained in y;Q+ ---+y40 for almost
all specializations y of x.

Proof. (1) We start with the equation
l§=X1l§“’+ ---+xd_1§{d',

which holds for some R. We take M =Q and z,..., Z, to be a set of generators
of IR, We take M; to be JRU} and apply the above lemma to obtain

IR=y IRU 4 -y [RU)

for almost all specializations y.
(ii) We again take M = Q and z,, ..., Z,, to be a set of generators of X (/). Take
M,, ..., M; all equal to Q, and again apply the lemma. ]

2. The main theorem. The two statements of Theorem 1.6 can be stated loosely
as follows. For almost all choices of y;eI; with j=1,...,d, (¥, ..., y4) is a joint
reduction of I = (I, ..., I;); further, for almost all choices of y; € I; with j =
1,...,d, the ideal y;Q + --- + y,0 contains X (/). A natural question to ask is
whether for all joint reductions (yy,..., ;) the ideal y;Q+ ---+y,0Q contains
X (I). (We will also refer to the ideal y;Q+ --- +y,0 as a joint reduction.) This
is false even in the case d =1, as the following example shows.

EXAMPLE. Let Q=k[[X,Y]]/(X3, XY), and denote the images of X, Y in Q
by u,v. Take I to be the maximal ideal m =uQ+vQ. Then, as (uX;+vX,)u=
u2X,;, u?e X(I). But m3 = (v3) =vm?, implying that vQ is a reduction of m. But
u?2 does not belong to vQ.

Because in this example m consists entirely of zero divisors, Q is not Cohen-
Macaulay. The primary purpose of this section is to show that, if we restrict
(Q, m, k,d) to be Cohen-Macaulay, then all joint reductions of a set I consist-
ing of d m-primary ideals contain the ideal X (/). We consider first the case d =1.

For the proof of this case we need the following well-known result, which we
state without proof. (A proof can be found in, e.g., [4, Thm. 17, p. 271], noting
that Northcott uses semi-regular for Cohen-Macaulay.)
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Let Q be a Cohen-Macaulay local ring, X an indeterminate over Q, and Q' the
localization of Q[X] at a prime ideal p. Then Q’ is also Cohen-Macaulay.

We now collect together the basic ingredients of the proof of the case d =1in
the following lemma.

LEMMA 2.1. Let (Q, m, k) be a 1-dimensional Cohen-Macaulay local ring with
complete ring of fractions F. Let a, b be elements of m such that I = (a, b) is m-
primary and aQ is a reduction of I. Let S= Q[ X1, let Q(X) denote the localiza-
tion of S at m[X1], and let x=aX +b. Then

(i) xS=JNJ’, where J=xF[X]1NS and J' =xQ(X)NS;
(ii) J is the kernel of the homomorphism S — F in which Q maps identically
and X maps into —b/a; and

(iii) xQ(X)NQ<aQ.

Proof. (i) The result quoted above implies that xS is unmixed of height 1. Now
suppose that p is a height-1 prime ideal of S containing x. If it contains « then it
contains mS, which is a prime ideal of height 1 and so must equal it. If it does not
contain a then, as the ring of fractions z/a” is equal to F, it is the intersection of
a prime ideal P of F[X ] associated with xF[X] with S. Hence xS =JNJ’, where
J and J’ are as defined.

(ii) The map S — F extends to a map F[X]— F and, since b/a belongs to F,
the kernel of this restriction is x/[X]. Hence the kernel of the map S— F is
xF[XINS=J.

(iii) Let z be an element of xQ(X)NQ=J'NQ. If f is any element of J then
zfexS. Now, as aQ is a reduction of I, —b/a is integrally dependent on Q and
so satisfies an equation f(X)=X"+a, X" 1+ ... +a,,=0. Then f(X) € Jso that
zf(X) belongs to xS; say, zf(X)=(aX+b)g(X), where g(X) is a polynomial
over Q of degree m —1, since a is not a zero divisor. Equating coefficients of X",
we see that z € aQ.

The case d =1 is now easily dealt with. ]

LEMMA 2.2. Let (Q,m,k) be a 1-dimensional Cohen-Macaulay local ring,
and let I be an m-primary ideal of Q and a € m such that aQ is a reduction of I.
Then aQ2X(I)=xQ,NQ for any general element x of I.

Proof. Since X (7) is independent of the choice of x, we can choose x as fol-
lows. Let (ay, a,, ..., a,,=a) be a minimal basis of 7. This choice is possible since
aQ is a reduction of I and hence a does not belong to Im. Take x =Y a; X;. Now
xQ,NQ,,=xQ,, since x € Q,,. In (iii) above, replace Q by Q,,_,, X by X,,, and
b by aX|+---+a,,-1X,,-1- Then xQ,,NQ,,,_1<aQ,,_;, and taking intersec-
tions with Q yields the required result. U

We now return to the proof for d > 1; in order to set up the induction, we first
require three lemmas. We also require some further notation. Let (Q, m, k, d) be
a Cohen-Macaulay local ring with d =2, let I = ({}, ..., I;) be a set of m-primary
ideals of Q, and let b= (b, ..., b;) be a joint reduction of 7. We will denote by
Q thering Q/b,Q+ --- + b, Q and denote the image of an element or ideal of O
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under the canonical map Q — Q, by adding a suffix (r). If R=(r(1), ..., r(d)) is
any set of nonnegative integers, then bR will denote b{(V...p (@D,

LEMMA 2.3. The set of elements b, .\ (), ..., g, () is a joint reduction of the
set Of ideals _I(r) = (Ir+1, (r)s+=» Id’ (r)).

Proof. A straight reduction reduces the proof to the case r =1. Now let
d
J= .El bj11°“1j-—11j+1“'1d'
J =

Then the condition that b, ..., b; is a joint reduction of [ is equivalent to the
statement that J is an ordinary reduction of 7 = I;---1;. This follows from the
well-known result that J 17 is a reduction of 7 if there exists a finitely generated
module M with zero annihilator such that 7JAM = JM. Since we are assuming that
Q is Cohen-Macaulay, the ideals I; do not consist entirely of zero divisors. The
definition of joint reduction supplies such a module which is a product of powers
of the ideals 7;.

Now write _J(]) for the ideal 2§=1 bj, (1)[2’ - 'Ij——l, (I)Ij+l, mn-: 'Id, 1) and I(l)
for I, 1y -+14, 1y- Then as Jis areduction of 1, I; (1) J() is a reduction of I; (1, 1).
But, as d =2, I, ;) does not consist of zero divisors, and hence J(;, is a reduction
of I(;,. This implies that b, (), ..., bg (1) is a joint reduction of 1), as requiredD.

In the following lemma, (Q, m, k, d) is not assumed to be Cohen-Macaulay.

LEMMA 2.4. Let M be a finitely generated Q-module, let I be an ideal of Q,
and suppose there exists an element b of I such that bM = IM. Then, if x is a gen-
eral element of I, xMy,=IM,.

Proof. Let ay, ..., a, be a minimal basis of I and let b =% b;a;. Without loss of
generality, we can assume that x =% X;a;. bM = IM if and only if bDM + mIM =
IM. Let U, V, W denote the vector spaces I/mlI, M/mM, IM/mIM over k. Then
we have a bilinear map U X V' — W and each element of U therefore induces a lin-
ear map V' — W. Let V, W have dimensions m, n and let 3; be the image of b; in U.
Now consider the map V, — W, induced by multiplication by x. Relative to bases
of V, W this map will have matrix A(X) whose entries are linear forms over & in
Xy, ..., X,. Since the map induced by multiplication by b is onto, m = n and
A(B) has rank n. Hence A(X) has rank » and the map induced by multiplica-
tion by x is onto; that is, xM, =IM,.

LEMMA 2.5. Let (Q, m, k,d) be a Cohen-Macaulay local ring with d = 2, let
I=Uy,...,1;) be a set of m-primary ideals of Q, and let b= (b,, ..., b;) be a joint
reduction of I. Then, if x=(x,,...,X4) is an independent set of general elements
of I and if r<d, then (by,...,b,, X, 11, ...,Xq) is a joint reduction of 1,.

Proof. We proceed by induction on d —r. Hence we first consider the case r =
d —1. By hypothesis, there exists a set of integers R = (r(1), ..., r(d)) such that

IR=p IRM ...+ p, [ IRWE-1U 4 p, [Rld]
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Let J be the ideal b IR+ ... + b, IRld-1 of Q, and let M be the Q-module
IR J/J. Then, by hypothesis, I,M = b, M. Hence, by the last lemma, x;M, =
I;M, and therefore

l§= bllR“l+ +bd_1!R[d—1]+xletdl’
whence (by, ..., by_;, xg4) is a joint reduction of I,. 0

Now we turn to the induction. Suppose we have proved that (by, ..., b,4,
X425 --+5 Xg) is a joint reduction of I,, and suppose that /N is an integer such
that x,,,,...,x4 belong to Qpn. Then (x,,7,...,Xg,...,b,41) is @ joint reduction
of Iy, and we can apply the case r =d —1 to replace b, ; by a general element
Xr41 Of Iy .

Now we come to our main theorem.

THEOREM 2.6. Let (Q, m,k,d) be a Cohen-Macaulay local ring and let 1=
(11, ..., 1) be a set of m-primary ideals of I. Further, let x =X, ...,Xx4 be an inde-
pendent set of general elements of I, and let B be an ideal of Q generated by a
Jjoint reduction (by,...,by) of I. Then

X(I)=(x,Qy+ - +X4Q,)NQ S B.

Proof. We will assume X, ..., x4 are chosen in standard form. This will imply
that we can choose N so that xi,...,x;_; are in Qu but x,; is general over Qy,.

The case d =1 has been proved in Lemma 2.2. Suppose the result has been
proved for Cohen-Macaulay local rings of dimension < d. Then the resultis true
for the ring Q"= Q/b,Q and the ideals I} =1;+b;Q/b; Q. Since (by Lemma 2.3)
the images-of b,...,b,y_; in Q' form a joint reduction of ([{,...,1;_;) and the
images of xy,...,x4_; in Qg form an independent set of general elements of the
same set of ideals, we have

B:—)(xl’-“sxd—libd)nQ'

If we choose N as indicated above then, by Lemma 2.5, (xy,...,Xs_1,b0y) is a
joint reduction of I,. Replacing Qn by Q" = OQn/x;1On + + -+ + X47-1On (Which
has dimension 1), we can apply Lemma 2.3 to see that b, is a reduction of 7,Q”
and that x; is a general element of the same ideal. Hence ,0"2x,0;NQ",
which can be written

(19N + -+ X4 1O+ DaON) 2(X1Qp + - + X3 0,) N On,
and taking intersections with Q yields the final result. O
We conclude this section with an application of the above theorem.

THEOREM 2.7. Let (Q,m, k,d), I, and x be as in the last theorem, and let I’ =
(i, ..., 13) be a second set of ideals of Q such that I} is a reduction of I; for j =
1,...,d. Then, if x’'=(xi,...,x}) is an independent set of general elements of I',

X)) =(x1 Qg+ +X4Q)NQEX(L") = (X]{Qp+ -+ +Xx5 Q)N Q.
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Proof. We can suppose that x;, x; (=1, ...,d) and N are so chosen that X;€QN

for j=1,...,d, and that x; (j =1, ...,d) form an independent set of general ele-
ments of .
A straightforward calculation shows that, as x; (j=1,...,d) is a joint reduc-

tion of /7, it is a joint reduction of /. Hence
X(UN)EXIONn+ - +Xx50nN,

and taking intersections with Q we obtain the desired result. L]

3. An extension of the Skoda-Briancon theorem. We commence this section
with some general observations and a definition. Let A be a Noetherian ring and
let I, J= I be two ideals of A.

DEFINITION. An ideal C of A is termed a conductor of J in [ if

(i) (0: ) is nilpotent; and
(ii) JC=IC.

We first observe that the existence of a conductor of J in 7 implies that J is a
reduction of 1. This follows in view of (i), and we leave the proof to the reader.
If (0: I7) is nilpotent for all r then the converse is true, since then (by the defini-
tion of reduction) some power of 7 is a conductor of J in /. It is also clear that if
I >2J’'2J then C is a conductor of J in 7 if and only if it is a conductor of J’in
I and of J in J'. Further, if C, C’ are conductors of J in 7 then so is their sum.
Hence, if J is a reduction of 7 then there is a unique maximal conductor of Jin 1.

In the present paper we need only the case where A is a 1-dimensional local ring
(Q, m, k) which is (in the first instance) Cohen-Macaulay and (later) will be as-
sumed to be, in addition, analytically unramified. We will also restrict J to be a
principal ideal aQ of Q which is m-primary (i.e., a is not a zero divisor). 7 will be
an ideal of which aQ is a reduction. For the moment we only suppose that Q is
Cohen-Macaulay, and state our results for this case in the following lemma. In
this lemma N\(-) denotes length and e(/) denotes the multiplicity of 7. Note that
in this case C is assumed to be m-primary.

LEMMA 3.1. The following properties of an m-primary ideal C of Q are equiv-
alent:
(1) MC/IC)=e();
(ii) for all a such that aQ is a reduction of 1, C is a conductor of aQ in I,
(iii) for some reduction aQ of I, C is a conductor of aQ in I.

Proof. (i) = (ii). For any a such that aQ is m-primary,
MC/aC)=NQ/aQ)+NaQ/aC)—NQ/C) =NMQ/aQ),

and if aQ is a reduction of I then e(/) = \(Q/aQ). Hence, if (i) holds then aC =
IC and therefore (ii) is true.

(ii) = (iii). Immediate.

(iii) = (@). If (iii) holds, IC = aC and hence N(C/IC) = N(C/aC) =e(I). J
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COROLLARY. Ifyis a general element of I and C is a conductor of aQ in I, then

IC<=yQ,NQ.
Proof. Since N(CQ,/ICQ,;) =NC/IC)=e(I) =e(IQy), it follows that CQ, is
a conductor of yQ, in IQ,. Hence IC S yCQ,NQ = yQ,NQ. ]

Now we impose the condition that Q is analytically unramified. This implies
that the integral closure OQ* of Q in the complete ring of fractions F of Q is a fi-
nite Q-module, and hence we can define the conductor C(Q*/Q) of Q* in Q.

LEMMA 3.2. If Q is analytically unramified, then C = C(Q*/Q) is a conductor
of Jin I for any m-primary ideal I and any reduction J of 1.

Proof. We can take J=aQ. Then aC is an ideal of O* and hence
aC =aCQO*N Q= (aC)*,

where (aC)* is the integral closure of aC considered as an ideal of Q. But this
is also the integral closure of /C and so contains /C. Hence aC < IC < aC, and
hence C is a conductor of Jin 7. O

We now return to a local ring (Q, m, k, d), with the restriction that Q is Cohen-
Macaulay and also analytically unramified, but do not assume d = 1. We will con-
sideraset/=(1,,...,1;_;) of d—1 m-primary ideals of Q and an independent set
of general elements (x;, ..., x;_;) of 7. We will also consider a further m-primary
ideal J and a general element y of J such that (x,,...,xs;_1, ¥) is an independent
set of general elements of the set 7, J.

Our main concern is with the sequence of local rings

erQg/leg+ "'+erg (r=1,...,d-1),
particularly in the case r =d —1, and we will write L for L;_;.

LEMMA 3.3. If Q is analytically unramified then so is Q,.

Proof. If Q is analytically unramified then there exists a constant ¢ such that
(mnte)*< m” for all n. Now consider (m”+¢)*Q,. This is integrally closed, be-
cause there exists a finite set of valuations v, ..., vy, taking as values nonnegative
integers or oo on Q and positive values on m, such that x € (m”+¢)* if and only if

vi(x)=(n+c)v;(m)y @(=1,...,s),

where v;(m) =Min v;(y) for y in m. Now we can extend v; to a valuation V; on
Q; as follows. Let f=3 a,p be an element of Q[ X, X, ...], where u denotes a
monomial in X, X5, .... We define V;(f) =Min(v;(a,)), and then extend V; to
Q. in the usual way. It is then clear that x € (m"+€)*Q, if and only if

Vikx)=(n+c)v;(m) (i=1,...,s),
proving that (m"*¢)*Q, is integrally closed and hence equal to (m"*°Q,)*. Hence
(mn+CQg)*§ ang

for all n, and this implies that Q, is analytically unramified. (]
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LEMMA 3.4. If Q is analytically unramified then so are the rings L, for r=
1,...,d—1.

Proof. We prove this by induction on r. First suppose that r =1. Let I; have
minimal basis (ay, ..., a,), with ¢; a nonzero divisor. Since the ring L, is (to with-
in isomorphism as a Q-algebra) independent of the choice of the element x,, we
can take x; =% a; X;. o

Now we can define a Q-algebra isomorphism of Q, into itself by mapping
Xi—>X,+i (i=1,2,...). In this way we can identify Q, with the localization of
Qg Xy, ..., X,] at the ideal m,[X,, ..., X,]. Now let

xX'=—(ay X;+---+a,X,).
Then, by Micali’s theorem (see [3]), the homomorphism
Qg[X]’ ---,Xn] - Sl = Qg[x’/a]’X2, ---:Xn]:

where Q, and the elements X; (i #1) are mapped identically and where X is
mapped to x’/a;, has kernel the principal ideal generated by x;. Hence L, is the
localization of S, at mS;. As a localization of a finitely generated extension of an
analytically unramified local ring, L, is itself analytically unramified. Since L, =
(L1)g/(x3, ..., X;), the general case follows by induction. 1

We now take r =d—1 and consider the ring L =Q,/(xy, ..., X4_;), which we
have seen is a 1-dimensional, Cohen-Macaulay, analytically unramified local ring.
It follows that the integral closure L* of L in its complete ring of fractions is a fi-
nite L-module, and hence the conductor C(L*/L) is defined. But L is a Q-algebra
and so we can define QN C(L*/L). We denote this ideal by C([).

THEOREM 3.5. Let J be any m-primary ideal of Q, and let y be a general ele-
ment of J such that (xy,...,Xq_1,Y) is an independent set of general elements of
I,J). Then

XL, J)=(x1Qg+ - +X3-1Q, +¥Q )N Q2 (JC(D)*"

Proof. Both C(L*/L) and yC(L*/L) are ideals of L* contained in L and so are
integrally closed ideals of L. Further, yL is a reduction of JL, whence yC(L*/L) =
JC(L*/L). Now X (I, J)=yLNQ. Hence X(I, J) contains JC(L*/L)NQ, which
is the intersection of the integrally closed ideal JC(L*/L) of L with Q and so is
integrally closed. But JC(L*/L)N Q contains JC(I) and therefore its integral clo-
sure. Hence X (Z, J) 2 (JC(I))*. 4

We now apply Theorem 3.5 to obtain an extension of the theorem of Skoda
and Briancon. We must first recall a result of Lipman and Sathaye [2] which was
the principal ingredient in the proof of Skoda-Briangon.

Let Q be a regular local ring of dimension d with field of fractions F, and let S be
a finitely generated domain over Q whose field of fractions E is a separable alze-
braic extension of F, so that the integral closure S* of S in E is a finite S-module.
Suppose further that S is a homomorphic image of Q[ X,, ..., X,;] and denote by
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A the ideal of S generated by the Jacobians of fi, ..., f, with respect to X, ..., X,
where f, ..., [, ranges over all sets of n elements of the kernel of the map

OlX, ..., X,]—S.

Let A* be the ideal of S* defined in a similar manner for the finitely generated ex-
tension S* of Q. Let (S: A) denote the set of elements x of E such that xA €S and
(S*: A*), the set of elements x of E such that xA* € S*. Then A-(S*: A*) € C(5*/S),
implying that A < C(S*/8S).

Next we refer back to the proof of Lemma 3.4 to describe an alternative char-
acterization of the rings L,.

We define a ring S, ;) as follows. Suppose that the ideal /; has basis nonzero
divisors a(N;_;+h) (h=1,...,n;), where No=0and N;=n;+---+n;_;if j > 0.
Let X (i) (i=1,...,N,) be a set of indeterminates over Q, and adjoin these to Q,
with the exception of indeterminates X(#(/j)) (j=1,...,r), where N;_; <¢(j) <
N;. Instead of the omitted indeterminates we adjoin z;(¢) = x'(6(/j))/a(d(j))
(j=1,...,r), where

x'(¢(/))=a(¢(UNX(¢(J))—2 a(N;_1+h)X(N;_+h),
the last sum being over 2=1, ..., n;.

LEMMA 3.6. L, is isomorphic to the localization of S,(¢) at mS,(¢).

The case r =1is proved in Lemma 3.4. The general case then follows by an in-
duction similar to that used at the end of the proof of Lemma 3.4.

We make one further point. After the localization at mS,4), we can absorb the
additional indeterminates adjoined to Q, to obtain a larger ring still isomorphic
to Q.. Hence we can consider the elements z; as contained in the field of frac-
tions of Q,.

THEOREM 3.7. Let (Q, m, k,d) be a regular local ring, and let I =(1,, ...,1;)
be a set of d m-primary ideals of Q. Then X(I)2 (I,---1;)*.

We consider the ring S;_;(¢) = Q,lz;, ..., 24—1] and apply the theorem of
Lipman and Sathaye. The kernel of the map Q,[X),..., Xy_1] = Sz_;(¢) con-
tains the elements a(¢(/))X;—x'(¢(/j)), and A therefore contains the product
a(¢(1))---a(¢(d—1)). Hence, if I'=(1y,...,1;_,) then

a(¢(1))---a(¢(d—1))e C(L*/LYNQ=C(I").

But this is true for all choices of the function ¢, and hence C(I’) contains the
product 7;---1;_,. Hence, by Theorem 3.5, X(I) 2 (I,---1;)*.
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