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1. Introduction. This paper concerns the extent to which the valence of a
function analytic on the unit disc determines the form of that function. If f is
analytic on ‘U = {|z| <1} and we C, then the valence of f at w, denoted vy(w), is
the number of solutions z € U of f(z) = w, counting multiplicities. In [2], Baker,
Deddens, and Ullman show that if fis an entire function, and if k is the smallest
nonzero value of vy, then f(z)=h(z*) for some entire function 4. They ask
whether the appropriate analogue of this result holds for functions which are not
entire, with the role of z* played by a k-fold Blaschke product. We construct an
example showing that the answer is no.

Our main effort concerns the study of pairs of functions whose valences are
related. We prove a conjecture of Lee Rubel concerning entire functions com-
plementing the Baker, Deddens, and Ullman result and show that it, too, fails if
the functions are not entire. Given functions f and g with identical, finite valence
functions, we investigate two structural relationships which may hold between
them: One concerns the existence of a homeomorphism of the unit circle T which
transforms the boundary values of f to those of g. The other concerns the exis-
tence of a common function # from which both f and g are obtained by compo-
sition. We show that the second relationship holds if and only if the first holds
with a distinguished type of homeomorphism.

The paper concludes with applications of our results to the study of Toeplitz
operators. A new condition is added to those of Carl Cowen [5] on similarity of
analytic Toeplitz operators. This does not extend to rational Toeplitz operators;
indeed, it leads to an example contradicting some published results concerning
their similarity. A closer look at this example suggests the possible relevance of
ideas used in the analytic case to a correct formulation. We also point out other
implications of our work in the study of Toeplitz operators, including an answer
to a question of Thomson [8] on commutants.

Throughout the paper we mention open questions which our work suggests. A
word concerning terminology: The functions we study are defined on the unit
disc ‘U. To say that a function fis entire, for instance, means that fis the restric-
tion to U of an entire function.
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conversations on the material presented here.
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2. A central role in this work is played by the function F which is constructed
in this section. It is a modification of the finite Blaschke product

B(z)=z%(2z—1)/(2—z), zeU.

B is a 4-sheeted branched covering map of the unit disc onto itself, which simply
means it is a proper map of ‘U onto U which assumes each value four times,
counting multiplicities. It is analytic across T = {|z| =1} and wraps T about itself
four times in the positive direction. The derivative of B vanishes twice at z=0
and once at zo=(3—V5)/2.

To understand the mapping properties of B, it may be helpful to refer to
Figure 1. In the domain, on the left, the interior lines approximate the pre-image
under B of the real axis, and the pre-images of the values 0, 1, —1, and wy=
B(zy) are indicated. The shaded (resp. unshaded) portions of the domain each
map one-to-one onto the shaded (resp. unshaded) half of the image disc.

We obtain F by modifying the image surface associated with B. Denote by C
the circle of radius 15/16 centered at z=1/16, and by v the image of C under
z—z%. The parameterized path p(t)=[1/16+(15/16)e’]?, O0<t¢=<4x traces
twice about . Now use the branch of B~! determined near 1 by B~1(1)=1to
define the path

r'()=B"Y(p(t)), O0=<t=<d4n,

with T"(0) =1. It is not difficult to see that I" is a simple closed curve. Approxi-
mations to it and to v are shown in the domain and range discs, respectively, of
Figure 2. Finally, let w be a conformal mapping of the unit disc onto the region
interior to I'. Our function F is obtained as the composition

F(z)=(B-w)(z), zeU.

We will develop the properties of F in the sequel as they are needed.
A few words may be helpful in understanding this construction. The image
surface of B, call it W, may be visualized as four copies of the unit disc attached
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to one another and lying over the unit disc in the plane. We lift the curve y to W;
it takes two transits of v to obtain a closed curve. The image surface for F is
obtained by simply removing the fringe, that portion of “W outside of this curve.

3. For a function f analytic on an open set containing U, we define the
valence function of f by

ve(w)=card[f'{winU], weC,
with due accounting for multiplicities, and we let
kr=min{vs(w):we f(U)].

Using this notation, we now state the result proved by Baker, Deddens, and
Ullman in [2].

THEOREM 1. Let f be an entire function and let k= k. Then there exists an
entire function h with

fz)=hz"), zew,
and with k,=1.

The function z — z X is a k-to-1 mapping of U onto itself, so the valence function
of fis simply k times that of 4. The function z* seems to enter here because it is
the only entire function which forms a k-sheeted branched covering of U. How-
ever, there are many such coverings which are not entire: they consist precisely of
the k-fold Blaschke products

k
b(z)=N]I (z—aj)/(1-a;z), zeU.
ji=1
Here, A\ is a unimodular constant and ay, a,, as, ..., a; € U are the zeros of b. This
leads Baker, Deddens, and Ullman to ask whether Theorem 1 remains true for
fupctions fanalytic on U if z¥ is replaced by some k-fold Blaschke product. The
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question is raised again by Thomson in [8] (see §6). Our function F provides a
counterexample.

PROPOSITION 1. The function F is analytic on U, kp=2, yet F is not of the
form F= heb for any analytic function h and 2-fold Blaschke product b.

Proof. The Blaschke product B of Section 2 is analytic on U, hence on the
curve I' (see Figure 2). Moreover, B is locally univalent on I"' and maps it to the
curve v. Since this is the image of a circle under z2, we conclude that T is ana-
lytic. By the Schwarz reflection principle, the conformal mapping w of U onto
the interior of I' may be extended analytically to I'. The composition F= Bew is
therefore analytic on U.

Based on Figure 2, one can recognize four pieces which comprise the range of
F (see Figure 3). The image surface of F can be reconstructed using two of each
type of piece and pasting them together along the appropriate segments over the
real axis. This is a rather loose description, but it is clear that each point in the
range of F is covered at least two times, with those points interior to the smaller
loop of vy covered four times.

The reason we base our construction of F on B has to do with its mapping
properties. Specifically, we show that the multiple-valued analytic function
B~ 1oB has a single nontrivial branch. In Figure 4, the domain of B has been
reproduced from Figure 1, with the pre-images of the point w = i/2 labelled as z;,
22, 73, and z4. With any two of these, z; and z;, we can define a branch ¥ of
B~ 'oBin a neighborhood of z; so that y(z;) =z;. Of course, if i =, then y con-
tinues to the identity function on U. A priori, one would expect three other,
nontrivial branches. Using Figure 4, we will show these are all continuations of
one another. A general study of such compositions was made by the author in
[7]; however, as this case is very straightforward, the result may be shown
directly.
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Begin by defining ¢ near z; so that ¥(z;) = z,. Consider the continuation of ¥
along the closed path p of Figure 4. During the first transit of p, the values of ¢
go from z, to z3. During the next, they go from z; to z4. That is, the branches of
B~'eB mapping z; to z5 and to z, are both continuations of the branch mapping
71 to z,. The same behavior occurs for the four pre-images of any point in
‘U,\{O, WOI .

Since F is obtained from B by suitably restricting its domain, a similar analysis

shows that F ~loF also has a single nontrivial branch. Suppose that F= hob.
Then

FYoF=p"loh~lopob;

so by an appropriate choice of #~! and b~!, we obtain a nontrivial branch of
b ~1ob. Since the 2-fold Blaschke product & is a proper map of U onto itself, the
modulus of the continuation of » ~!ed must approach 1 along any path ap-
proaching the unit circle T. However, the nontrivial branch of F~1oF does not
have this property. Consider, for instance, the point z = (14/16)2. It is both in the
range of F and among its boundary values, say z5 € U and e‘0e T with F(zs) =
F(e''0) = (14/16)2. One can find a path in U ending at e’0 along which the con-
tinuation of F ~!oF converges to zs € U. This shows that F ~'oF cannot be of the
form b ~'eob, and completes the proof of the proposition. [l

4. In this section we prove a conjecture of Lee Rubel (private communica-
tion) concerning entire functions and show that it, too, fails for functions which
are assumed to be analytic only on U.

THEOREM 2. Suppose that f and g are entire functions with f(U)=g(U).
Then there exist an entire function h, a unimodular constant \, and positive
integers m and n with

f(R)=h(z") and g(z)=h(\z")
for all zeC.
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Proof. The proof is essentially the same as that given by Baker, Deddens, and
Ullman for Theorem 1, so we will not repeat all the details.

First assume that the derivatives of f and g have the same number of zeros at
the origin. We wish to consider a branch of the function y = f ~'eg or, what is
the same thing, an analytic function w=4y(z) which satisfies the equation
J(w)—g(z) =0. The boundary of the set f(U) = g(U) consists of a finite number
of analytic arcs. Clearly one can find arcs J; and J, of T on which fand g, respec-
tively, have nonvanishing derivatives and which they map to the same analytic
arc. If we J; and z € J; satisfy f(w) = g(z), we may define ¢ locally at z so that
¥(z) =w and so that ¥ maps J, to J;. Following Baker, Deddens, and Ullman,
we may now use Schwarz reflection to show that ¢ is algebraic, and the max-
imum principle to show that f(0)=g(0) and that y(z) is always finite for
z #0, 0. With our assumption on the derivatives of f and g at the origin, we
obtain the same growth estimates as they do for y at 0 and, by reflection, oo.
Their arguments then show that y has the form y(z) = »z, some y € T. From the
definition of ¥, we obtain

JS(nz)=g(z), zeU.

The conclusion of the theorem therefore holds with A= f, n=m=1, and A=1.

For the case of general functions f and g, choose integers j and & so that f(z”)
and g(z*) have derivatives which vanish to the same order at z =0. These modi-
fied functions still satisfy the hypotheses of the theorem, so they satisfy the above
identity for some e T. Now it is an easy exercise using Theorem 1 to obtain the
conclusion of the theorem. I:I

REMARKS. (a) In this proof we used the hypotheses on f and g only to obtain
the arcs J; and J,. Thus the conclusion follows from the seemingly weaker
hypothesis that f and g map arcs of T to the same arc.

(b) It is natural to ask whether U can be replaced by other domains in this
result. As a starting point, we pose the

QUESTION 1. Let 2 be the interior of an ellipse centered at the origin. Suppose
f and g are entire, f(Q)=g(Q), and the derivatives of f and g have the same
order of zero at z=0. Is it necessarily the case that f(z) =g(+z)?

Suppose now that f and g are assumed to be analytic only on ‘U with
S(UW)=g(UW). The analogue of Theorem 2 would imply the existence of a
function 4 analytic on U and finite Blaschke products b; and b, with

(1) fEh°b1 gEh°b2.

We show that this generalization fails by using the function F along with a com-
panion function G.

We obtain G by a construction similar to that used in Section 2 for F. The only
difference is that we replace the Blaschke product B used there by B;(z) =z*. In
particular, the valence and range of G are the same as those of F, and G is ana-
lytic on U. The mapping properties of G may be inferred from Figure 5, which
corresponds to Figure 2 for F.
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Suppose the equations (1) were to hold with f=F and g = G. From Section 3
we know that b, could only be a Mdbius transformation of U, i.e., a 1-fold
Blaschke product. Since F and G have the same valence, b, would likewise be a
Mobius transformation. Consequently, F= Geoo for some Mdobius transforma-
tion . This, however, is not possible since F has a point which is a simple branch
point, while G has only a higher order branch point.

We end this section with a corollary to Theorem 2.

COROLLARY. Suppose that f and g are entire, and vy=v,. Then there is a uni-
modular constant \ with f(z)=g(\z) for zeC.

5. In this section we consider pairs of functions with identical, finite valence
functions; and we investigate two structural relationships which may hold between
them. Let f and g be bounded analytic functions on U. We say they have
property (P) if there are finite Blaschke products b, and b, having the same
number of zeros, and a bounded analytic function # with

(P) S=heb,  g=heb,.
We say f and g have property (Q) if there is a homeomorphism ¥ of T with
Q) Sfey=g, ae.onT.

We refer to ¢ as a distinguished homeomorphism if ¢ is of the form b;'eb,
where b; and b, are finite Blaschke products. Note that in order for this to define
a homeomorphism of T, it is necessary and sufficient that b3 and b, have the
same number of zeros. Also note that Mo6bius transformations of T are dis-
tinguished homeomorphisms.

The main result of this section is the following, which will be used when we
discuss Toeplitz operators.

THEOREM 3. Suppose [ and g are bounded analytic functions on U. Then
they have property (P) if and only if they have property (Q) for a distinguished
homeomorphism .
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Some observations will be helpful before beginning the proof. If b is a finite
Blaschke product, then W, will denote its image surface, that is, the surface to
which b ™! continues. If b has k zeros, W, will be a k-sheeted ramified covering of
U. It can be pictured as k& unit discs attached with appropriate branch points and
lying over ‘U. Suppose fis bounded and analytic on U and suppose {2 is an open
set in U on which a single valued branch of b ~!is specified. The corresponding
function element fob ~! defined on Q continues analytically to a Riemann surface
W with natural projection =: W — L. Since b is a covering map, and b ! has at
most algebraic singularities and k branches, ("W, =) will be a ramified covering of
U with m sheets, where m < k. If m =k, then ‘W will be conformally equivalent
to W,. If m<k, then ‘W is obtained from W, by identifying certain sheets on
which f has the same behavior. In particular, this will occur precisely when there
is an open set © in U on which distinct, single valued branches 8, and 8, of b~}
exist with

SeBi=f-f, on .

Finally, note that there is no difficulty defining expressions of the form fob !
on T. Since b is analytic and locally invertible in a neighborhood of T, one can
easily move into the interior of ‘U slightly; fob ~! merely represents the (multiple
valued) boundary function for the multiple valued function feb~! on U. In
Theorem 3, we specify that fand g be bounded only for convenience —we simply
needed a space in which each function has boundary values which determine it
uniquely. An analogous result holds, for instance, if f and g are meromorphic
functions of bounded characteristic on U.

Proof of Theorem 3. If f and g have property (P), then any branch of b !-b,
gives a homeomorphism ¢ on T for which (Q) holds.

For the converse, assume f and g have property (Q) with ¢ = b3 lob,. As we
remarked earlier, b; and b, will necessarily have the same number, ., of zeros. It
might appear at first that (P) holds for b, and b, equal to b; and b4, respectively.
This, however, is not the case in general; there may be a finite Blaschke product
bs so that (P) holds for products b, and b, which are related to b; and b, by

b3Eb5°b1, b45b5°b2.

The proof turns out to be rather subtle.
From (Q) we can readily obtain an open set £ in ‘U on which single valued
branches of b;! and b ! exist and satisfy

2 fobyl=gob; ! on Q.

Let W denote the surface to which these function elements continue, and sup-
pose it has m sheets. We consider first the case that m = k; the case m< k will
reduce to this.

When m = k, the surfaces ‘W, and ‘W, are conformally equivalent to ‘W, and
hence to one another. This implies that there is a Mdbius transformation o of U
with b;o0 = b,. Replacing f by foo, we may assume without loss of generality
that b3=bs=b in (2), giving
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(3) feb '=gob™! on WU.

This equation does not imply that f= g, since the branches of b ~! on the left and
right may differ. Let the branch of »~' on the right (resp. left) of (3) satisfy
b~ H Q) =Q, (resp. b~ 1(Q) =Q,). We obtain the following commutative diagram:

S(2) =g(2,)

\/

Consider the branch of b ~'eb mapping Q, to @, which is taken from the diagram.
In general, such a branch continues to a ramified covering of U. In our case,
however, it must be single valued on U. For, suppose otherwise: Then there is a
closed path p in U starting at a point of {2, so that along the closed path b(p) the
branch B; of ™! defined by 8,(Q) =9, continues to a branch (3, of b~ with
3,(2) = Q; # Q. From the diagram, fob ~'od is identically equal to g, and hence
is single valued along p. The branches fo83, and fo8, of fob ! are then identical
on Q. By our earlier remarks, this would imply that the surface for fob~' has
less than & sheets, contradicting our assumption on m. Therefore, the branch of
b ~lob taken from our diagram is single valued on U and consequently represents
a Mobius transformation y of U. Thus fey =g and we conclude that f and g
have property (P).

Suppose that m < k. First, consider “W as the surface for fobsy . Since m<k,
W is obtained from W;, by identifying certain sheets. In particular, we can find
a small open set A in U so that two distinct branches of b5 ', call them 8, and 85,
are single valued on A and have the property that

4) JoB1=fof3, on A,

Choosing A smaller, if necessary, we may assume f is univalent on A, =,(A)
and A, =3,(A) and that A;NA, = . We have the commuting diagram:

S(A)=f(42)

Chasing arrows, we obtain
(5) Slef=b;leb;s

as maps of A, onto A;. We now appeal to the theory of function pairs devel-
oped in [7]. To each analytic function « on U is associated a collection @, of
ordered pairs of self maps of U. These can be used to determine, among other
things, whether « results from a composition of other functions. In our situ-
ation, (5) implies that &,N{®,; contains a nontrivial function pair. By [7,
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Theorem 7], there is an analytic function b; on U with ®,N @, =@, and ([7,
Theorem 57)

6) S=fieb by=bsob;

for some functions f; and bs analytic on b;(U). By [7, Theorem 14), b, is an
inner function, implying that both b5 and b; must be finite Blaschke products.
Observe that the number of zeros of bs is m for the following reason:

J1obs = fioboblobs = fobs!

has a surface with m sheets, so the surface for b5 has at least m sheets. If it had
more, we would proceed as we just have to find a nontrivial finite Blaschke
product of which both f; and bs are functions. This would contradict the equality
®RrNPpy = @p,.

If we consider ‘W as the surface for gob; !, we obtain in the same manner finite
Blaschke products bg and b, and g; analytic on U with

(7) g=g1°h, by=bgob,.

As with bs, bg must have m zeros. For suitably chosen branches of the inverses
we now have

® Jiebs = foby'=gob = giobg .

Consequently, we are in the situation handled before, namely, fiebs ! and g, b¢!
continue to a surface with m sheets, while bs and bg have m zeros. Therefore, f;
and g, satisfy fiovy = g, for some Mobius transformation v of U. Replacing b, by
v~lob and f; by fioy in (6), we may assume without loss of generality that
Ji1=g;. Denoting this common function by A, we see that (6) and (7) imply
property (P). This completes the proof of Theorem 3. 1

The functions F and G constructed earlier show that this theorem fails if ¢ is
not required to be a distinguished homeomorphism. Although vy= v, property
(P) fails for F and G. We can show, however, that (Q) holds by choosing (as in
the proof of Theorem 2) a branch of F ~!-G mapping one arc of T to another.
The derivatives of F and G do not vanish on T, so analytic continuation yields a
mapping ¢ of T into T for which F-y = G. Since vp= vg, the argument principle
shows ¢ is a homeomorphism. By the theorem, y is not distinguished. Does it
have any special properties? Curiously enough, the answer is yes:  is the restric-
tion to T of an algebraic function, as are distinguished homeomorphisms. This is
a consequence of the fact that F and G are themselves algebraic. In particular,
note that each has a square root mapping U onto the disc {|z—1/16| <15/16}
with at most algebraic singularities in U. One easily verifies using a Schwarz
reflection that these roots are algebraic, implying the same about the functions
themselves. Indeed, G is seen to be rational, though F is not. In general, if
vr= v, then, as we saw explicitly in the case of F and G, the image surfaces for f
and g consist of the same pieces pasted together in different ways, resulting in
different branch structures. Can this difference always be accounted for by some
algebraic relationship, some algebraic “change of coordinates” y?
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QUESTION 2. If f and g are analytic on U with identical valence functions,
does there exist an algebraic homeomorphism of T with foy=g?

An affirmative answer may not seem so unlikely, in light of the well-known
fact that no matter how pathological is the simply connected region €, conformal
maps of U onto it can differ at most by composition with a Mébius transforma-
tion. Also, positive results on the following structural question would tend to
affirm Question 2.

QUESTION 3. Suppose f is analytic on U, with |f| <1. Does there exist a
constant k depending only on the valence function v;, an analytic function
w: U — U, and a k-fold Blaschke product b such that f= bow?

Recent results of A. Lyzzaik (private communication) suggest an affirmative
answer.

On the other hand, we conclude this section with an example showing that the
requirement that f and g be analytic across T in Question 2 cannot be omitted.
Functions 7; and I, will be obtained as Riemann mappings of U onto simply con-
nected Riemann surfaces ‘W, and “¥,. Both surfaces are constructed from the
pieces in Figure 6. For ‘W, and “W,, respectively, we make these identifications:

ASDEBS ES C,
ASDECSES B,

That is, for ‘W, we attach A to D along the arc «; D to B along the arc 3; etc.,
and likewise for W,. Each surface should be visualized as lying over the set Q of
Figure 7. Each is simply connected, and the natural projection maps to Q, denoted
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Figure 7

D1 W - Q and py: W, - Q, endow them with conformal structures. Choose
Riemann mappings /;: U — W, and I,: U — W, and define [, = p;of;: U — Q and
IzEpzc‘TZZ U - Q.

Since W, and ‘W, cover each point of Q the same number of times, /; and I,
have identical valence functions. Both can be shown to be continuous (in fact,
piecewise analytic) on T. However, we observe that there is no homeomorphism
¥ of T with I;ey =1,; for as one proceeds in a positive direction about T, the
values a, b, and c (see Figure 7) are taken in the order a, c, b, ¢ by I, but in the
order a,c,c,b by I,.

Additional examples might be helpful in understanding the valence questions
raised in this section. For instance, if f and g are rational and vy=v,, must
property (P) hold? Clearly property (P) implies v, = v,. Is the same true of (Q)?
Which homeomorphisms y can arise in (Q)?

6. In this section we discuss applications to Toeplitz operators. Denote by
L? the functions which are measurable and square integrable with respect to
Lebesgue measure on T; by H? C L?, the Hardy space consisting of those functions
whose negative Fourier coefficients vanish; and by P: L?> - H?, the orthogonal
projection. If ¢ is a bounded measurable function on T then the Toeplitz oper-
ator T,: H? > H? with symbol ¢ is defined by T,(h) = P(¢h). If ¢ is the boundary
function for a bounded analytic function on U, then Ty is an analytic Toeplitz
operator; whereas, if ¢ is the restriction to T of an entire or rational function,
then T, is an entire or rational Toeplitz operator, respectively.

First we consider questions of similarity, where compositions have frequently
played a role. For analytic Toeplitz operators, Theorem 3 adds condition (iv) to a
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result proven by Carl Cowen in [S]. Here, a function of finite valence is one
which assumes no value infinitely often.

THEOREM 4. Suppose f and g are bounded analytic functions of finite valence
on ‘W. The following are equivalent:
(1) Ty and T, are similar,
(ii)) Ty and T, are unitarily equivalent,
(iii) fand g have property (P), and
(iv) fand g have property (Q), with distinguished homeomorphism .

Apply this to our functions F and G. We have seen that property (P) fails, so
Tr and T; are not similar, even though they have identical valence functions.
They also illustrate another phenomenon. An analytic Toeplitz operator T, is
subnormal and has the corresponding Laurent operator L, as its minimal normal
dilation, where L, is defined on L?by L (k) = fh. In a private communication,
Warren Wogen pointed out the following: Since F and G are continuous on T
and take each value the same number of times there, Ly and Ls are unitarily
equivalent by the multiplicity theory for normal operators (see [1]). We conclude
that, though the subnormal operators Tr and T are not even similar, their min-
imal normal dilations Lr and L are unitarily equivalent.

In the study of similarity of Toeplitz operators, property (Q) may have some
advantages over (P) since it concerns only the boundary values of f and g and it
relates them directly. Observe, however, that the usefulness of (Q) depends to a
certain extent on analyticity. Though (P) and (Q) both make sense for essentially
bounded, measurable functions f and g on T, and (P) implies (Q) holds with a
distinguished homeomorphism , the converse fails. This can be shown with
simple examples using differences of characteristic functions. In the case of
rational functions, there is enough regularity for Theorem 3 to remain true (see
the comment immediately preceding its proof). Along with Theorem 1 of [5],
this implies: If f and g are rational and (Q) holds for a distinguished homeomor-
phism, then T; and T, are similar. The situation regarding the converse is not
clear. However, an example obtained by the methods we used earlier may pro-
vide insight.

We construct Fj in the same manner as F (see Section 2), only the curve v is
replaced by the curve v, the image of the circle C under z — z3, and the 4-fold
Blaschke product B is replaced by the 3-fold Blaschke product

b(z)=z*(2z-1)/(2—z), zeU.

Construct G likewise, using z* in place of b. The path «, consists of the three
nested loops shown in Figure 8. The analysis of the mapping properties of these
functions proceeds exactly as before. Their valence functions are identical, and
kr =1=kg,. Were property (P) to hold, F; and G, would necessarily be related
by Fjeo = Gy, for some M&bius transformation o of UW. This is not possible, since
F, has two simple branch points while G, has only a branch point of order 2.
From Theorem 4, we conclude that Tr, and Tg, are not similar.

One easily checks by Schwarz reflection that G, is rational while F) is alge-
braic. Their derivatives do not vanish on T and they map T one-to-one onto v,
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with the exception of the three points where v, crosses itself. The functions F;
and G, therefore provide a counterexample to a result of Doug Clark in [3].
Specifically, Theorem 5 of [3] fails if we let our G play the role of Clark’s func-
tion F and we let our F) play the role of his 7. Using his notation, the error in the
proof concerns the extension of F to the set Q with values in the image surface ®
of 7. As one can verify in our example, the branch structure of 7 may obstruct
this continuation.

It is instructive to observe what happens when such a continuation is possible:
To be precise, suppose F and 7 satisfy the hypotheses of [3], Case IV, and
suppose F extends to a map F* on some region @ € ‘U with values in ® and map-
ping 32 to dR. It is not difficult to see that if 7* is the lifting of the map 7 to ®,
then f=(7*) 'oF*is a single-valued analytic function mapping 2 to U and 9% to
T; that is, f is an inner function on the (possibly multiply-connected) region .
The hypotheses on F and 7 imply that T € 9Q. Defining y to be the restriction of
Sfto T, we have F= 7oy on T. Summarizing, we see that property (Q) holds for F
and 7, with a homeomorphism  which is the restriction to T of an inner function
on 2. This suggests a new class of homeomorphisms of T which may be useful in
the study of similarity of rational Toeplitz operators.

Lastly, we comment on commutants. The commutant {T4}’ of T, is the algebra
of operators on H? which commute with T,, and has been an object of con-
siderable study (sce, for example, [4]). Deddens and Wong posed several ques-
tions about commutants in [6]. In [2], Baker, Deddens, and Ullman were able to
give many affirmative answers for entire Toeplitz operators using Theorem 1.
They proved that when f is entire, {T,}’={T}’, where k=k,;. Thomson [8]
went further by showing that the answers are still affirmative when f is analytic
on U. Again, (T,}’={T,}, for some n-fold Blaschke product b. However,
Thomson’s work required different methods since it was not known whether
Theorem 1 could be generalized —in particular, whether n= k,. Our function F
(from Section 2) shows that the alternate methods of Thomson are necessary.
Indeed, one has
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(T} = (T} =(T,: he H™},

even though kp=2.

Lh
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