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1. Introduction. The problem of determining the group of automorphisms of
a surface is a classical one that goes back to Hurwitz [15]. The study of the
groups of automorphisms of Klein surfaces has grown in the last ten years. Our
goal in this paper is to determine the group of automorphisms of each hyper-
elliptic Klein surface of genus 3. The same question was solved for genus 1 in [1]
and for genus 2 in [9].

In Riemann surfaces these questions were first studied by Wiman [31]. He solves
the problem for genus 2. More recently some results about hyperelliptic Riemann
surfaces of genus 3 have been obtained by A. and I. Kuribayashi [16, 17, 18].

The techniques used in this paper, involving NEC groups, are different from
those of the Riemann case.

We now describe the contents of our paper. In §2 we introduce the terminology
about Klein surfaces and NEC groups, and establish a technical result.

Section 3 is devoted to the study of some properties of the automorphisms of
Klein surfaces of genus three, and in §4 we introduce the method for checking
when a group of automorphisms of an arbitrary bordered compact Klein surface
is the full group.

In §5 we obtain the main result. All the groups that are the full group of auto-
morphisms of each hyperelliptic Klein surface of genus 3 are classified according
to the topological type of the surface.

From the well-known functorial equivalence established by Alling and Green-
leaf [2] between the category of real irreducible algebraic curves and the one of
bordered Klein. surfaces, and our results [8] about the relation between hyper-
elliptic Klein surfaces and hyperelliptic real algebraic curves, we will translate in
§6 the results obtained for surfaces in §5 to the language of curves.

2. NEC groups and Klein surfaces. Klein surfaces, introduced from a modern
point of view by Alling and Greenleaf [2], are studied by means of NEC groups
since the results of Preston and May.

If X is a Klein surface of algebraic genus p =2, it may be expressed as D/T",
where D={ze C|Im(z) =0} and I" is an NEC group (see Preston [25]).

NEC groups, introduced by Wilkie [30], are discrete subgroups of the group G
of isometries of the hyperbolic plane, with compact quotient space.
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An NEC group may include orientation reversing isometries. NEC groups are
classified according to their signature [19], that has the form

(gs =+, [mls cney mr]$ {(nl]’ oy nlsl)’ seey (nkls ceey nksk)})
and determines a presentation of the group given by generators
() x1,...,X%r
(11) €15 ..+5 €
(i1} €10y ++5Clsys +oe s CkOs -+ + 5 Cksy
(iv) (if sign‘+’) ay, by, ..., ag, b,
(if sign ‘=) dy, ..., d,
and relations
() x"i=1,i=1,...,r
(i) ¢?ji=ci=(c j1c)"i=1,i=1,....k, j=1,...,5
(lll) e Cin€iCis; = 1,i=1,...,k
(iv) (if sign “+°) xy... x,e...exarbra; ‘b ...azb,a;'b; " =1
(if sign ‘=) xy... x,e,... exdf...dZ =1.
From now on the letters x, a, b, c, d,e, will be used just for these canonical gen-
erators of the group. We call proper periods the numbers »;, period-cycles the
brackets (#;, ..., nis;) and period of the period-cycles the numbers #;;.

I' having the above signature, the surface D/I" has topological genus g and &
boundary components, and is orientable if and only if the sign is ‘+’. In fact, in
the above result of Preston, the group I' has neither proper periods nor periods
in the period-cycles. '

May [23] proved that if H is a group of automorphisms of the surface D/T, it
may be expressed as I'’/I", I’ being another NEC group. The full group of auto-
morphisms of D/I" is Ng(I')/T", Ng(I') being the normalizer of I" in G.

A Klein surface is called hyperelliptic if its canonical double covering is hyper-
elliptic (see [8]).

The following result, that appears in [10], will be used along the paper:

THEOREM 2.1 [10]. Let T" be an NEC group with a non-empty period-cycle
(nys ..., n5), and cy, ..., cs the corresponding reflections. Let 'y be a normal sub-
group of T', with even index N. If ¢, Ci41,...,cj€ g, ci_1,cj11& Iy, and n is the
index of cj_1cj+y mod I'y, then

(@) necessarily n;, nj | are even, and

(b) among the period-cycles of the signature of Ty there are at least N/2r

between those that have the forms

nj nj+1 n; nj+1
("E‘, Nit1s...,15, —'2—', Nj,.. .,n,-+1,.('.".,?, Niy1s...50, T, LOITERRIUES

and

n. n- n. n-
J+1 i ) j+1 i
( 2 s Mjsee s Ny, 2,ni+l:---snj’°-~a 2 sMjse s ligq, 2:”i+l""’nj .

3. Some results on Klein surfaces of genus three. First of all, we obtain the
possible orders of the automorphisms of a compact bordered Klein surface X =
D/T of genus 3, according to the signature of I.
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If X is a compact Klein surface of topological genus g and k 0 boundary
components, its algebraic genus p is 2g + k4 —1 when X is orientable, and g+k—1
when X is non-orientable.

Thus, if X has algebraic genus 3, I' has one of the following signatures:

0, +, [—L {(—), (), (), (—)]),
1, +, [—1, {(—), ()],

G, = [—1L{(—)),

2, = [—1 {(—), ()],

(L, = [—1 {(—), (—), ().

THEOREM 3.1. If X is a compact non-orientable Klein surface with boundary,
of algebraic genus 3, then:
(i) If X has one boundary component, the order of each automorphism is 2,
3, or 4.
(ii) If X has two boundary components, the order of each automorphism is 2
or 4.
(iii) If X has three boundary components, the order of each automorphism is
2,3,4, oré.
In all cases for each value there is a Klein surface with an automorphism of
this order.

Proof. (i) X being D/T", from [6] the maximum order of an automorphism in
this case is 4, and the value 4 is attained. To show that the order 3 is attainable,
we consider an NEC group I'’ with signature (1, —, [3], {(—)}) and the epimor-
phism 6 from I'” onto Z/3 given by 0(x;) =x, 0(e)) =x, 6(c)) =1, 0(d)) =x* By
[3], kero =T

(ii) From [12] the order of an automorphism is a power of 2. As it is at most -
6 [22], it suffices to meet an automorphism of order 4. If X =D/T", we take an
NEC group I'” with signature (0, 4+, [—1, {(2,2)(—)}) and the epimorphism
6 from I'’ onto Z/4 defined by 8(e;) =x, 0(ex)=x>, 0(cip) =x2%, 0(cn)=1,
0(c12) =x2, 0(ca) =x2. Furthermore, as efc,o belongs to ker 6, by [14] the signa-
ture of ker 8 has the sign ‘—’. Using the fundamental region of I'’ we obtain
a region of ker # having two holes without non-empty period-cycles, and so ker 6
isT'.

(iii) By [12] each order is 2*3” and by [22] the highest possible value is 6.
It suffices now to construct an automorphism of order 6, and another one of
order 4.

For the order 6, we take I'” with signature (0, +, [6], {(2,2)}) and the epi-
morphism 0 from I'” onto Z/6 given by 0(x;) =x, 0(e) =x3, 0(c;)=0(c3) =x3,
0(6‘2) =1.

On the other hand, taking an NEC group I'’ with signature

(Os +, [—'—]9 {(23 2)(—)}),

the epimorphism 0 from I'' onto Z/4 is defined by 6(e;) =x, 0(ez) =x3, 0(ci0) =
x?%, 0(cn) =1, 6(cr2) =x2, 0(c0) =1.
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In both cases it is easy to check, using the same arguments in the cases above,
that ker 6 =TI'", X being D/I". U

THEOREM 3.2. If X is a compact orientable Klein surface with boundary, of
algebraic genus 3, then:
(i) If X has four boundary components, the order of each automorphism is 2,
3, or 4.
(ii) If X has two boundary components, the order of each automorphism is 2,
3,4, or 6.
In both cases for each value there is a Klein surface with an automorphism of
this order.

Proof. (i) It has been already proved in [7].

(ii) If X has two boundary components, from [12] we know that the order
of each automorphism is 23%. From [22], the order is at most 2g =6. So it is
enough to find an automorphism having order 6, and another one of order 4.
To do that, writing X =D/T", we need to find an NEC group I'’ and an epi-
morphism 6 from I'” onto Z/m, m =4 or 6, whose kernels were isomorphic
toI'.

First, let m =6. If I’ is an NEC group with signature (0, +, {2,6], {(—)}),
we choose the epimorphism 6 from I'’ onto Z/6 given by 0(x;) =x, 0(x3) =x3
0(e)) =x2, 0(c))=1.

When m =4, I'’ has signature (0, +, [4,4], {(—)}), and now we consider @
from I'” onto Z/4 defined by 0(x;) =x, 0(x2) =x, 0(e)) =x2, 0(c;) =1.

In both cases, it is easy to check that ker 8 =T". C

REMARK. We will see later that not all possible orders of automorphisms of
each type of Klein surfaces of genus 3 are realized for hyperelliptic surfaces.
. As we saw in §2, if G is a group of automorphisms of the Klein surface D/T",
there exists an NEC group I'’ such that I'’/T" = G. We are going now to deduce
properties on the signature of I'’ if G is to be a group of automorphisms of a
Klein surface of genus 3.

THEOREM 3.3. Let X=D/T" be a Klein surface of genus 3 and G=T""/T «a
group of automorphisms of X. If the signature of I’ has no empty period-cycle,
it has at least two consecutive periods equal to two in a period-cycle.

Proof. As T' is a subgroup of I'’ having period-cycles, all of them empty, I'’
must have period-cycles. Since I'” has no empty period-cycle, every period-cycle
in its signature has at least one period. In the first place we consider that every
period-cycle has a unique period: let (), (m2), ..., (m,) be the period-cycles.
Then we have ¢;i, ¢;» such that ¢3 =c% = (cii1ci2)™ =1foreachi=1,..., p. From
the relation e,-_lc,-le,- ci» =1 we conclude that for every i, ¢;; and c;; belong to I', or
none of them belong to I'. If both ¢;;, ¢ are in I" then their product is in I" be-
cause I' is a subgroup, and m; appears as a period in a period-cycle. If, on the
other hand, no ¢;; is in T", then, since I' is normal, it contains no reflections and
so no period-cycles.
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Thus there must be period-cycles with at least two periods. As I' has period-
cycles, there exist ¢, ..., c, €I’ such that ¢, .. cpe I'. Let i = p. Wlthout loss
of generality we may suppose that there exist ¢, c’eI'’ such that cl=c?%= c, =
(cc;))™ = (c;c’)"2 =1. Neither ¢ nor ¢’ belong to I'; otherwise, among the periods
of the period-cycles of I' there would appear m; or m,, which is impossible. Let
k be the least integer such that (cc’)k eI'. Using Theorem 2.1, m; and m, are even
numbers and #1; /2 and m, /2 appear as periods of a period-cycle of I', excepting
if my=m,=2.

Consequently we have found a couple of consecutive periods equal to twoin a
period-cycle. O

THEOREM 3.4. Let X=D/T be a Klein surface, and G=T"'/T" a group of
automorphisms of X. Then each proper period and each period of the period-
cycles of T’ equals the order of some element of G.

Proof. If there were proper periods in I'’ not satisfying the condition, by [3
and 4] there would appear proper periods in the signature of I'. When G has odd
order, all the period-cycles of I are empty [3]. Finally, G having even order, if
there is a period m in a period-cycle, m different to all the orders of the elements
of G, we have two reflections c¢;, ¢; such that (c;c)” =1. If m is odd, either
c1, c2 €T, and then m is a period of a period-cycle of I, or ¢, c; & I'; in this case
(c12)?€Tll, g |m, q# m, and then m/q is a proper period of I' [4]. Lastly, if m is
even, then ¢;,c; eI’ or ¢, c; ¢ I', and these cases are solved as above, or ¢;eI’,
c, ¢ I', and then m/2 is a period of a period-cycle of I'. [l

Let |A| be the area of a fundamental region of the NEC group A (see [27]). If
A has signature

(g9 x, [ml, '-'smr]’ {(nlla veoy nlsl): cesy (nkla ceey nkSk)})9

1 k% S 1
m; ) 2 g §=: ( nij ))’
« being 2 for sign ‘4’ and 1 for sign ‘—’.

If G=T"/T, then order(G)=|T"|/|T’|. In our case, X =D/T being a Klein
surface of genus 3, |T'|=

On the other hand, May [21] proved that the order of a group of automor-
phisms of a Klein surface of genus 3 is at most 24; and if it is less than 24, itis at
most 16.

From Theorems 3.1 and 3.2 we know, furthermore, that the possible orders of
G are 2, 3,4, 6, 8,9, 12, 16 or 24.

Keeping in mind that [I"’| =2/order(G) and Theorems 3.3 and 3.4, by means
of a simple but long calculation we obtain the possible signatures of I’ in each
case. This result is summarized in Table 1.

we have

|A| =27r(ozg+k—2+ Er) (1—-

i=1

REMARK. Note that the order 9 does not appear in Table 1, because there is
no NEC group I'’ satisfying the above conditions.
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Order of G Signatures of I'’
24 (0, +a [_]a {(2,2’2’3)})
16 O, +,[—1,{(2,2,2,4)})
12 (Os +, [2’3],{(—)}) (0’ +, ["'—]! {(2323333)])
0, +, 3], {(2,2)}) O, +,[—1,((2,2,2,6)})
(O’ +! ['—]: {(2,2:2’2’2)}) (O’ +: [4]){(2:2)})
8 0, +, (2], ((2,2,2)}) O, +, [— 1L {(2)(—)]D)
(O’ +, [_], {(2,2,434)}) (03 +, [2’413 {(—)})
(Os +9 [2,6], {('——)}) (01 +s [_]: {(232a232’3)])
6 (0, +,[6], {(2,2)}) 0, +,[3,3], {((—)})
(0, +, [2], {(2,2,3)}) 0, +,[—1, {(2,2,6,6)})
(0’ +s ['_']s {(2, 29 2’ 2: 29 2)}) (0’ +’ ['—]’ {(2! 2)(_)})
0, +,[2], (2,2,2,2)}) (1, =, [—1,{(2,2)))
4 O, +,[—1,{(2,2,2,4,4)}) 0, +,12,2,2], {(—)})
(09 +9 [_], [(232241214)}) (0, +’ [434], [(—)})
0, +,12,2], {(2,2))}) (1, —, 2], {(—)])
3 0, +, 3L {(—)(—)}D) (1, =, [3], {(—)D
O, +, [— L {(——)(—)(—)D) (O, +,12],((2,2,2,2,2,2)})
0, +, [2,2], {(—)(—)}) 0, +,1—1,{(2,2,2,2,2,2,2,2)})
(O, +, {232:232]3{(_)}) (1,—, {_]’ {(_)('-’—')})
5 0, +,[2], £(2,2)(—)}) (1, =, [2,2], ({—)})
0, +,[—1,{2,2,2,2)(—)}) (1, —,[2],{(2,2)])
(Oa +, [—]s {(2) 2)(252)}) (1’ ) [_]s {(2’ 2! 2: 2)])
(Os +9 [292’2}3 {(2’2)]) (1’ +! [_']9[(_)})
0, +,12,2], {(2,2,2,2)}) 2, = [—1 {(—)})
Table 1.

4. On the full group of automorphisms of a Klein surface. The purpose of this
section is to obtain some results that allow us to decide when a group of auto-
morphisms of a Klein surface is the full group of its automorphisms.

Given an NEC group I', we denote by R(I', G) the set of isomorphisms
r:I" - G such that »(I') is discrete and D/r(I') is compact. Two elements ry,r> €
R(T", G) are said to be equivalent if for each y €T, there exists g € G verifying
ri(y) =gr.(v)g ~!. The quotient space T(I", G), the Teichmiiller space of T, is
homeomorphic to a cell of dimension d(I"'). When I' is a Fuchsian group with
signature (g, +, [m, ..., m,]), it is known that d(I"') =6(g —1) +2r, but Singer-
man proves in [28] that, if I" is a proper NEC group, then d(I') = %d(I‘“L), where
I't is the canonical Fuchsian group associated to I'.

The Teichmiiller modular group M(I') of I" [20] is the quotient Aut(I')/I(I"),
where Aut(I™) is the full group of automorphisms of I', and 7(I') denotes the
inner automorphisms. M(I') acts as a group of isometries, in the Teichmiiller
metric, on 7(T", G), and T(I", G)/M(I") = M (T, G) is the modulus space of I'.



AUTOMORPHISMS OF HYPERELLIPTIC KLEIN SURFACES 61

Let o, 0’ be the signatures of two NEC groups. We say o < ¢’ (respectively
o <1¢’) if there exist NEC groups I' and I'’ whose signatures are ¢ and ¢’, d(T') =
d(I'’), and I" a subgroup of I'’ (respectively I"' a normal subgroup of I'’).

Denoting by ¢* the signature of the canonical Fuchsian group I'* associated
to I'', it is easy to deduce that two given signatures ¢ and ¢’ verify o < ¢’ (respec-
tively o <¢”’) if and only if there exist NEC groups I and I'” with signatures oand
o’ verifying I' < T’ (respectively I' <aI"’) and ¢ < ¢t (respectively ot <o’?).

We will use afterwards the full list of pairs (o, ¢’) with o0 <6’ of [5] and the
one obtained by Singerman [26] about pairs (¢%, ¢’") with 6™ <o¢’".

EXAMPLE 1. We are going to use the former criteria to show that the con-
nected sum of two projective planes with two boundary components X and the
torus with two boundary components Y, with Klein surface structure, both admit
Z/2 as full group of automorphisms. It will be seen in §5 that these surfaces are
not hyperelliptic.

Let I be an NEC group with signature (0, +, [—]1, {(2, 2)(2, 2)}), that we
call o, and consider the following epimorphisms ¢ and ¢’ from I" onto Z/2:

0(e)) =0(ez) =0(c11) =0(c13) =0(c21) =0(c23) =X, 0(c12) =6(c22) =1,
0'(ci1) =0'(c13) =0'(c21) = 0'(c23) = x, 0'(c12) =0'(c2) =0'(e;) =0'(ex) =1.

The kernels of 8 and 6’ are easily seen to be two NEC groups with signature
2, — [—1, {(—)(—)} and (1, +, [—], {(—)(—)}), respectively. This
proves that in both cases Z/2 is a group of automorphisms of X and Y. As ¢7 is
a, +, [2, 2, 2, 2]), from [26] we know that there is no o', ¢t <¢’"; thus there
is no ¢’ with ¢ < ¢’ and consequently we can choose I"' to be maximal. Therefore
Z/2 is in both cases the full group of automorphisms.

Now we prove a technical result that will be useful to delete possible groups as
full group of automorphisms.

THEOREM 4.1. Let T" and T'’ be two NEC groups with signatures o and o’,
I" being a normal subgroup of T'’, and let us call G’ the quotient T'’/T". Let T'” be
an NEC group with signature ¢”, with ' CT’'” CI'’, and o” <to’. Let us assume
that the canonical projection I'” - T'"/T" = G"” is, up to isomorphisms of T'” and
G”, the unique epimorphism between those groups having kernel I". Then for
each pair of NEC groups (I'*,I""*) with signatures o and o” there exists an NEC
group I''* whose signature is o’ and I'*<aI"'*,

Proof. Let T,.(I') ={7r e T(I", G) | there exists I'g having signature o’ verifying
that I'g /7(I") = G’ is a group of automorphisms of D/7(I')}. In a similar way, we
define 7,-(I')={r e T(I", G) | there exists I'g having signature o” verifying that
I'y/7(I')=G"” is a group of automorphisms of D/7(I")}.

It is enough to check that 7,.(I') D 7,-(I").

From [13] and [20], we know that

T, )= U a( S T G))),

&e M) ige®(I, T, T/T)
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and

M= U a3 Baop),

e M(T) ige ®(I,T",T"/T)
where ®(I', A, A/T") is the family of all equivalence classes of surjections
¢:A— A/T with ker ¢ =I" (modulo the actions of Aut(A) and Aut(A/T")), and
iy is the isometry induced by the inclusion iy : ker ¢ — A. By assumptions, in our
case ®(I', I"”, I'’/T") has a unique element, which is the restriction of an element
of &(I', I'', I'’//T"). So, we need only to observe that 7(I'”, G) C T(I'’, G), and this
is clear since ¢” <1¢’ and consequently both spaces have the same dimension. [J

EXAMPLE 2. We use the theorem above to prove that Z/3 is not the auto-
morphism group of any sphere with four boundary components considered as
Klein surface. When Z/3 is a group of automorphisms of such a surface X, the
full group is Dj3. It will be seen later that this surface is not hyperelliptic. (In fact,
Dj is not the group of automorphisms of any hyperelliptic Klein surface of
genus 3.)

Let us suppose that Z/3 is a group of automorphisms of X. Then there would
exist a group I'” and an epimorphism 6” from I'” onto Z/3 having kernel
O, +, | 1, f(—)( )(—)( )}). Using Table 1 the signature must be
0, +, [3], {(—)(—)]D or 1, —, [3], {(—)}). The second one may be deleted
using [3]. Moreover, with the first signature (that we call ¢”), up to automor-
phisms of I'” and Z/3, the unique epimorphism 6” from I'” onto Z/3 having
kernel (0, +, [—1, {( Y(—)(—)( )}) is the following:

0" (x1) =x, 0”(er) =x2, 07(e2) =0"(c)=0"(cz)=1.  °

Let now ¢’ be the signature (0, +, [—1], {(2, 2, 2, 2, 3)}), and I'" an NEC
group having signature ¢’. We consider the epimorphism 6’ from I'’ onto D; =
(x,y|x?=y*=(xp)’=1) given by 6'(c1)=x, 6'(c2) =1, 0'(c3) =y, 0'(ca) =1,
0’(cs) =y, 0’(ce) =x. The kernel of 8’ is again a group with signature

O, +,[— 1, {(—)(—) (—)(—)]D.
The preimage of the subgroup of Dj; generated by xy has signature

(Os +’ [3]3 {(’_)(—_)})s
using the uniqueness of the signature, because its quotient by ker 8’ is Z/3.

So, as 6”10’ [5], we can apply Theorem 4.1 and obtain that whenever Z/3 isa
group of automorphisms of X, so is D3. In order to prove that in these cases D;
is the full group of automorphisms it is enough, repeating the arguments of
Example 1, to check that ¢’t = (0, +, [2, 2, 2, 2, 3]) does not appear in the list
of [26].

5. Groups of automorphisms of hyperelliptic Klein surfaces. Our goal in this
section is to determine which groups are the full group of automorphisms of
hyperelliptic Klein surfaces of genus 3.

We have introduced hyperelliptic Klein surfaces in §2 and we must recall the
following characterization obtained in [8]:
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Let T be an NEC group with signature (g, =, [—1, {(—),.%., (—)}). Then
D/T is hyperelliptic if and only if there exists a unique NEC group I'y with
|T'y: T'| =2, and whose signature is:

(1) (Os +a [_],{(23-2'k'92)]) lf g:O,
(*) (i) (0, +, [2,27521, ((—)]) if g0 and T" has sign ‘4.
Gii) (0, +,[2,.%.,21, {(2,.%%.,2)}) if T has sign ‘.

Writing I'; /T" ={id, p}, it was proved in [8] that p, the automorphism of the
hyperellipticity, is a central element of the group of automorphisms of D/T'. So
this group has even order.

If we call G the group of automorphisms of D/T", there exists an NEC group
I'’ such that G=T"/I". So the strategy to follow is, first of all, look for NEC
groups I'” from which there is an epimorphism # onto G, having kernel I, and
such that "' I, <«T"’. For that we seek NEC groups I'’ and epimorphisms & from
I’ onto G/p having kernel I';, and extendable to an epimorphism 8 from I'’ onto
G with kernel I'.

We list now the groups of order up to 24, satisfying the conditions that we
have seen to be necessary. The notation for non-abelian groups is the one of [11]:

Z/2, Z/2®Z/2, Z/A, Z/6, Z/2®Z/2®Z/2, Z/2®Z/4, Ds, Q,

Z/2@Z/6, Dg, {2,2,3), Z/2®Z/2DZ/4, Z/2@Z/2@Z/2DZ/2,

Z/ADZ/4, Z/2@ D4, Z/2DQ, (2,2,2)3, (4,4]2,2), (2,2]4;2),
Z/2@DZ/2@Z/6, Z/2@Ds, Z/2@ A4, Z/2@<2,2,3), <2,3,3), (4,6]2,2).

To manage these groups, we shall employ [29]. We shall also use the following
presentations for some of these groups:

Z/n={x|x"=1),
D,=(x,y|x*=y*=(xy)"=1),
D,®Z/2=(x,y,z|x*=y>=(xp)" =2 =(z2x)* = (zp)* =D,
Z/n@®Z/2=(x,y|x"=y*=1, xy =yx),
Z2@®Z/2@Z/2=4x,y,z|x*=y*=2%=1, xy =yx, X7 =2X, Y7 =2V).

THEOREM 5.1. Let D/T" be a hyperelliptic Klein surface I' having signature
0, +, [—1, {(—)(—)(—)(—)}). The group of automorphisms of D/T' is
one of the following: Z/2, Z/2®Z/2, Z/2®Z/2@Z/2, or Z/2@ D,. Each of
these groups is realized as the group of automorphisms of such a surface.

Proof. From Theorem 3.2 we know that each automorphism of D/T" has order
2, 3, o0r4.

We are going to study the groups that may be the full group of automorphisms
of D/T'. The study is begun with the groups of order 24, and follows the decreas-
ing sequence of orders. Let G be a group of order 24, which is the automorphisms
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group of D/T'. Then if p belongs to the center of G, p having order two, G/pisa
group of order 12 whose elements have orders 2, 3, or 4. The only group satis-
fying these conditions is A4. Then if p is the automorphism of the hyperellip-
ticity, there must be an epimorphism 6 from the group (0, +, [—1, {(2, 2, 2, 3)])
onto A4 having kernel with signature (0, +, [—], {(2, 2, 2, 2, 2, 2, 2, 2)}). This
is impossible using Theorem 2.1. So the group of automorphisms of D/I" may
not have order 24.

When G has order 16, G/p has order 8, and its elements have order 2 or
4. If p is the automorphism of the hyperellipticity, there must be an epimor-
phism 6 from (0, +, [—1, {(2, 2, 2, 4)}) onto G/p with kernel with signature
o, +, [—1, {2, 2,2,2,2,2,2, 2)}). So G/p must be generated by elements of
order 2, and G/p is neither Z/2® Z/4 nor Q. Let G/p be D,4. Then the epimor-
phism 6 is defined by 6(c)) =x, 0(c;) =0(c3) =1, 0(cs) =y, 0(cs)=x. Thus, G
is a group such that G/p is D,; that is, Dy@® Z/2, or (4, 4|2, 2), or 2, 2|4; 2).
The two latter groups are not generated by elements of order 2, and so there is no
epimorphism from (0, +, [—1, {(2, 2, 2, 4)}) onto them. Now we are going to
construct an epimorphism 8 from (0, +, [—1, {(2, 2, 2, 4)}) onto D;®DZ/2
with kernel (0, +, [—]1, {(—)(—)(—)(—)}) making commutative the fol-

lowing diagram:
2
(0’ +, [_—], {(23 2’ 2: 4)})
\o‘D
4

(From now on, we will say that § is compatible with 8 when this diagram com-
mutes.) The epimorphism f is the following: 8(c;) =x, 0(c3) =1, 0(c3) =z,
0(cs) =y, 0(cs) =x.

Finally G/p may not be Z/2®Z/2@® Z/2 because, if there would exist an epi-
morphism from (0, +, [—1, {(2, 2, 2, 4)}) onto Z/2®Z/2®Z/2, the three
generators of this group must be the images of three reflections, and so by
Theorem 2.1 the kernel is not the desired one.

There is no group of order 12 without elements of order 6 and non-trivial
center.

When G has order 8, G/p may be Z/4 or Z/2@® Z/2. The possible signatures are
(0: +s [_']’ {(2, 2, 29 29 2)])! (Os +a [Z]a {(23 2’ 2)})9 (09 +’ [_]9 {(29 2’ 49 4)})9
(Oa +1 [4]: {(2’ 2)}), (Os +s [_]s {(2)(_—)]) and (Os +’ {23 4]s {(”—)})‘ We
are looking for epimorphisms from these groups onto G/p having kernel

o, +,[—1,{12,2,2,2,2,2,2,2)}).
This is impossible in the case of the last signature. We begin by the study of the
case Z/4. The three first signatures are deleted because Z/4 is not generated by
elements of order two; and the fifth one is impossible because there would be at
most four periods in the period-cycle of the kernel. The remaining signature is
(0, +, [4], {(2, 2)}) and the desired epimorphism is the following: 6(x;) =X,
6(e)) =x3, 6(c;) =06(cz) =0(c3)=1. Then G must be Z/2@® Z/4 and the epimor-
phism & compatible with 8 is: 8(x;) =x, 0(e;) =x3, 6(c;) =y, 0(c2) =1, 0(c3) =y.

Di®Z/2

L}
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If G/pis Z/2@ Z/2, there is no epimorphism from groups having the five last
signatures of the former paragraph onto G/p with kernel

(O’ +: [_]’ {(2, 2’ 29 2: 2, 2, 2’ 2)})-
On the other hand, we have the following unique epimorphism & from
(O, +: [_]a {(29 2, 2’ 2a 2)})

onto Z/2®Z/2 with the above kernel: 8(c)) =x, 0(c2)=0(c3) =060(cy) =1,
0(cs) =y, 0(cg) =x. Thus G may be Z/2®DZ/4, Z/2DZ/2BZ/2, Dyor Q. As
QO and Z/2@® Z/4 are not generated by elements of order 2, there is not an epi-
morphism 8 from (0, +, [—1, {(2, 2, 2, 2, 2)}) onto these groups. There is not
an epimorphism 8 from (0, +, {—1, {(2, 2, 2, 2, 2)}) onto D4 compatible with
8, and so, by the uniqueness of 0, the group D4 may be deleted. Finally, we have
the eplmorphlsm 6 from (0, +, [—1, {2, 2,2, 2, 2)}) onto Z/2®Z/2®Z/2
given by O(c))=x, 0(c)=1, 0(c3)=2z, O(cs)=1, 8(cs)=y, 8(ce) =x, that is
compatible with 6.

G may not have order 6, because Z/6 has elements with order 6.

When G has order 4, G/p is Z/2. The possible signatures giving periods in the
period-cycles of the kernel are

0, +,[—1,1(2,2,2,2,2,2)}), (0, +,[2], {(2,2,2,2)}),
0, +,[—1,{(2,2,2,4,4)}), (0,+,[—1,{(2,2,4,2,4)}]),
0, +, [2,2], {(2,2)]), (0, +,[4],{(2,2,2))}),

0, +, [—1,{(2,2)(—)}), or (1,—,[—1] {(2,2)}).

Groups with the last four signatures do not provide eight periods in the period-
cycle of the kernel. As Z/4 is not generated by elements of order 2, there is no
epimorphism from a group having one of the first four signatures onto Z/4.
Finally, we have the following epimorphism ¢ from (0, +, [2], {(2, 2, 2, 2)})
onto Z/2: 6(x;) =0(e)) =x, 0(c;)=0(c;) =0(c3) =0(c4) =6(cs)=1; and the epi-
morphism § from (9, +, [2], {(2, 2, 2, 2)}) onto Z/2@® Z/2, compatible with 6,
is given by 0(x;) =0(e)) =x, 8(c1)) =y, 0(c2) =1, 8(c3) =y, O(cs) =1, O(cs) =y.

The group Z/2 is a group of automorphisms of D/T" because it is a hyperelliptic
Klein surface, and the corresponding signature is

(Os +a [_], {(2’ 2’ 2, 2) 2’ 2, 2" 2)])-

Now we see which of the possible groups that we have obtained are the full
group of automorphisms.

Using the arguments of §4, as the signatures of the canonical Fuchsian groups
associated to the NEC groups corresponding with Z/2, Z/2@® Z/2, and
Z/2@Z/2@®Z/2 do not appear in the list of [26], the groups Z/2, Z/2®Z/2,
and Z/2@®Z/2®Z/2 are the full group of automorphisms of the surface.

Now we consider Z/2@® Z/4. Since 8§ is unique modulo Aut(Z/2@® Z/4) and
automorphisms of the group having signature (0, +, [4], {(2, 2)}), and

(0, +, 4], {(2,2)}) <(0, +,[—1, {(2,2,2,4)}),
[5], when Z/2@®Z/4 is a group of automorphisms, so is Z/2@ Dy.
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Finally, as Z/2@ D, has order 16, there is no group of automorphisms strictly
containing it. L]

THEOREM 5.2. Let D/T be a hyperelliptic Klein surface, I" having signature
(1, +, [—1, ({(—)(—)}). The group of automorphisms of D/ is one of the
Sfollowing: Z/2, Z/2®Z/2, Z/2P®Z/2DZ/2, Dg, or Z/2@D,. Each of these
groups is realized as the group of automorphisms of such a surface.

Proof. From Theorem 3.2 we have that each automorphism of D/T" has order
2, 3,4, or6.

We begin studying the groups of order 24. Let G be a group of order 24,
which is the automorphism group of D/I". Thus G/p is a group of order 12,
whose elements have orders 2, 3, 4, or 6, and there is an epimorphism @ from
o, +, [—1, {(2, 2, 2, 3)}) onto G/p having kernel (0, +, [2, 2, 2, 2], {(—)}).
It would be 0(c)=x, 0(c)=1, 0(c3)=y, 0(cy)=y, 0(cs)=x, verifying
order(xy) =6, and so we would have six proper periods in the kernel. So the
group of automorphisms of D/I" may not have order 24.

When G has order 16, G/p has order 8. The unique possible group of order 8
G/p such that there exists an epimorphism 6 from (0, +, [—1, {(2, 2, 2, 4)})
onto G/p with kernel (0, +, [2, 2, 2, 2], {(—)}) is D4. Thus G is D;®Z/2, or
(4,42, 2), or {2,2]|4; 2). The two latter groups are not generated by elements
of order 2, and so there is no epimorphism from (0, +, [ —1, {(2, 2, 2, 4)}) onto
them. The epimorphism 8 from (0, +, [—1, {(2, 2, 2, 4)}) onto D, is given
by 0(c)) =0(c)=x, 0(c;)=1, 0(cy)=y, 0(cs)=x. The epimorphism & from
0, +, [—1, {2, 2, 2, 4)}) onto D,@Z/2, compatible with 8, is 8(c;) = xz,
0(c)=x, 0(c3) =1, 0(cy) =y, 0(cs) =xz.

If G has order 12, G/p has order 6; thus G/pis Z/6 or D;. The possible signa-
tures would be

(0, +, 12,31, {(——)]D), (0, +, [3], ((2,2)}),
0, +,[—1,{(2,2,3,3)}), and (0, +,[—1,{(2,2,2,6)}).

No group with these signatures can be mapped onto Z/6 with kernel

0, +,12,2,2,2], {(—)}).
Only in the last case is there an epimorphism onto D; having kernel

0, +,12,2,2,2], {(—)]):
0(c1)) =y, 6(c)=1, 0(c3)=0(cy4)=x, 0(cs)=y. Then G must be D¢, and the
epimorphism 8 which sends ¢c;to y, c> to 1, ¢3 to x(xy)3 , C4to X, csto y, is com-
patible with 6.

When G has order 8, G/p is Z/4 or Z/2@®Z/2. The possible signatures are
(O’ +, [_]’ {(29 2s 2, 2, 2)})s (Os +s [2]s {(23 29 2)})’ (Oa +s ['_"'—]s {(2’ 23 4, 4)})3
(0’ +, [4], {(2, 2)})3 (0, +, [—'—]’ {(2)( )})s and (O’ +, [2’ 4]3 {(_)})0 If
G/p is Z/4, the three first signatures give groups from which there is no epimor-
phism onto G/p, because this is not generated by elements of order 2. The two
following signatures do not provide the desired kernel. So we have only the group
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o, +, [2, 4], {(—)]D). Then we have the epimorphism 6 onto Z/4, given by
6(x)) =1, 0(x3)=x, 0(e)) =x3, 0(c;)=1.If G/pis Z/4, then G is Z/2€|-)Z/4 and
we have the eplmorphlsm 8, compatlble with @, glven by 8(x;) =y, 0(x3)=x,
B(er)=x>y, O(c)=1.

If G/pis Z/2@® Z/2, the four last signatures do not provide the desired kernel.
Considering (0, +, [—1, {(2, 2, 2, 2, 2)}), we have the epimorphism 8 onto
Z/2@®Z/2, defined by 0(c;) =x, 0(c2) =1, 0(c3) =0(cs) =0(cs) =Yy, 0(cs) =x; and
if we take (0, +, [2], {(2, 2, 2)}), we have 8’ onto Z/2@® Z/2, given by §’(x;) =1,
0'(e)) =1, 0'(c))=x, 0'(c2)=1, 0’(c3)=y, 6'(cs) =x. Now we are going to seek
epimorphisms onto G compatible with 6 and 6’. The groups Q and Z/2® Z/4 are
not generated by elements of order 2; so there are no such epimorphisms onto
these groups. If G were D,, the possible epimorphisms 8 onto D,, compatible
with 6, have a kernel with a unique period-cycle, and there is no 6’ compatible
with 0’. Finally, when G is Z/2®Z/2® Z/2, we have an epimorphism g from
o, +, [—1, {(2,2, 2, 2, 2)}) onto Z/2@Z/2@Z/2givenby 8(c)) =x, 8(cz) =1,
0(c3) =yz, 0(cs) =y, 0(cs) =yz, 0(ce) =x.

If G has order 6, it must be Z/6. There must be an epimorphism onto Z/6
having kernel (1, +, [—]1, {(—)(—)}). So the unique possible signature is
0, +, [2, 61, {[(—)}), and the epimorphism is §(x;) = x3, 8(x2) =x, 0(e;) =x2,
6(c;) =1. The epimorphism 6 from (0, +, {2, 61, {(—)}) onto G/p=2Z/3 is
0(x1) =1, 0(x2) =x, 8(e)) =x>, 0(cr)=1.

If G has order 4, G/p is Z/2. The possible signatures are

0, +, [—1, ((2,2,2,2,2,2)}), (0, +, [2], ((2,2,2,2)}),
0, +,[—1,{(2,2,2,4,4)}), (0, +,[—1,1{(2,2,4,2,4)}),
0, +,[2,2], {(2,2)}), (0, +,[4], {(2,2,2)}), (0, +,[—1, {(2,2)(—)}),
1, -, [—1,{(2,2)}), (0, +,[2,2,2], ({(—)}), (0, +,[4,4], {(—)]),
(1, =, 2], {((—)}), and (O, +, [2], {(—)(—)]).
Only four of these groups provide epimorphisms onto Z/2 with kernel
0, +,12,2,2,2], {(—)});
they are
0, +,[—1,{(2,2,2,2,2,2)}), (0, +,[2], {(2,2,2,2)}),
0, +,12,2], {(2,2)}), and (O, +,[2,2,2], {(—)}).

As all these groups are generated by elements of order 2, G may not be Z/4. If
Gis Z/2®Z/2, we have 0 from (0, +, [2, 2], {(2, 2)}) onto Z/2, given by
0(x1) =0(x2) =0(e;) =1, 6(c1) =x, 0(c2) =1, 0(c3) =x. The epimorphism 6 onto
Z/2@®Z/2, compatible with 8, is 8(x;) =0(x2) =y, 0(e)) =1, 8(c;) =x, O(c) =1,
6(c3) =x.

The group Z/2 is a group of automorphisms of D/I" because it is a hyperelliptic
Klein surface, and the corresponding signature is (0, +, [2, 2, 2, 2], {(—)}).
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Using the list of [26], we prove that Z/2, Z/2® Z/2, and Z/2DZ/2®BD Z/2
are the full group of automorphisms. By other side, Z/2@ D, is the full group
because no other group contains them.

Finally, in the same way of Theorem 5.1, checking the hypotheses of Theorem
4.1, whenever Z/2®Z/4 (respectively Z/6) is a group of automorphisms, so is
Z/2® D, (respectively Dg).

THEOREM 5.3. Let D/T be a hyperelliptic Klein surface, I" having signa-
ture (3, —, [—1, {(—)}). The group of automorphisms of D/T is Z/2 or
Z/2@Z/2. Both groups are realized as the group of automorphisms of such a
surface.

Proof. By Theorem 3.1 the orders of the automorphisms of D/T" are 2 or 4,
and by [6] the group of automorphisms is cyclic or dihedral. Thus G may be
Z/2, Z/2®Z/2, Z/4, or D;,.

If G=D,, G/p=2Z/2®Z/2. The possible signatures are

0, +,1—1,12,2,2,2,2)}), (0, +,[2], {(2,2,2)}),
0, +,[—1,{(2,2,4,4)}), (0, +,[4], {(2,2)}),
0, +,[—1, {(2)(—)}), and (O, +,[2,4], ((—)}).

The unique one that gives us an epimorphism 6 onto G/p with kernel
(0, +,1[2,2,2],{(2,2)})
is (0, +, [—1, (2, 2, 4, 4)}), and this epimorphism is 0(¢;) = 6(c;) = x, 0(c3) =1,
0(c4) =y, 0(cs) = x. But there is no epimorphism 6 from
0, +,[—1,1(2,2,4,4)})

onto D, compatible with 6.
IfG=Z/2®Z/2, G/p=Z/2. The possible signatures are

0, +,[—1,1{(2,2,2,2,2,2)}), (0, +,[2], {(2,2,2,2)}),
0, +,[—1,12,2,2,4,4)}), (0,+,[—1,{(2,2,4,2,4)}),
0, +,12,2], {(2,2)}), (0, +,[4],{(2,2,2)}]),

0, +,[—1,{(2,2)(—)}), and (1, —, [—1, {(2,2}}).

The groups having one of the last five signatures may not be mapped onto Z/2
with kernel (0, +, [2, 2, 2], {(2, 2)}). If we have (O, +, [—1, {(2, 2, 2, 2, 2, 2)}),
the epimorphism € onto Z/2 is given by 0(c;)=x, 0(c)=0(c3) =1, 0(cy)=
0(cs) = 0(cg) = 0(cy7) = x; the epimorphism 6 onto Z/2®%/2, compgtible with
0, is 0(c;)) =xy, 0(c2) =1, 0(c3) =Yy, 0(cs) =x, O(cs)=xy, O(ce) =x, 8(c7) =xy.

If G=Z/4, the three unique groups not deleted by the above paragraph are
generated by elements of order two, and so have no epimorphisms onto Z/4.

If G=Z/2, it is a group of automorphisms of D/T" because this is a hyperelliptic
Klein surface, and the corresponding signature is (0, +, [2, 2, 2], {(2, 2)}).

As before, the list of [26] allows us to assure that both Z/2 and Z/2® Z/2 are
the full group of automorphisms. |
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THEOREM 5.4. Let D/T" be a hyperelliptic Klein surface, I"' having signature
2, —, [—1, {{—)(—)]). The group of automorphisms of D/’ is one of the
Jollowing: Z/2, Z/2®Z/2, and Z/2DZ/2DZ/2. Each of these groups may be
realized as the group of automorphisms of such a surface.

Proof. By Theorem 3.1 the orders of the automorphisms are 2 or 4. So the
order of the group is a power of two.

If G has order 16, G/p has order 8. So G/pis Z/2®DZ/2DZ/2, D,, Z/2@D Z/4,
or Q. So there must be an epimorphism § from (0, +, [—], {(2, 2, 2, 4)}) onto
G/p with kernel (0, +, [2, 2], {(2, 2, 2, 2)}). Thus G/p may be generated by
elements of order 2, and so we can delete Z/2@®Z/4 and Q. No epimorphism
from (0, +, [—1, {(2, 2, 2, 4)}) onto Z/2®Z/2@Z/2 or D, has the desired
kernel. So G may not have order 16.

When G has order 8, G/p must be Z/4 or Z/2@® Z/2. The possible signatures
are

0, +,[—1,1(2,2,2,2,2)}), (0, +,[2],{(2,2,2)}),
0, +,[—1,{(2,2,4,4)}), (0, +,[4], {(2,2)}]),
(O, +’ [—]){(2)(_—)})3 and (Os +’ [2,4]’{(_)})-

We are looking for epimorphisms from these groups onto G/p having kernel
0, +, [2, 2], {(2, 2, 2, 2)}). The last two signatures may not provide proper
periods and non-empty period-cycles in the signature of the kernel. As Z/4 is
not generated by elements of order 2, the three first signatures are deleted. Be-
sides there is no epimorphism from (0, +, [4], {(2, 2)}) onto Z/4 with the
stated kernel. If G/p is Z/2@Z/2, there is no epimorphism for the signatures
0, +, [2], {2, 2, 2)}) and (O, +, [4], {(2, 2)}). Finally we have the epimor-
phism 0 from (0, +, [—]1, {(2, 2, 2, 2, 2)}) onto Z/2@Z/2 given by 6(c;) =
0(cy)=x, 0(c3)=0(cy) =1, 0(cs) =y, 0(cg)=x; and 6’ from

(0» +’ [—"']9 {(2, 23 494)})
onto Z/2@Z/2 given by 8'(c;) =0'(c3) =y, 0’(c3) =x, 0'(cs) =1, 6’(¢cs) =y. More-

over, G may be generated by elements of order 2, and so G is Z/2®Z/12®Z/2
or D,. There is not an epimorphism 0 nor 8’ from the groups

0, +,[—1,{2,2,2,2,2)}) and (0, +,[—1,{(2,2,4,4)})

onto D4, compatible with 6 or 6’. In order to prove that Z/2@®Z/2@®Z/2 is
a group of automorphisms of D/p, we construct the epimorphism 8 from
0, +, [—1, {(2,2,2,2,2)}) onto Z/2DZ/2@Z/2 given by 8(c;) =x, 0(cz) =
xz, 0(c3) =z, 0(cy) =1, O(cs) =y, O(cg) =x, that is compatible with 6.

When G has order 4, G/p is Z/2. The possible signatures are, as formerly,

0, +,I—1,{(2,2,2,2,2,2)}), (0, +,[2],{(2,2,2,2)}),
0, +, [—1,1(2,2,2,4,4)]), (0, +,[—1,{(2,2,4,2,4)}),
(0, +, [2,2], ((2,2)}), (0, +, [4], {(2,2,2)}),

0, +, [—1, {(2,2)(—)}), and (1, -, [—1, {(2,2)}]),
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but the two last ones may be deleted because they do not provide proper periods
and non-empty period-cycles. We construct the following epimorphisms: 6 from
(Oa +, [_]3 {(2’ 2, 23 29 2’ 2)}) onto Z/2 given by 0(C1)=0(C2)=0(C3)=x,
0(cy) =0(cs) =0(cg) =1, 0(c;)=x; 0’ from (0, +, [2], {(2, 2, 2, 2)}) onto Z/2
defined by 6'(x;)=0'(e;)) =1, 0'(c))=x, 0(c)=0(c3)=0"(cy)=1, 8'(cs)=x;
60” from (0, +, [—1, {(2, 2, 4, 2, 4)}) onto Z/2, such that 6”(c;)=0"(c;) =
07(c3)=x, 07(cy)=0"(c5) =1, 0”(cg)=x; and 6” from (0, +, [2, 2], {(2, 2)})
onto Z/2 given by 0”7(x;)) =1, 8”7(x3)=0"(e;))=x, 0”(c;)=0"(c3) =0"(c3)=1.
The two other signatures do not provide epimorphisms. For none of these signa-
tures is there an epimorphism onto Z/4 because this group is not generated by
elements of order 2. Finally, if G=Z/2®Z/2, we have 6 from

0, +,1—1,((2,2,2,2,2,2)})
onto Z/2@®Z/2, given by 0(c))=x, 0(c)=xy, 0(c3)=x, O(cy)=1, b(cs)=,
6(cg) =1, O(c;) =x, that is compatible with .
The group Z/2 is a group of automorphisms of D/I', because it is a hyper-
elliptic Klein surface, and the corresponding signature is

0, +, 102,21, {(2,2,2,2)}).
Again, we use the list of [26] to check that
Z/2, Z/2@®Z/2, and Z/2BZ/2®Z/2
are the full group of automorphisms. ]

THEOREM 5.5. Let D/T" be a hyperelliptic Klein surface, I' having signature
1, —, [—1, {( ) ( )( )}). The group of automorphisms of D/T" is one of
the following: Z/2, Z/2®Z/2, and Dg. Each of these groups is realized as ihe
group of automorphisms of such a surface.

Proof. From Theorem 3.1 we know that each automorphism of D/I" has order
2,3,4,or6.

If G has order 24, G/p has order 12. There must be an epimorphism from
0, +, [—1, {(2, 2, 2, 3)}) onto G/p; consequently G/p must be Dg. But there
is no epimorphism from (0, +, [—1, {(2, 2, 2, 3)}) onto D¢ having kernel
0, +, [2], {(2, 2, 2, 2, 2, 2)}).

When G has order 16, G/p has order 8; and since the unique groups of order 8
generated by elements of order 2 are Z/2@® Z/2® Z/2 and D,, these are the only
groups of order 8 onto which there is an epimorphism from

(09 +s [—]: {(29 2’ 2s4)])-
In both cases the kernel of the epimorphism has at least two proper periods. So
G may not have order 16.

If the order of G is 12, G/p may be Z/6 or D3. The possible signatures are
(0, +, [2, 3], {(—)}), (O, +, [3], {(2, 2)}), (O, +, [—1, {(2, 2, 3, 3)}), and
0, +, [—1, {2, 2, 2, 6)}). With the three first signatures, there is no epimor-
phism onto G/p having a unique proper period in the kernel. As Z/6 is not gen-
erated by elements of order 2, the unique remaining case is the construction of
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an epimorphism from (0, +, [—1, {(2, 2, 2, 6)}) onto Dj;. This is the following:
0(c)) =x, 0(ca) =0(c3) =1, 0(cy) =y, 0(cs) =x. If G/p is D3, then nece§sari]y G
is Dg, and we have the following epimorphism 6 compatible with 6: 8(c;) =x,
0(c2) = (xy)°, O(c3) =1, b(cs) =y, b(cs) =x.

When G has order 8, G/p is Z/4 or Z/2@ Z/2. The possible signatures are
(03 +, [—_]s {(2" 2’ 23 2’ 2))): (Os +, [2]’ {(2’ 29 2)}): (0’ +, [——]s {(2‘! 2, 4’ 4)})’
0, +, [4]1, {(2,2)}), (0, +, [—1, £(2)(—)}), and (O, +, [2, 4], {(—)}). Only
a group whose signature is (0, +, [—], {(2, 2, 4, 4)}) may provide a unique
proper period in the kernel of the epimorphism onto G/p, and naturally G/p
must then be Z/2® Z/2. We have the epimorphism 6, given by 8(c|) =y, 0(c) =
0(c3)=1, 0(cy) =x, 0(cs)=y. As G may be generated by elements of order
2, there are two possibilities, Z/2@®Z/2®Z/2 and D,. In both cases there
does not exist § from (0, +, [—1, {(2, 2, 4, 4)}) onto G, compatible with
¢, and with kernel (1, —, [ 1, {((—)(—)(—)}). Thus G does not have
order 8.

When G has order 6, G is Z/6 and G/p is Z/3. Thus the unique possible signa-
ture having the desired epimorphisms onto G and G/p is (0, +, [6], {(2, 2)}).
The ep1morphlsm 0 from (0, +, [6], [(2, 2)}) onto Z/3 is defined by 0(x;)=x,
0(e1) =x?2 0((:1) = 0(c2) = 6(03) =1, and the eplmorphlsm 6, compatible with 6, is
0(x1) =x, B(el) =x>, O(cr)=x>, 8(c2) =1, b(c3)=x

If G has order 4, G/p is Z/2. The possible signatures are

0, +,[—1,{(2,2,2,2,2,2)}), (0, +,[2],{(2,2,2,2)]),
0, +,[—1,1(2,2,2,4,4)}), (0, +,[—1],{(2,2,4,2,4)}),
0, +,[2,2], {(2,2)]), (0, +, [4], {(2,2,2))),

0, +, [—1,{2,2)(—)}), and (1, -, [—1],{(2,2)]).

Only with a group having the first signature we may have an epimorphism onto
Z/2 with kernel (0, +, [2], {(2, 2, 2, 2, 2, 2)}). This epimorphism, 8, is 8(¢;) =
0(cy) =x, 0(c3) =0(cy4) =0(c5)=0(cs) =1, 0(c7) =x. G may not be Z/4, because
this is not generated by elements of order 2. Then 8 from

(Os +9 [_]s [(2’ 2, 2s 2: 2’ 2)})
onto Z/2®Z/2, compatible with 6, is 0(c1)=x, 0(c2) =xp, 8(c3) =1, b(cs)=y,
0(cs) =1, 0(cg) =y, 0(c7)=x

Z/2 is a group of automorphisms of D/I" and the corresponding signature is
0, +, [2], {(2, 2, 2, 2, 2, 2)}).

The usual argument assures that Z/2 and Z/2@®Z/2 are the full group of
automorphisms. There are not groups containing Dg and so this is also the full
group.

Applying again Theorem 4.1, Z/6 is not the full group of automorphisms,
because when Z/6 is a group of automorphisms of D/T’, so is Ds.

The results of this section are displayed in Table 2, where * denotes that the
respective group is achieved as the group of automorphisms of the surface.
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Z/)2 Z)2@Z/2 Z)2@Z/2®Z/2 Ds Z/2@D,

Sphere with 4 holes * * * *
Torus with 2 holes * * * * %*

Connected sum of 3 projective

planes with 1 hole * *
Connected sum of 2 projective
planes with 2 holes * * *
Projective plane with 3 holes * * *
Table 2.

6. Real algebraic curves. We shall call C an irreducible real projective alge-
braic curve. If we denote C the complexified of C, we will use the following two
facts:

(1) A birational smooth model C’ of C is homeomorphic to the boundary of

the Klein surface X (C) associated to C [2].

(2) C\C is connected if and only if X(C) is nonorientable [24].

The topological type of the curve is so determined by the knowledge of the
connectedness of C\C and the number of connected components of C’ since
these data allow us to know the orientability, the topological genus, and the
number of connected components of the boundary of X(C).

So we translate the results of §5, obtaining the group of automorphisms of a
real hyperelliptic algebraic curves of genus 3, classified according with its topo-
logical type. Table 2 becomes now the following Table 3:

Number of
connected

components
C\C of C’ Z/12 Z[R2®Z/2 Z/2DZ/2@Z/2 Dy Z/2@D,
Non-connected 4 * * * *
Non-connected 2 * * * * *
Connected 1 * *
Connected 2 * * *
Connected 3 * * *

Table 3.

Notice that only those curves C such that C\C is not connected can have
Z/2@® D, as the group of automorphisms, and we can distinguish among them
the M-curves [24] because those are the only ones that may have Dg as group of
automorphisms.

The authors wish to thank the referee for his helpful suggestions.
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