TENSOR PRODUCTS OF
REFLEXIVE SUBSPACE LATTICES

Alan Hopenwasser

Is the tensor product of two reflexive subspace lattices again reflexive? The
dual question, whether the tensor product of reflexive operator algebras is re-
flexive, has been the subject of much recent investigation. This note will address
the lattice question and the relationship between the two problems. Several spe-
cial cases in which the lattice question has an affirmative answer will be dis-
cussed. In particular, the answer is affirmative if the subspace lattices are the full
projection lattices of two injective von Neumann algebras.

Throughout this paper, all Hilbert spaces are separable and all projections are
orthogonal projections. For a set @ of bounded operators on JC and a set £ of
orthogonal projections, we use the standard notation, Lat @ and Alg £, to
denote the lattice of all projections left invariant by each operator in @ and the
algebra of all operators which leave invariant each projection in £. Lattices and
algebras which satisfy £ =Lat Alg £ and @ = Alg Lat @ are called reflexive.
Reflexive algebras form a subclass of the class of weakly closed algebras and
reflexive lattices form a subclass of the class of subspace lattices. (A subspace
lattice is a lattice of projections which contains 0 and 7 and which is closed in the
strong operator topology.) If a subspace lattice £ consists of mutually commut-
ing projections, it is called a commutative subspace lattice (CSL) and the cor-
responding algebra, Alg £, is called a CSL-algebra. By a result in [1], every
commutative subspace lattice is reflexive.

If @, and @, are two weakly closed algebras, @;® &, will denote the weakly
closed algebra generated by all elementary tensors A;&® A,, where 4; € ®;. When
needed, the algebra generated by the elementary tensors (the algebraic tensor
product) will be denoted by @, ®O®,. If £, and £, are subspace lattices,
£1®, £, will denote the smallest subspace lattice which contains all elementary
tensors P;®P,, where P;e £;.

The reflexivity of the tensor product of two reflexive algebras would be as-
sured if a stronger result, the algebra tensor product formula,

(ATPF) Alg L@ Alg £, = Alg(L£,®,£»),

were known to be true. Similarly, the analogous problem for reflexive lattices
would follow from a lattice tensor product formula,

(LTPF) Lat @, ®, Lat @, = Lat(®;® ®,).
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For self-adjoint reflexive algebras (i.e. von Neumann algebras) the ATPF is
known to be valid: it is just a reformulation of Tomita’s Tensor Product Com-
mutation Theorem. The non-self-adjoint case has been studied in a series of
papers [4, 6, 7, 8, 9, 10, 11] and the formula has been verified under fairly general
circumstances, at least for CSL-algebras. For example, if £, is a completely dis-
tributive CSL and £, is an arbitrary subspace lattice, then the ATPF is valid for
£ and £, [11]. (L is completely distributive if it satisfies distributive laws for
families of projections of arbitrary cardinality. For a CSL, it is shown in [12] that
£ is completely distributive if, and only if, the finite sums of rank-one operators
in Alg £ are dense in Alg £ in any of the following topologies: weak, strong,
ultraweak, ultrastrong.) Another example is obtained by taking for £, the sub-
space lattice join of a CSL which is generated by finitely many nests and the full
projection lattice of an injective von Neumann algebra which commutes with
each of the nests. Here again the ATPF is satisfied with arbitrary second factor [7].

The LTPF and the ATPF do not appear to be equivalent statements. In order
to elucidate the relationship between the two formulae, it is convenient to define
several different lattice tensor products. For that, in turn, we consider four types
of lattice join. Let £; and £, be two lattices of orthogonal projections. (Nor-
mally, £, and £, will be subspace lattices, but that is not necessary for the defini-
tions.) Then:

£,V, £, denotes the algebraic join: the smallest lattice containing both £, and

£2; '

£,V £, denotes the complete join: the smallest complete lattice containing

both £; and £,;

£V, £, denotes the subspace join: the smallest subspace lattice containing

both £; and £,; and

£V, £, denotes the reflexive join: the smallest reflexive lattice containing

both £; and £,.
If £, and £, are CSL’s which commute with each other, then

£1V(-£2=£1Vs £2=£1V,-£2.

This follows from two facts [1]: a lattice of commuting projections is complete if,
and only if, it is a subspace lattice and every CSL is reflexive. In general, the
various lattice joins are distinct and only the containments,

L1VeLrE LV LLEL IV, L£,EL,V, Ly,

are always valid. There is one other case of interest in which it is known that
LV £,=L,V, £,. This occurs when £, is a nest, £, is a reflexive, orthocom-
plemented lattice and £; and £, commute with each other [5].

On the other hand, it is easy to check that each of the four joins has the same
associated reflexive algebra. Indeed,

Alg £ NAlg £,=Alg(L,Vv,L,) =Alg(L,V.L£5)
= Alg(L,V; £2) = Alg(LV, £).
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From this, it follows immediately that
£,V, £,=Lat(Alg £,N Alg £,).

Let LRI={P®I|Pe £}. It isimmediate that if £ is a lattice, a complete lat-
tice, or a subspace lattice, then so is £& 7. We then define four tensor products:

LR L= (LRI V(IR L,), where a=a,c,s,r.
Using the elementary facts about joins which are stated above, we obtain
(*) LR £, S £,®, £,=Lat(Alg(L;®; L£,)) € Lat(Alg £, Alg £,).

Thus the LTPF is split by (*) into two separate problems:
(i) If £, and £, are reflexive lattices, does £, £, =LK, £,?
(ii) If £, and £, are reflexive lattices, does

Lat(Alg(£,®,£,)) = Lat(Alg £,® Alg £,)?

The answer to question (ii) is “yes” if the ATPF holds for £; and £,, so we
obtain:

(a) ATPF+£|®S£2=£1®,£2=> LTPF (foroBland £2)

For a “reverse” implication of this nature, we need to recall the definition of syn-
thetic from [1]: a reflexive lattice £ is synthetic if the only ultraweakly closed
algebra @ which satisfies Lat @ = £ and @GN QE* =L’ (the commutant of L) is
Alg £.

Now, suppose we know that £, and £, are reflexive lattices which satisfy the
LTPF and that £,&, £, is synthetic. Let

@=Alg £1®Alg oGz and £ =£|®r£2=£|®_g£2.

The equality of the two tensor products follows from the hypothesis that £, and
£, satisfy the LTPF. Actually, the LTPF yields more: we obtain Lat @ = £ from
it. We claim that QN @* = L£’. The containment RNGAE* < £’ is automatic any
time £ = Lat @. The reverse containment is

L£'=(L£,®;£,) = LI L)
=[Alg £,N (Alg £1)*]®[Alg £,N(Alg £,)*]
c [Alg £,@Alg £,]1N[(Alg £,)*® (Alg £,)*]
= [Alg £,QAlg £,]N[Alg £, ®Alg £,]* = RN Q*.

Now use the hypothesis that £;®), £, is synthetic to obtain the ATPF. Thus we
have

(b) LTPF+ £,&®, £, synthetic= ATPF (for £,and £,).

As mentioned earlier, the ATPF is always valid for von Neumann alge-
bras (Alg £, ® Alg £, = Alg(L£L;® L) is a trivial reformulation of M QM5 =
(M, QNT,)’). It is not known if the LTPF is valid for all von Neumann algebras.
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(We shall see below that it is valid for approximately finite dimensional algebras.)
It is easy to see that every reflexive, orthocomplemented lattice is synthetic.
Indeed, if £ is reflexive and orthocomplemented, then £ = Proj 9, the lattice
of all projections in I, for some von Neumann algebra 9. If @ is an ultra-
weakly closed algebra such that Lat @ = £ and GNQE*= £’ =M, then IM' =
GANQA*<S @< M. (The second containment uses the fact that £ is orthocomple-
mented.) Thus @ = M’ = Alg £ and £ is synthetic.

Since the ATPF is known for von Neumann algebras we may use (a) to re-
formulate the LTPF in the von Neumann algebra setting as follows:

Proj 91, ®, Proj M, = Proj (9, ® IM,).

Thus, while it is elementary to show that Proj 9, &®, Proj 91T, generates ;& M,
as a von Neumann algebra, the question of whether Proj 9U; ®, Proj M, is the
full projection lattice of 9N; @ N, is not at all obvious.

The following results describe several general situations in which the LTPF is
valid.

PROPOSITION 1. Let @, =Alg £, and @, = Alg £, be CSL-algebras (each
with £;=Lat Q;). Assume that one of the lattices is either finite width or com-
pletely distributive. Then

Lat(Alg £,®Alg £) = £,®; £,.

Proof. Since all commutative subspace lattices are reflexive [1], £,&®, L, =
L£1®,£,. By results in [7] and [11], the ATPF is satisfied for Alg £, and Alg £,.
Hence, by (a), the LTPF is satisfied. U

PROPOSITION 2. Let £ be an arbitrary reflexive lattice acting on a Hilbert
space X. Then
Lat(Alg LB(I)) =L R].

Proof. Fix a set of matrix units E;; for ®&(JC). Every operator T in
B(X)X®®(IC) may be written in a unique way as a matrix of operators with
entries in GB(X); we express this as T= %; ; T;;®Ej; (see [3], I, 2, 3.).

The containment £&® 7 < Lat(Alg LR ®B(IC)) is obvious. For the reverse, let
PeLat(Alg £Q®(IC)). Write P=3; ; P;;®E;;. For each pair q,r, IQE, €
Alg LR ®B(IC) and hence leaves P invariant. Compute:

(1®Eqr)P = (1®Eqr)( 2 st@Esj)

- 2P8f®Elll ES/ EP/[®E(/;
and

PURE,)P= ( s P,-_Y®E,-s)<1® E(,,.)( s P,_,-®E,_,-)

2 PIS‘PIJ®EISEI]I El/"" E Pl([PI}'®Elj‘

iy j, St

Since these two operators are equal, we obtain:
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(i) PyyPrj=P;jforalqg,r,j.

(ii) Py, P,j=0foralli, g, r, j withi#gq.
Since P is a projection, it is self-adjoint; hence P; = P;; for all /, j (and, in par-
ticular, each P;; is self-adjoint). Now, from (ii) we obtain, for i # j, 0=P;; P;; =
P};P;;. Thus P;;=0 for all i#j and P is a diagonal matrix. From (i) we get
P;;P;j=Pj; for all i, j. This immediately yields P;; = P;; for all /, j and P:=P;;
for all i. Let Q denote the common value P;;, so that we have P = Q® 1, where Q
is a projection. All that remains is to show that Qe £.

For any Ae Alg £, ARIe Alg LRORB(I). So AR leaves P=Q® I invar-
iant. Thus QAQ®I=AQ®I, from which we may conclude that QAQ = AQ,
for all A€ Alg £. Since L is reflexive, Qe £. O

In Propositions 3 and 4 we shall use the Arveson representation for commuta-
tative subspace lattices and Arveson’s description of Lat(@®& 7) for certain oper-
ator algebras @. (The reference for both these items, which are described briefly
below, is [1].)

Let X be a locally compact metric space, let < be a transitive and symmetric
relation (hereafter called an order) on X whose graph is a closed subset of X X X,
and let p be a finite Borel measure on X. If E is a Borel subset of X, P, will de-
note the corresponding orthogonal projection on L?(X, u); namely, the multipli-
cation operator associated with the characteristic function of E. A set E is in-
creasing if xe E and x <y imply y e E. Let £(X, <, u) = {Pr: E is an increasing
Borel set}. £(X, <, u) is a commutative subspace lattice and every CSL acting
on a separable Hilbert space is unitarily equivalent to one of the form £(X, <, u).

If £ is a commutative subspace lattice, then the family of ultraweakly closed
algebras for which Lat @ = £ and RN ®@* = £’ has a maximal and a minimal ele-
ment. The maximal element is, of course, Alg £. The minimal element, denoted
by @min, 1S described in detail in [1]. When £ =£(X, <,u), Q@mi, can also be
described as the smallest ultraweakly closed algebra @ which contains the L>-
multiplication algebra on L?(X, p) and for which Lat @ = £. When £ is syn-
thetic, we have Q@ ,;, = Alg £.

Let £ be a commutative subspace lattice. A projection of the form E=P—Q,
where P, Qe £, Q < Pis called an atom from £ if every projection in £ which is
not orthogonal to E contains E. The set of atoms from £ is an at most countable
family of mutually orthogonal projections; if 7 is the sum of all the atoms from
£ then £ is said to be fotally atomic. By results in [8], any totally atomic com-
mutative subspace lattice is synthetic.

With the help of some standard identifications, Lat(Q ;& /) can be described.
We shall assume that £ =L£(X, <, u) and that I acts on the Hilbert space JC.
L*(X, <,p)® 3 is identified with the set of square integrable weakly measurable
functions mapping X into JC. If 9 is the L™-multiplication algebra, (MR 7)’
can be identified with the multiplication operators associated with bounded
®(3C)-valued Borel functions defined on X. Further, Proj((M&®I7)’) =
Lat(M&®J7) can be identified with the projection valued Borel functions on X.
Finally, we will say that a projection valued function R on X is increasing if there is
a subset N € X with measure 0 so that for x, ye X\ N, x <y implies R(x) < R(»).
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If R is a projection valued function, let L denote the multiplication operator on
L*(X, p) ® 3C; namely, (LgxF)(x) = R(x)F(x), for all Fe L*(X,p)®3C. Lyisa
projection in ®(L*(X, 1) ® IC). Arveson has proven that Lat(Q,,;n&®7) is equal
to {Lg: R is an increasing projection valued Borel function}. In particular, when
£ is synthetic, this gives a description of Lat(Alg £L&X1).

Now suppose £ = L£(X, <,pn) and Lye Lat(®@in® 7). Let NS X be a Borel
set for which u(N) =0 and x, ye X\ N, x<y imply R(x) < R(y). Suppose Q is
an arbitrary projection in B(JC). Let Y={xe X\N:R{x} = Q}. Since R is a
Borel function, Y is a Borel subset of X. If xeY, ye X\N and y=x then
R(y) = R(x) = Q, whence ye Y. It is easy to check that Y differs by a null set (a
subset of AV, in fact) from an increasing Borel set. Thus Pye £(X, <, u). The
function xy(-)Q from X — Proj ®(J3C) is increasing, hence lies in Lat(Q;,j, ® 7).
(In fact, this function corresponds to the elementary tensor Py®Q.) Finally,
note that xy(:)Q < R(-), that is PyQQ < Lg.

PROPOSITION 3. Let £ be a totally atomic commutative subspace lattice act-
ing on a Hilbert space 3C and let ® =Proj B(X), where X is another Hilbert
space. Then

Lat(Alg £R1) = LR, P.

Proof. Let & ={E|, E>, ...} be the set of atoms from £. For each Pe £ and
E, € &, either PE,, =0 or E, < P. As a consequence, for any pair E,, E,, in & we
have that either every operator of the form E, TE,, € Alg £ or that no non-zero
operator of the form E, TE,, lies in Alg £. If E,TE,, € Alg £ for all Te B(3C),
write E, << E,,,. For each n, let X,, be a set whose cardinality is equal to dim £E,,,
so chosen that X, NX,,= & whenever n# m. Let X=U X,,. Then X is a count-
able set, to which we give the discrete topology. Let u be a finite measure whose
support is all of X. Finally, put an order on X as follows: we shall say x <y in
two situations: when both x; y e X, for some n and when xe X,, ye X,,, and
E, << E,. It is easy to check that £ is unitarily equivalent to the subspace lattice
L£(X, =, n). Without loss of generality, then, we assume £ = £(X, <, u).

Since £&®,® < Lat(Alg £X®IT) is obvious, we only have to prove the reverse
containment. We use the fact that £ is synthetic (since it is totally atomic) and
the description of Lat(Alg £®/7) given above. Let L e Lat(Alg £&®[1), where
R: X — Proj 8(X) is an increasing projection valued function defined on X.
Note that R is constant on each set X,,. (If x, ye X,, then both x<y and y <x.)
Let R,, be the common value of R on X,, and let Y,, = {xe X: R(x) = R,}. Then
Y, is an increasing set. Let Q,: X — Proj ®(X) be given by Q,(x) = xv,(x)R,,.
Since Lo, corresponds to Py,®R,, Lo, € £®;@®. Finally, for each x let Q(x) =
V, Ou(x). Then Q is increasing and Lo =V, Lg,. It is easy to check that L, =
Lg; thus Lpe L& ®. ]

REMARKS. (1) We have actually shown that, when £ is totally atomic, each
projection in LX,® = Lat(Alg £&®1T7) is a (countable) join of elementary ten-
sors in £ Q) P.

(2) The technique employed in the proof of Proposition 3 does not work for
all synthetic lattices. Consider the following example. Let X =[0, 1], let u be
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Lebesgue measure, and let < be the trivial order (in which x is related to y if, and
only if, x equals y). Then £ = £(X, <, n) is just the lattice of all projections in
the L*-multiplication algebra, a synthetic lattice. Now let R: X — B(C?) be the
projection valued function given by:

, TX cos TX sin wX
Cos“ —— ——sin——
2 2 2
R(x) =
X X 5 WX
COS — sin — sin“ —
2 2 2

Since every Borel subset of X is increasing, R is an increasing function and hence
lies in Lat(Alg £®1I). But, for any projection Qe B(C?), Y= {xe X: R(x) = O}
is a null set. Thus we cannot write Lg as a join of elementary tensors Py & Q.
All the same, it is true in this example that Lat(Alg £&71) = LR F. We will
prove below that the LTPF holds for any two approximately finite dimensional
von Neumann algebras. Whenever £ is an orthocomplemented commutative
subspace lattice, Alg £ is a von Neumann algebra with abelian commutant and
so is, in particular, approximately finite dimensional. Of course, B(JC) is also
approximately finite dimensional.

(3) The LTPF may fail if one of the algebras is not reflexive. Suppose that £ is
a commutative subspace lattice which is not synthetic. Then Q;, # Alg £. From
Lemma 2 in [2] or the remarks on page 471 in [1], it follows that Lat(Q,,;, ®1) #
Lat(Alg £L&®T7). Therefore:

Lat Gpip ®; ® = LR, ® < Lat(Alg L&) G Lat (Qpin ®1),
and the LTPF fails for @, and B(3C).

PROPOSITION 4. Let £ be a nest and let ® = ®&(X). Then Lat(Alg Lx )=
L®,®

Proof. The technique used in Proposition 3 will work in this case also. In the
interest of clarity, we shall ignore exceptional null sets in the argument which
follows. Write £ = £(X, <, u), where, by Corollary 1 of Theorem 1.2.2 of [1],
we may assume that < is a linear ordering on X. Let R: X —» @ be an arbitrary
increasing projection valued Borel function. (So Ly is a typical element of
Lat(Alg £&®1I). Note that any nest is synthetic.)

Let 9T be the closure in the strong operator topology of the range of R.
Observe that 91 is a nest. Let & € 9 be a countable subset of 9T with the property
that each element of 91 is a join of elements of &. Write 6 ={Q;, O,,...}. For
each Q,, let Y, ={xe X: R(x) = Q,} and let S, be given by S,(x) = xy,(x)O,.
As before, §, is increasing for all n» and each Ls,=Py,®Q,€ £L&;®. Let
S(x) =V, S,(x), for all x. Then S is an increasing Borel function and it is easy to
check that S(x) = R(x), for all x. Since Lg=V, Lg,, this shows that Lpe £L&;®
Thus Lat(Alg £&7) = L&, ®. (]

We now turn to the main result of this paper, the verification of the LTPF in
the form Proj M&;Proj 91 = Proj(M® ) for approximately finite dimen-
sional von Neumann algebras. A von Neumann algebra is approximately finite
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dimensional if it is the weak closure of an ascending union of finite dimensional
von Neumann algebras. It is known that this condition is equivalent to injectivity
and to semi-discreteness, but here it is the presence of the finite dimensional sub-
algebras which is relevant. The proof will proceed in several steps; the last step,
the reduction from the approximately finite dimensional case to the finite dimen-
sional case, follows an argument suggested by E. Stgrmer, to whom the author
wishes to express his thanks.

In the first, and crucial, step we prove Proj M, ®,Proj M,,=Proj(M,Q®M,,)
for full matrix algebras. In particular, for matrix algebras the algebraic, the com-
plete, the subspace and the reflexive tensor products all coincide.

M, acts on the Hilbert space C", M, acts on C” and M, ®M,, acts on
C'"®C™=C", It will be convenient to write a vector xe C"®C" as an n X m
matrix

Xir ot Xim

where x;; is the coefficient of the basis vector e¢;®e;. If vy, ..., vy are vectors in
C"®C™, then [vy, ..., v;] will denote the orthogonal projection onto the linear
span of {vy,...,v,}. If a vector xe C"&®C"™ has the special form

MNZy o ViZm
x=| Pl
Ynly *t Ynlnm

then the one-dimensional projection [x] is an elementary tensor product of two
one-dimensional projections in M,, and M,,; namely, [x] =[y]&®[z], where y =
1, ..., ¥n) and z=(zy, ..., 2;»). In particular, if x written as a matrix as above
has only one non-zero column or only one non-zero row then [x] is an ele-
mentary tensor (in fact, one of the form [y]®[e;] or [e;]®[z]). We shall use
this terminology and these elementary facts in the following proposition.

PROPOSITION 5. Proj M, ®,Proj M,,= Proj(M, ®M,,).

Proof. As usual, we need only prove that each projection in M, ® M,, actually
lies in Proj M, ®,Proj M,,. Since every projection in M, ®M,, is a finite join
of rank-one projections, it suffices to prove that every rank-one projection in
M, @M, lies in Proj M,,®,Proj M,,.

Let $={xe C"®C": [x] € Proj M,®,Proj M,,}. It will be sufficient to prove
that $ =C"®C'. It is evident that 0 € 8§ and, from the remarks above, if x has
only one non-zero row or column then xe 8. The following induction step
plus a routine induction argument yields § =C"&®C"". Let pe(2,3,...,n} and
gef{l,...,m}. Assume 8 contains every vector whose non-zero entries are con-
fined to the first p—1 rows and the first g —1 entries of the pth row. We shall
prove that § contains any vector whose non-zero entries are confined to the first
p—1rows and the first g entries in the pth row.
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Let
rx” e xlq ces xln—
¥ = xpl qu 0 0
1o 0 0 0|’
~() R I O_

where x,,# 0. As soon as we show that x € §, the proposition is proven.

At first, assume x;, # 0 for some i < p. Consider four vectors, which we de-
scribe as follows:

a: the pqg entry is 0, all other entries are the same as the entries in x.

b: all entries are 0 except for the pq entry, which is x,,.

c: all entries in the gth column are zero; all other entries are the same as in x.
d: all entries in the gth column are the same as in x; all other entries are 0.
The induction hypothesis guarantees that a € § and c € 8. Since b and d each_pos-
sess only one non-zero column, they too lie in 8. Note that the linear span of
{a, b} differs from the linear span of {c, d}. (For example, b ¢ sp(c, d} —this uses
the assumption that some x;,#0, i< p.) Also, x is an element of both linear
spans. Consequently, [x] = ([a]V[b])A([c]V[d]). Since [a], [b], [c] and [d]

all lie in Proj M,,®,Proj M, so does [x]. Thus x e 8.

If we only wanted to prove Proj M, ®,Proj M,,=Proj(M, ®M,,), then the
proof would be virtually complete. For in the case in which x;, =0 for i =
1,...,p—1, let y, be the vector whose entries are the same as in x except for the
iq location, where the entry in y, is 1/n. Then y,, — x and so [y,] — [x]. Since
[v,] € Proj M,,&,Proj M, by the considerations above, we obtain

[x] € Proj M,®Proj M,,.

We now complete the proof for the algebraic tensor product. If ¢ > 1 and one
of the entries x,; # 0, 1 < j < g, then we can proceed much as above. Indeed, let a
and b be the same vectors as described above; for ¢, take instead the vector
whose entries in the pth row are zero and whose other entries are the same as in
x; and for d take the vector whose entries in the pth row are the same as in x and
whose other entries are all 0. Once again, a, b,c,d e 8 and

[x]=([a]lVI[bD) A([c]VId]),

whence x € 8 also.

This leaves the case in which x,,, is the only non-zero entry in the pth row and
in the gth column. If all other x;; =0 then [x] is an elementary tensor and x € 8.
So fix i, j with 1 =i < p and j # g and assume that x;; # 0.

First suppose that there are no other non-zero entries in x and that j > ¢q. To

simplify notation, the 2 X2 matrix [_':;‘(’] ,‘,’;fj ] will denote the n X m matrix with
at most 4 non-zero entries, located in the iq, ij, pq, and pj places. Observe that
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both [ %] and [ ° ° ] liein 8. Indeed, if

_lx,'j _OO _10 _Ox,-j
o O e P A P R P

then each of these vectors lies in 8 and the orthogonal projection determined by
[(1, xl"f] is equal to ([a] V[b]) A([c]V[d]). The vector [x;; _01] is handled in the

same way. With these two special vectors in 8, we obtain [x?)q Xij ] € 8 by letting

a= 0 Xij ’ b= 0 O . o= 1 Xij and d= —1 0 .
0 0 Xpg O 0 1 Xpg —1

In case j < g we do the same sort of thing to obtain | _\_gq] €Ss.

All that remains is the case in which there are additional non-zero entries in x
(though not in the pth row or gth column). Here, take ¢ and b as we did origi-
nally, that is a is the same as x except for 0 in the pg entry and b has x,,, as its
only non-zero entry. Using the convention of the preceding paragraph, let ¢ =

[ ng N ] or c= [xéf xgq] , as appropriate. Let d be the vector whose ij and pg

entries are 0 and whose other entries are the same as in x. Then once again
a,b,c,de 8 and [x]=({alVI[b) A(c]lVId]), whence x € 8. This, at last, com-
pletes the proof. [l

COROLLARY. If M and I are *-isomorphic to M,, and M, then
Proj M ®,Proj 9 = Proj (MR ).

Proof. M@ N is *-isomorphic to M, ®M,, and the *-isomorphism preserves
the lattice operations. ]

PROPOSITION 6. Let {NM;};c; and [N} ; be two families of von Neumann al-
gebras and let M= 3@ M; and N =3I ;. Assume that Proj M; ®;Proj I ;=
Proj(9MN; ® 9N ;) for each pair i, j. Then Proj M&,Proj N = Proj(MRQ N).

Proof. For each i and j let 3C; and J; be the Hilbert spaces on which 9; and
91; act and let 3= X ® 3¢;; K =3® X;. Let E; and F; be the projections of JC
and X onto JC; and X ;. Each E; lies in the center of 9 and each £, in the center
of 9. Let Pe Proj(M&® ). Then

P= E (E;QF;)P(E;®F;) =V (E;QF;)P(E;®F}).
l,j ”J
For each pair i, j, (E;QF;)P(E;®F;) |s;ox; lies in Proj(IM;®N;), hence in
Proj 9M; ®,Proj 9N ;. Thus (E;QF;)P(E;QF;) € Proj M&,Proj N, which in
turn implies that P € Proj 9N &, Proj 9.

COROLLARY. If M and N are finite dimensional von Neumann algebras then
Proj M®,Proj 9 = Proj(M& IN).

THEOREM. Let 9 and 91 be two approximately finite dimensional von Neu-
mann algebras. Then Proj M ®,Proj 91 = Proj (M AN ).
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Proof. Let M,; and I; be two nested sequences of finite dimensional sub-
von Neumann algebras of I and 9T such that U; 9; and U; 9¢; are strongly
dense in N and 9T. Then the algebraic tensor product (U; ;) © (U; 9;) is
strongly dense in the von Neumann algebra & 9T. Note that if

- §aone(ym)o(y)

then, since the 91; and 9; are nested, Te M; QI ; for some 4, j.

Let Pe Proj(M® ). As usual, we need to show that P € Proj M &, Proj .
By the Kaplansky density theorem, there is a net 7, of positive contractions in
(U; M) ®(U; 9L;) such that 7, — P in the strong operator topology.

For each », let P, be the spectral projection for 7, associated with the inter-
val [1/2,1]; that is P, = xji2,1;(T,). We claim that P, — P in the strong oper-
ator topology. We freely use the following facts, valid for all v: T, P, =P, T,;
|7, P, x| =%|P,x|, for all vectors x; and |T,(/—P,)x|=3|(I—P,)x], for all
vectors x.

First suppose x € P*. Then we have T,x - Px =0. Since 5 |P, x| < |T, P, x| <
|7, x|, we obtain P,x — 0 also.

Now suppose x € P. So, we have T,x —» Px =x. Observe that

IT,x1* = T, P,x|*+ | T,( = P)x|* < | P, x|*+ 5[ (1 = P,) x|
= |P, x>+ (1= P)x|* = 31U = P,)x|* = |x|* = 3| = P,)x|* < |x|*.

Since |7, x|*— |x[? we have |(/—P,)x|*—0. Thus P,x - x.
Now, if x is arbitrary, simply write x = Px+ P*x. Then

P,x=P,Px+ P;}'Px— Px+0= Px.

Thus P, — P strongly, as desired.

Since each 7, lies in some M;®I;, we also have P,e M; QI ;, some i, j.
Thus P, e Proj(IM; ®91;). But N; and N; are finite dimensional von Neumann
algebras, so

P, e Proj M,;®,Proj 9 ; < Proj MK, Proj .
Thus P € Proj M&,Proj 9 and the proof is complete. ]
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