ISOMETRICALLY REMOVABLE SETS FOR FUNCTIONS IN
THE HARDY SPACE ARE POLAR
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For a domain D in C” and 0 < p <o, H”(D) denotes the Hardy space of ana-
lytic functions f: D — C for which | f|” has a harmonic majorant. If E is a rela-
tively closed subset of D, then E is said to be a set of removable singularities (or
E is said to be removable) for HP (D\ E) provided that D\ E is connected and
each f in HP(D\ E) has an analytic extension to a function in H#”(D). This can
be phrased in functional analysis terms by saying that E is a set of removable sin-
gularities for H?(D\ E) precisely when the restriction map H?”(D) —» H?(D\E)
is surjective. With this observation, say that F is isometrically removable if the
restriction map H?”(D) —» H?(D\ E) is a surjective isometry. The main result of
this paper is the characterization of isometrically removable sets as the polar
sets (provided D\ E supports a nonconstant function in H?). In particular, this
shows that isometric removability is independent of p.

The study of removable singularities for functions in a Hardy space does not
originate with this paper. One of the first papers on Hardy spaces for arbitrary
domains in Cis [11], where (among other things) it is shown that if £ has logarith-
mic capacity O and E € D, then E is removable for H?(D\ E). In [9] (compare
[8]), as an extension of results of [1], it was shown that a relatively closed polar
subset £ of a domain D in C” is a removable set of singularities for H”(D\ E).
Jarvi’s proof [9] that polar sets are removable sets of singularities for the Hardy
spaces actually shows that they are isometrically removable. The main contribu-
tion of this note, therefore, is that the converse holds. Indeed, the key to this
converse is the first lemma below, which is a purely potential theoretic one. An
application of this lemma will also be given to the study of removable singular-
ities for the Hardy spaces A” of harmonic functions, where the results do not
exactly parallel those for the spaces H”.

Before stating and proving the main results of this paper, it is advisable to col-
lect some of the more crucial definitions as well as some relevant background in-
formation. For any p, if fe HP(D), let uy denote the least harmonic majorant
of | f|”. Fix a point @ in D. For 1< p<owo, | f|,=us(a)"/” defines a norm on
H?(D); for p<1, d(f,g)=|f—g|5=us_.(a) defines a metric on H”(D). The
connectedness of D is necessary in order for |f|, to define a norm. (Though
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inaccurate, | f|, will be called the norm of f even when p < 1.) The definition of
the norm in H?(D) depends on the choice of the point @, but an application of
Harnack’s Inequality shows that a change in this point produces an equivalent
norm. Call the point ¢ in D used to define the norm the norming point.

For the theory of Hardy spaces on domains in C” with “nice” boundary, the
reader can see [10]; the elements of this theory for arbitrary domains in C can be
found in [4]. The arguments of [4], relevant for the rest of this paper, easily carry
over to domains in C”. In particular, Hardy spaces are Banach spaces for p>1
and Fréchet spaces for p <1. An easy way to demonstrate these facts as well as
many other results about Hardy spaces is to first show that the norm of a func-
tion f in H?(D) is the supremum of the L? norms [{ | f|? dw]?P, where w is the
harmonic measure evaluated at the norming point ¢ of a subdomain G of D such
that cl G, the closure of G, is contained in D. In taking this supremum, it suffices
to restrict one’s attention to subregions with nice boundary or even a sequence
of nice subregions that form an exhaustion of D.

In order that the relevant definitions be satisfied, it is necessary to restrict at-
tention to relatively closed subsets £ of a domain D such that D\ £ is connected.
Moreover, it must be assumed that the same point in D\ E is used as a norming
point for H?(D) and H?(D\ E). Otherwise a discussion of isometric remova-
bility becomes absurd.

A set E in C” is polar if there exists a superharmonic function on C” that is
identically +oco0 on E. For properties of polar sets, see Chapter 1.V of [3]. If F is
a compact subset of the domain D and there is a superharmonic function on D
(not constantly equal to +o0) that is identically +c on E, then E is polar. The
sets E considered here are relatively closed subsets of a domain D, and hence can
be written as the countable union of compact sets. In the complex plane C, such
a set is polar if and only if it has logarithmic capacity zero ([5, §3 of VII] and [3,
1.XI1I.18]).

When n > 1, it is easy to see that nonpolar sets can be removable for H” for all
P, 0< p <oo. (The reader is invited to contrast this with harmonic Hardy space,
h?, by comparing this with Theorem 2 below.) Indeed, if £ is a compact subset
of a domain D such that D\ E is connected, then every function f in H”(D\FE)
will extend to an analytic function £ on D by the Hartogs extension phenomenon
[10]. To produce a harmonic majorant for | f|?, consider a smooth majorant v
which is harmonic near D (for the moment, assume that D is bounded). If # is
the solution of the Dirichlet problem Au = Av with zero boundary data, then
h = v—u will be a harmonic majorant of | f|”. (The relevant boundary regularity
results may be found in Chapter 1.VIII of [3].) When n =1, the situation is far
from obvious. Nevertheless, it is known that there are sets which are removable
for H” functions for all p, 0 < p < o, but which are not polar sets. See, for ex-
ample, Corollary 1.2 of [6] and the remark following it. For a simple example,
which is valid for 1 < p < o0, see page 50 of [7]. Also, for n=1, there is a canon-
ical decomposition for functions in H”(D\ E) as the sum of a function in H? (D)
and a function in H?(C\ E). See Theorem 2.1 of [2], for example. In general,
removability depends on the value of p (see [6] and the references there).
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We now come to the key lemma mentioned earlier. This lemma is purely po-
tential theoretic and is valid in R” (n>=2).

LEMMA. Let D be a domain in R" (n=2) and assume that E is a relatively
closed subset of D such that D\ E is connected. Assume that there is a subhar-
mounic function u on D\ E that is not harmonic, but which has a least harmonic
majorant h. If u admits a subharmonic continuation to D which is dominated by
a superharmonic continuation of h to D, then E is polar.

Proof. Let ii be the subharmonic extension of u to D. From the hypothesis, @
has a superharmonic majorant on D. Let / be the least superharmonic majorant
of & on D; thus /4 is harmonic. It is a straightforward consequence of the hypoth-
esis that #=h on D\ E. Thus /4 is a harmonic extension of 4 to D.

Let {E;} be a sequence of compact subsets of £ whose union is £. Note that
the hypothesis of the lemma is satisfied by & | D\ Ex, A | D\ E, and Ej. There-
fore if the lemma is proved under the additional assumption that £ is compact,
it will follow in full generality since £ is the union of a countable number of
polar sets and, hence, must itself be polar.

So assume that E is compact with # and / defined as above. Since u is not har-
monic, # and £ are not identical and so

(D hA(x)>i(x) forall x in D.

Because 4 —ii is lower semicontinuous and E is compact, (1) implies that there
is a 6 > 0 such that (x)—id(x) =6 for all x in E. Equivalently,

(2) [A(x)—1di(x)]/6=1 for all x in E.

Denote by H the upper Perron solution (or the PWB = Perron-Wiener-Brelot
solution, in the terminology of [3]) on D\ E for the boundary function that van-
ishes identically on 8D and is identically 1 on dE. (Note that the set D\ E is
Greenian in Dobb’s terminology, since it supports the positive nonconstant su-
perharmonic function #—u. See 1.11.13 in [3].) The inequality (2) shows that the
class of superharmonic functions v on D\ E satisfying

3) lim inf o(x)=0
X —+Xg
xe D\E

for xo in dD and

4 lim info(x) =1
x—+x0
xe D\E

for x¢ in OE is nonempty and, in fact, contains the function (4 —i)/é. Therefore,
H, which is the infimum over this class, is harmonic; that is, H is not identically
equal to +oo. Also, H satisfies

[A(x)—ii(x)]/6=H(x)=0 for x in D\E.
Equivalently,
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) h(x)=h(x)—6H(x)=u(x) for x in D\E.

But 4 is the least harmonic majorant of ¥ on D\ E, so (5) implies that H =0.
This implies that for every positive integer n there is a nonnegative superhar-

monic function v, on D\ E satisfying (3) and (4) as well as v,,(a) <27 ". There-
fore v=3Y v, is superharmonic on D\ E, v(a) < +o, and

lim inf v(x) = +o0

X —'XO

xe D\E
for every point x, in E. If v is extended to D by letting it be identically +oco0 on E,
then v is superharmonic. This implies that £ is a polar set. J

The following theorem is the main result of this paper.

THEOREM 1. Let D be a domain in C" and let E be a relatively closed subset
of D such that D\ E is connected. Using the same point a in D\ E as the norming
point for both H? (D) and HP(D\ E), consider the following statements.

(@) For 0< p <o, the restriction map H” (D) — HP?(D\ E) is a surjective iso-

metry.

(b) For 0< p <o, the restriction map H”(D) —» H?(D\ E) is an isometry.

(c) There is a value of p, 0 < p < o, such that H?(D\ E) contains a noncon-

stant function and for which the restriction map H”(D) - HP(D\E) is
an isometry. '

(d) Thereis a value of p, 0 < p < oo, and a nonconstant function fin H°(D\E)

that has an analytic extension to a function f in H?(D) with

(6) ||f||HP(D) = "f“Hp(D\E)'

(e) E is polar.
Then (c) = (d) = (e) =(a) = (b).

The first thing that should be noted in the statement of this theorem is that
condition (e), that £ is a polar set, is independent of p as well as independent of
the domain D that contains E. Therefore one would not expect that all the condi-
tions are equivalent. Indeed, it is easy to find a counterexample. Let D =C" and
let £ be a nonpolar set such that, for all p, H?(C"\ E) contains only constant
functions. As discussed earlier, it is easy to find such a set £ when n>1 and it is
known that such a set exists when n=1 [6]. Then conditions (a) and (b) of the
theorem are clearly satisfied and the remaining conditions just as clearly fail.

The key to obtaining the above conditions to be equivalent is to require H” (D)
to have some nonconstant functions. This is done in the following corollary.

COROLLARY. If D is biholomorphically equivalent to a bounded domain,
then the conditions (a) through (e) in Theorem 1 are equivalent.

Proof. Under the hypothesis, H”(D) and H?(D\ E) both contain a noncon-
stant function for every value of p, so it is trivial that (b) implies (c). I:I

Proof of Theorem 1. 1t is trivial that (c) implies (d) and that (a) implies (b). As
mentioned previously, it is implicit in [9] that (e) implies (a). Indeed, it is shown
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in [9] that the least harmonic majorant of | f|” on D\ E extends harmonically
across E and from this the extendability of f follows as does the fact that the ex-
tended function has the same norm as f. (See [8] for an elegant deduction of the
extendability of the majorant.)

It remains to show that (d) implies that E is polar. Let f and f be as in (d) and
let # and /4 be the least harmonic majorants of f and f, respectively. Note that
A= h on D\ E. Equation (6) implies that # and /4 agree at the norming point a; by
the Maximum Principle, they must be identical on D\ E. That is, / is a harmonic
extension of A to D. Also, since f is not a constant function, |f|” is not har-
monic on D\ E. It is now an immediate consequence of the preceding lemma that
FE is polar. This concludes the proof of the theorem. ]

There are analogous results for the spaces of harmonic functions #”(D) and
h?(D\E) for 1= p <. The space h”(D) is defined as the set of all harmonic
functions u: D — C for which |#|” has a harmonic majorant. The norm on 47 (D)
is defined as for H?(D) and h”(D) is a Banach space. Here, however, it may be
assumed that D € R”, as no underlying complex structure is necessary.

Below is the result for #”(D) that is analogous to Theorem 1. The reader will
notice, however, that there is an additional benefit in that removability and iso-
metric removability are equivalent for p > 1. On the other hand, something is lost
in that the result fails for p = 1. The full statement of the valid implications for
all possible values of p becomes rather cumbersome to state, and so, for conve-
nience, it will be assumed throughout the statement of the next theorem that 1 <
p <oo. The reader will be left to his own devices and inclinations to sort out the
implications for p =1.

THEOREM 2. Let D be a domain in R" and let E be a relatively closed subset
of D such that D\ E is connected. Using the same point a in D\ E as the norming
point for both h” (D) and h? (D\ E), consider the following statements.

(a) For 1< p <o, the restriction map h?(D)— h”?(D\E) is a surjective iso-

metry.

(b) There is a value of p, 1< p <oo, such that the restriction map h”(D)—

hP(D\ E) is surjective.

(c) There is a value of p, 1< p <o, such that the restriction map h”(D)—

h?(D\E) is an isometry.
(d) There is avalue of p, 1 < p < o, and a nonconstant function u in h”?(D\E)
that has a harmonic extension to a function @ in h” (D) with |ii|rpy =
|l w2 D\ E)-
(e) E is polar.
Then conditions (a), (b), (c), and (e) are equivalent and (d) implies (e).

Proof. The proof that (d) implies (e) follows the lines of the proof of the cor-
responding implication in Theorem 1. The proof that (e¢) implies (a) can be found
in Theorem 2.5 of [8]. (Once again, though the result only states that polar sets
are removable, the proof given in [8] shows that they are isometrically remov-
able.) Clearly (a) implies (b) and (c). It will now be shown that (b) implies that £
is polar.
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If n =2, then the proof that (b) implies that E is polar can be found on page 34
of [4]. The proof of this implication when n = 3 is probably known to some, but
seems to be written down nowhere; thus a proof for this case will be sketched.
This same proof can be adapted to the case when n=2.

So assume that n = 3 and that the restriction map #”(D) —» h” (D\ E) is surjec-
tive. For convenience, also assume that £ is compact (the proof of the general
case following by writing E as the union of a sequence of compact subsets). Let 4
be the solution of the Dirichlet Problem for the domain @ = R"\ E with boundary
function that is 1 on d£ and 0 at co. Since /4 is bounded, & | (D\ E) € h’(D\ E).
By (b), # has a harmonic extension / to R”. Since # is positive, so is 4. Thus #,
and hence A4, is constant. But since A#(x) —» 0 as x —» oo, #=0. On the other hand,
the set of points in dE where A does not assume the value 1 is a polar set ([3,
p. 106}). Therefore dF, and hence E, is a polar set.

It remains to show that (c) implies (e). If D is unbounded, then an argument
similar to that of the preceding paragraph shows that £ must be polar. On the
other hand, if D is bounded, then the assumptions of (d) are satisfied and so (e)
follows. ]

COROLLARY. If D is a bounded domain in R" or if n=2 and D is holomor-
phically equivalent to a bounded domain in R?, then the conditions (a) through
(e) in Theorem 2 are equivalent.

Here is an example that illustrates that Theorem 2 fails for p=1. Let n =3, let
D = the unit ball in R”, and let E = {0}. If A(x) = |x|*~", then he h'(D\ E) and
h has no harmonic extension to D, even though ¥ is polar. Similarly, log|z]| ~! pe-
longs to h'(D\ {0}).

Since the Nevanlinna class N(D) = {f analytic in D:log. |f| has a harmonic
majorant} is the limiting space of H” as p — 0, the reader might wonder what
happens to Theorem 1 in the case of the Nevanlinna class. In fact, the theorem is
false here. Indeed, z ~'e N(D\{0}) for n=1, and z; ' e N(B,\[[0} x C""']) for
n=2. Also, see Theorem 3.4 of [8], where the possibility of meromorphic exten-
sions is discussed for functions in the Nevanlinna class.
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