ON A GEOMETRIC LOCALIZATION
OF THE CAUCHY POTENTIALS

D. Khavinson

1. Introductory remarks. Let u € D’(C) be a distribution in C = R2 If his an
arbitrary Cy -function in C (i.e., a C“-function with a compact support), then it
is well known that the Leibniz differentiation rule still holds for the product uh

(see, e.g., [12, Ch. VI]).
In particular,
0 0 0
gz_‘(uh) = (gﬂ)h-i-u(-a—z_h),
d 170 .0

55 =3 (5 3y

and the equality is understood in the sense of distributions.
Let p be a finite Borel measure in C. The Cauchy potential (transform) j of p
is defined by

where, as usual,

d
ﬂ(z)=SC —i‘—uz'

It is well known (see [8, Ch. II]) that fi(z) is defined almost everywhere with re-
spect to the area and that i(z) € Li,c(dxdy); that is, for any compact set K C C,
SK || dxdy < +oo.

So e D’(C) and, as is known,

op
oz H
(see [7, Ch. 1I]; [8, Ch. II]). Thus, for all 7€ Cy°, we have
d oh
1 —(ih) = — i—.
1 9z (ih) Tph+f oz

In other words,

1 an

ph=p-h——p—dxdy.
T 9Z
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For h=1on a small disk Ay and = 0 outside of a little larger disk A,, equation (1)
allows us to “localize” the Cauchy transform i in Ay. This leads to various appli-
cations of (1) to the problems in rational approximation (see [2]; [7, Ch. VIII];
[13]).

However, for a general discontinuous function 4, (1) does not make any sense
(even any “distributional sense”) unless some additional assumptions are made.

In §2 we show that (1) can still be meaningful in the case when # is a character-
istic function of a smoothly bounded domain. (Speaking in terms of geometric
measure theory, /4 is a 2-dimensional current of finite perimeter —cf. [4, Ch. IV].)

More precisely, we prove (Theorem 1) that for an arbitrary u, any { e C, and
almost all > 0, equation (1) holds for 2= xa,, where A, ={z: [z— | <r}. (Here,
Xa, 1s a characteristic function of A,.)

As a direct corollary of this result we obtain the “splitting” theorem for mea-
sures orthogonal to rational functions due to E. Bishop (for polynomials) and
L. Kodama (cf. [3], [11]). Moreover, we establish an explicit formula for the re-
sulting measures. This has not been done in [3] or [11].

As we show in §3, Corollary 1 (the particular form of Theorem 1) is especially
useful since it allows us to localize the Cauchy potentials in small disks explicitly,
and not by means of specially chosen test functions 4.

In §3 we develop certain techniques of working with such “localized” Cauchy
transforms. As an illustration of those methods we obtain a series of local esti-
mates concerning the “thickness” of the measure p provided by the “nice” proper-
ties of its Cauchy potentials such as boundedness, BMO, continuity, etc.

We want to mention that the ideas behind Theorem 1 and the results in §3 are,
in spirit, very close to E. De Giorgi’s localization of the perimeter measure con-
tained in [11], or (more generally) to the theory of slices introduced in geometric
measure theory by H. Federer (cf. [5], [6]).

Finally, we note that it seems possible that those ideas can be applied to poten-
tials related to elliptic operators other than d/90%.

ACKNOWLEDGMENTS. Theorem 1 is contained in the author’s thesis submitted
to Brown University. The author is indebted to his research supervisor, Professar
John Wermer, for many invaluable comments, constant support and encourage-
ment. Also, the author is grateful to Professor H. Federer for very helpful dis-
cussions.

2. The localization formula. At first, we recall the well-known generalization
of the Cauchy formula due to Pompeiu (see [7, Ch. 11, §1]). If G is an arbitrary
finitely connected smoothly bounded domain and ¢ is a differentiable function

in G, then
1 o($) 1 dop 1 #(z), zedG,
2 o — - s dxdy = ~
@ 77 Voo iz =) -z Y {0, z¢ G.
In particular, for any differentiable function ¢ with a compact support, we have
1 dp 1
¢(z) = "‘; SSC af i_———z— dxdy.
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THEOREM 1. Let p be a complex finite Borel measure in C with a compact sup-
port. Fix $oe C and let A, ={z:|z— $o| <r}. Then, for almost all r >0, the fol-
lowing holds:

d 0 a 1
3 — (i =(—=Aa +h- | —= = — ——a($) d .
(3) 7z (Axa,) (azﬂ)XA, [ azXA,) | a, 21#(5‘) $laa,
REMARK. Equation (3) is understood in the distribution sense. u | o, denotes
the restriction of u on A,.

Proof. Since

dlﬂ'l () 1
U,(2)= el
[A( ) SC | g_ —z I loc
and p is a finite measure, the following conditions are satisfied for almost all » > O:
“ Uu(2) |3, € L34, d|{|);
) lnl(3A,) =0.

Choose r > 0 such that (4) and (5) hold. Take an arbitrary ¢ € Cg°. Applying Fu-
bini’s theorem and using (5) we obtain

9 .. (i PN [ ;.92
<§z:(u'xA,),¢>——<ﬂ-xA,, az>_ SA,”' 97 dxdy
¢

= —f ano |, 3 -S;—i; dx dy

©)

In view of (2), again applying Fubini’s theorem we transform the first integral in
(6) into

1 ¢(z) ,)_ 1 dp(§)
0 SC\E, dapr($) {Z SaA, ¢—2z dz} 2§ SaA, ¢(2) {SC\Z, $—2z }dz.

According to (2), the second integral in (6) can be written as

1 $(z)dz
o Jo fro@ g, BT au
=[ me@annr+5- | s@f| ¥y
o A,W # 2i Joa, z A, $—2 z

(The use of Fubini’s theorem here is justified by (4).) Combining (6), (7), and (8)
we obtain

o _ 1 :
(55, #)=={, w0 du(®)-3; [, @i dz,

and the proof is complete. J
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NOTE. We have never really used the fact that A, is a disk. So, the disks A,
in Theorem 1 can be replaced by any regions A with rectifiable boundaries (i.e.,
(8/0Z)xa= —(1/2i)d¢{ | 3a) provided that (4) and (5) hold on dA.

The following corollary follows immediately from Theorem 1 and from the
fact that the measure x is uniquely defined by its Cauchy potential (see [8, Ch. II,
Thm. 1.4]).

COROLLARY 1. Let u, r, A, be the same as in Theorem 1. Then fi|a_=fi-Xa, IS
the Cauchy transform of the measure

©) mE s+ ~2—1—.ﬁ(s“) ds | aa,-
i

COROLLARY 2 (Bishop-Kodama; cf. [3], [11]). Let X be a compact set in C
and R(X) denote the uniform closure on X of the algebra of rational functions
with poles outside of X. Let p be a measure orthogonal to R(X). Then the fol-
lowing statements holds:

(i) Fix an arbitrary $o€ C. For almost all r > 0 the measure p, defined by (9)

is orthogonal to R(XNA,).
(ii) For almost all real numbers xy the measure
def

1 .
p2=p | Ree>xo) = 5 AE) AN | Rer=xpr  §=E+1m,

is orthogonal to R(XN{{: E€=Re {=xp}).

Proof. (i) According to Corollary 1, g;=4-xa,=0 on C\A,. Also, i=0 on
A\X, since u L R(X). Hence, ji; =0 on A,\ X. Therefore, #;=00n C\(XNA,)
which is equivalent to u; being orthogonal to R(XNA,) (see [7, Ch. II]).

In view of the note following Theorem 1 the proof of (ii) is the same and we
shall omit it. ]

3. Estimates of measures induced by the local properties of their Cauchy poten-
tials. Let p be a finite compactly supported Borel measure in C and let, as usual,
|n| denote the total variation of u.

DEFINITION. We call ¢ e supp u a regular point for the measure p (a “p-regu-
lar point™) if there exists a real number 6: 0 <80 < 27 such that

A .
lim A =e'f
r— 0+ Il“' (4A,)

where A, ={z:|z—¢o| <r}.

Let E,={$o€C: { is p-regular}. From standard results in measure theory it
follows that p-almost all points {o belong to E,. So, for any Borel subset A of C,
p(A)=pn(ANE,). (See [4, Ch. 11, 2.9].)

We recall that for a continuous function f (i.e. f e C(C)), the modulus of con-
tinuity of f w(é, f) is defined to be

w(8, f)=sup|f(z)—f(W)|, z,w:|z—w|<s.
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Also, we recall that a function fe Ll,.(dxdy) is said to belong to BMO (bounded
mean oscillation) if for every disk A there is a constant ¢ = c(A) such that

SSA | f(z)—c(A)| dxdy < Ayarea(A),

where Ay is a constant depending only on f.
Finally, fe L'(dx dy) is said to belong to VMO (vanishing mean oscillation) if
for any disk A there is a constant ¢(A) such that

SSA | f(z)—c(A)| dxdy < e(area(A)) area(A),

where e(area(A)) = €;(¢) depends only on f and e(0+)=0.

THEOREM 2. Let u be a Borel measure in C with a compact support. Fix {ge
E,. Then the following hold.
G) If "ﬁ”Lw(a’xdy) =M< +o0, then
— A
im |l"'l( r)
r—-0+ r

=C< +oo,

where C is a constant which depends only on M.
(i) If ji(z) e C(C) and w(6, i) = w(d) is its modulus of continuity, then

_ A
Fm @) _ 4o,
r—0+ (r)r

where C is a constant which does not depend on ¢g.
(iii) If ji(z) e BMO, then
— A
Hm l’_"_lg_’_)_
r—0+ r

=C< +oo,

where C is a constant which does not depend on ¢.

(iv) If ji(z) e VMO, then
im ln|(A)
im ————~

=C< +oo.
r-o+ r-e(r)

Here, e(r) =¢; is the same as in the definition of VMO and C is a con-
stant which does not depend on ¢,.

Proof. (i) As {oe E,, we can find ro=ro({p) such that for all r <rg

(10) 1 (A <2|m(a)].

Since ||~ <M, then for almost all » < ry the following holds:
¢8)) lili=caa,, aicy = M.

Also, according to Theorem 1, for almost all r < ry

0 1
(12) EE(ﬁ‘XA,)=—7FM|A,—§ITﬁ(§') d{ [ aa,-
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From now on we assume that r > 0 is such that (10), (11), and (12) are satisfied.
Take ¢ € C5 (C) such that ¢ =1 on A, and supp ¢ C A,,. From (12) we obtain

_[ 292 _ 1 ; _ 10 .
o={, azaxdy=x{ eduto; | enwrds=mpan+y: | awras.

From this, using (10) and (11), we obtain that

1
(13) lan=—|{ ds“lszM-r.
7 |Joa,

Hence, for almost all r < rg, we have |u|(A,)/r =2M. At the same time, for any
r<ro/2, dr’:r<r’<2r<rg and such that (10)-(12) hold for r’. Then we have

,ﬂ'(Ar) < lﬂl(Ar') _L’_
r o r’ r

<4M.

(*)

Thus,
irn M < 4M,
r—0+ r
and (i) is proved.
The proof of (ii) can be obtained in a similar way, if in the estimate (13) we
observe that

1
(A <—
T

Jon, U0 =G0 | < 2rtr).

; _1
N drl— .

(iii) Consider r >0 such that (10) and (12) are satisfied. Fix p > 0; then, for
almost all » < p we have

1 . 1 .
man =, aoras|=2|f @ —eaal

1 2« R i
s¥50 |a(re®)—c(A,)|r do.

Therefore, since ji e BMO, we have

o 1 o p2m i0
SOIMI(A,)drS—;SO SO la(re’®y—c(A,)|r dodr

1
=— ] 1a)—c@a ) axay

SA,; p2.
Hence,
r Inl(A,) dr <Az p>
p/2

In particular, 3r,: p/2 <r, < p such that
(+%) lul(A,) <4A,1,,
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and this is true for an arbitrary p > 0. Letting p tend to zero we obtain
l“[(Ap) - Iiu‘I(Aer) . I'2p

1Y rap o
and the statement follows.
The proof of (iv) is very similar to (iii) and we shall omit it. 1

COROLLARY 3. Let u, ¢o, A, be the same as in Theorem 2. If ji € Lip(«, C),
O<a=<l, then
J— A
lim |.’"|1( f)
roo+ I'T

=const < 400,

where the constant does not depend on ¢.

REMARK. The reader has undoubtedly noticed that by being a little bit more
careful with the estimates (%), (%), and (***) we could improve the constants
in (i)-(iv) and Corollary 3, obtaining the sharper constants |i|;=, 1, A;, 1, and
|2l Lipe, ) > TE€SPECtively. Since we are here interested only in qualitative estimates
of the measures, for the sake of brevity we do not pursue the sharp constants.

We recall that if A#(r) >0 is an increasing continuous function and 4#(0) =0,
then my;, denotes the Hausdorff measure in C associated with the function A(r).
In particular, m, =m,2 and m; = m,, denote (respectively) area measure and 1-
dimensional Hausdorff measure in C. Details concerning the definitions and prop-
erties of Hausdorff measures can be found, for instance, in [4] and [8].

COROLLARY 4. Let p be a compactly supported Borel measure in C.

(1) If e BMO (in particular, if jie L*(dm,)), then the measure |p| is abso-
lutely continuous with respect to my, that is, m;(E)=0 = |u|(E)=0 for
any Borel set ECC. Moreover, the Radon-Nikodym derivative of |u|
with respect to m; is bounded.

(i) If fe VMO, then the measure |u| is absolutely continuous with respect to
my,, where h(r) =re(r), e(r) =e€;(r). Moreover, the Radon-Nikodym de-
rivative of |u| with respect to my, is bounded.

(iii) If fe C(C) and w(r)=w(r, p) is its modulus of continuity, then |p is
absolutely continuous with respect to my,, where h(r) = rw(r); the Radon-
Nikodym derivative of |u| with respect to my, is bounded.

The proof follows from Theorem 2 by means of the standard measure-theoretic
argument (cf. [4, Ch. 11, §2.10.17]). For the sake of completeness we will sketch
the argument for e L”.

Since pu(A) =pu(ANE,) for all Borel sets 4, we need only to consider the sub-
sets of E,,.

Let C be the constant defined in (i) of Theorem 2. We set

B(8)={zeA: |u|(ANA,)<2Cr for all r < wherever z€ A,}.

Then, clearly |u|[B(6)] <2C X, r; for any countable system of disks A (rj=<9)
covering B(6). Therefore,
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|n|[B(8)] =2Cinf {E rj over all {A,,}, such that r; < 6 and D Ap,D B(6)}
J Jj=1

=Cm(B(6))=Cm(A).
According to Theorem 2, for every {o€ ANE, we have (A, =A,($)):

— A
lim I.u'l( r)
r—0+ r

Hence, A =Uy-, B(1/n). Since B(1) C B(1/2) C ---, we obtain
|n[(A) = lim u[B(1/n)] < Cm(A).

n—co

=C.

From this the corollary follows. O]

It seems appropriate to single out the following statement, which follows im-
mediately from the above corollary.

COROLLARY 5. Let p#0 and E, be as above. Then the following statements
hold.
(1) If ae BMO (in particular, if je L™(dmy)), then m;(E,) > 0.
(ii) If i e VMO (in particular, if e C(C)), then m(E,) = co.
(iii) If peLip(a, C), O0<a=<l, then my ,<m+.(E,)>0. Moreover, p<<
myyq and dp/fdmy o€ L™ (my 4o, C). In particular, if e Lip(1, C), then
p=gdm,, ge L™,

REMARK. The results stated in part (iii) of Corollary 5 are closely related to
a well-known theorem (due to E. DolZenko) concerning the removable sets for
analytic functions in the Lipschitz classes (see [8, Ch. III, §4] for detailed discus-
sion). The same note applies to part (i) and the results of Kaufman and Wu con-
cerning removable sets for analytic functions f of BMO (see [9], [10]).
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