DECOMPOSITIONS AND APPROXIMATE FIBRATIONS

R. J. Daverman and L. S. Husch

1. Introduction. In this paper we investigate upper semi-continuous ( =u.s.c.)
decompositions G of manifolds M (without boundary) into continua having the
shape of closed manifolds of some fixed dimension £>0. The fundamental
problem considered is the extent to which the decomposition map p: M > M/G is
an approximate fibration. Coram and Duvall [3] initiated this type of investiga-
tion when they considered decompositions of the 3-sphere into 1-spheres satis-
fying several additional restrictions, including that the decomposition space be
the 2-sphere, and they showed that the decomposition map was an approximate
fibration over the complement of at most two points. Our main result in §2
(Theorem 2.10) is that if G is an u.s.c. decomposition of M as above and if the
decomposition space is finite dimensional, then there exists a dense open subset
U<SM/G such that the restriction p |p‘1(U):p"(U) — U is an approximate
fibration. From §3, it follows that U is a generalized manifold.

Daverman [5] showed that if the dimension of M is k+1 then M/G is a
1-dimensional manifold, and if each element of G is a locally flat submanifold of
M then p is an approximate fibration, provided M/G has empty boundary. He
also constructed examples to show that either local flatness or some condition on
the relationship between the fundamental groups of M and the elements of G is
needed in order to show that p is an approximate fibration. Supposing that each
element of G has the shape of a closed k-dimensional manifold, and that M/ is,
homeomorphic to R!, then we show (Theorem 5.15) that the inclusion of each
element of G into M is a homology equivalence; this generalizes Lemma 6.2 of
[5]. Furthermore, if the inclusion-induced 7,(g) — = (M) is an isomorphism for
each g€ @G and the integral group ring of w;(M) is Noetherian, then we show
(Theorem 5.16) that p is an approximate fibration.

The value of knowing that p is an approximate fibration, for example in the
latter case, is that p can be approximated by locally trivial bundle maps and
hence M can be expressed as a product N X R, where N is a closed k-manifold
which has the shape of the elements of G.

We refer the reader to [2] for the definition of approximate fibrations and
their properties. We use the Mardesic-Segal approach to shape theory [11],
although we use Borsuk’s terminology of FANR ( = fundamental absolute neigh-
borhood retract) rather than Mardesic-Segal’s term ASNR (= absolute shape
neighborhood retract). A fundamental property of FANR’s which we often em-
ploy in this paper is that if {U;};Z, is a nested sequence of neighborhoods of an
FANR X in an ANR such that M;Z; U; =X, then the induced inverse systems of
homology and homotopy groups, { H, (U;)}iZ~, and {«. (U;)};Z;, are stable; that
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is, there exist subsequences—say, {H;(Uj,))) of {H;(U;)}, with bonding maps
Tn: Hj(Uj(n+1)) 2 H;j(Ujny)—such that 7, |image 7,.,:image 7,,, —image 7,,
and the natural homomorphisms lim;{ H; (U;)} — image 7, are isomorphisms for
each n. This constitutes a practical working definition; it is a direct consequence
of the more usual, equivalent formulation, in which a progroup G is said to be
stable if G is isomorphic in the category of progroups to a group.

The following was shown in [8, Theorem 6].

PROPOSITION 1.1. Suppose that we have a commutative diagram of groups
and homomorphisms

such that for i, j< —1, A; j=B; j=C; j=trivial group, the-rows are exact and
the columns corresponding to the A; ;’s and the C; ;’s are stable. Then the
columns corresponding to the B, ;’s are also stable and the induced sequence
- = lim{A; ;} 2> lim{B; ;} > Im{C; ;} = lim{A4;_, ;] >
J J J J

Is exact.

H, (X;®) will denote singular homology with local coefficients [15, p. 223;
16]. If X and {U;};~, are as above, then H, (X; ®)=lim;{H, (U;; B)} where
® denotes, for each i, the restriction of & to U;. If x€ X, then 7 (X,x)=
lim;{m (U;, x)}.

2. Approximate fibrations. Let M be a connected n-dimensional manifold
without boundary and let G be a u.s.c. decomposition of M into continua which
have the shape of closed k-dimensional manifolds. Let p: M —>M/G be the
natural decomposition map. Given JCSG, we use the notation p(JC) for
{p(h)|hedC}. Let B be a bundle of local coefficients on M.

For each g€ G let N(g) be a closed connected k-dimensional manifold which
has the shape of g. Since N(g) is an ANR, g is an FANR [11]. Hence, there exists
a sequence of open connected saturated neighborhoods of gin M, {U(g,i)}, and
continuous maps of: N(g) = U(g, i) and 8§ : U(g,i) > N(g) such that

(i) U(g,i)2U(g,i+1) for each i,

(i) NiZ, U(g,i)=g,

(iii) the inclusion pf: U(g,i+1) = U(g, i) is homotopic to afBf, ,, and

(iv) Bfaf is homotopic to the identity on N(g).
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Let pé: Hi(U(g,i+1); B)—>H;(U(g,i); B) denote the homomorphism in-
duced by pf. To simplify notation, we have used 8, rather than & |U(g,i+1),
to denote the restriction of @ to U(g,i+1). As mentioned in the introduction,
we have the following.

PROPOSITION 2.1. The inverse system {H;(U(g,i); 8)} is stable and the natu-
ral homomorphism k§ : [—7j(g; ®)=1lim H;(U(g,i); B)} = H;(U(g,1); B) is an iso-
morphism onto image pf,. Furthermore, af,: Hi(N(g); of*®) > H;(U(g,i); B)
is also an isomorphism onto image pf,.

If we choose base points in g and N(g), then we may assume that all
the above maps and homotopies are base point preserving [10]. If we let
péowi(U(g,i+1)) > 7;(U(g,i)) denote the homomorphism induced by pf,
then we have the following.

PROPOSITION 2.2. Proposition 2.1 remains valid if we replace homology
groups by homotopy groups.

Let h€ G such that h S U(g, r) for some r>1 and choose s such that U(h,s) <
U(g,r). Let i be the latter inclusion and let 7(g, #) =88ial: N(h) > N(g). Note
that 7(g, #) is independent of r and s; that is, if i: U(h,u) S U(g,v), then ,B;giash
is homotopic to B&ia}.

PROPOSITION 2.3. If g,h,k€Q such that U(k,t)SU(h,s+1)SU(h,s)S
U(g,r), then 7(g, k) is homotopic to the composition (g, h)°7(h, k).

Proof. Consider the homotopy commutative diagram

U(g,r)2U(h,s)2U((h,s+1)2U(k, 1)

Be \ /Bs”+1 [
7(g, h) T7(h, k)

N(g) «—————N(h) =——N(k). O

PROPOSITION 2.4. For all g€QG, 7(g, g) is homotopic to the identity.

Let 7(g,h)s: I?j(h; ®) -—>Flj(g; ®) be the composition

Kh

Hj(h; ®)—— H;(U(h,s); B)—2~H;(U(g, 1); )
g

g -1
adind image Mf_.l*_(xr_—l)>Hj(g; (B)

PROPOSITION 2.5. The following diagram is commutative:
7(8, 1)«

H;(h; ®) Hi(g;®)
()7 lox [ l ()T lekb s
f@(N(h);aﬁ"Ga)L(g’—mf» H;i(N(g); 2. ®).

Let 8={ge€ G| for each neighborhood U of g in M there exists A€ G such that
h< U and 7(g, h) is not a homotopy equivalence}.
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PROPOSITION 2.6. p(8) is a closed nowhere dense subset of M/G.

Proof. Let g€G such that p(g)€cl(p(8)), but suppose that g 8. Hence
there exists a neighborhood U of g such that for all h€eGand hS U, 7(g,h)isa
homotopy equivalence. Choose r such that U(g,r)<S U, and choose #€ S8 such
that, for some s, U(h,s)<S U(g,r). By definition, there exists k€ g such that
kS U(h,s+1) but 7(h,k) is not a homotopy equivalence. By construction,
7(g, h) and 7(g, k) are homotopy equivalences. It follows from Proposition 2.3
that 7(A4, k) is a homotopy equivalence. This contradiction implies that p(8) is
closed in M/G.

Now suppose that U=int p(8)# @. Let g,€G such that g,Sp~'(U). In the
intersection p ~/(U)N U(g,, 2) find g, € G such that U(g,, r») cp {(U)YNU(g,2)
and 7(g;, g;) is not a homotopy equivalence. Inductively, find g;,, ;€ G such that
U(gis1,riz1) €U(gi,ri+1) and 7(g;, gi+1) is not a homotopy equivalence. With-
out loss of generality we may suppose that N>, U(g;,r;)=g€G.

Choose i and s such that U(g,2)2U(g;,r;) and U(g;+1,ri+1+1)2U(g,s). By
Propositions 2.3 and 2.4, the composition

7=7(8,8i)°7(&i &i+1)°T(&i+1,8&)

is homotopic to the identity on N(g).

If N(g) is orientable, then H;(N(g)) =Z using integer coefficients; it follows
that H,(N(g;)) and H;(N(g;+,)) are non-trivial. Hence N(g;) and N(g;,) are
also orientable. Since 7(g,g;)°7(gi,&i+1)°7(gi+1,g) induces the identity on
H;(N(g)), each of (g, g;), 7(gi,gi+1) and 7(g; 4, g) induces isomorphisms on
the kth homology. —

Now assume that N(g) is non-orientable and let ¢: N(g) >N(g) be the
orientable double covering. If N(g;) were orientable, then 7(g, g;) could be lifted
to NTg/') and the homomorphism of fundamental groups induced by 7(g, g;)
would not be onto, which would give us a contradiction. Similarly, N(g;;,) is
non-orientable. —

We next claim that the pull-back of ¢ by 7(g,g;), ¢:: N(g;) > N(gi), is the
orientation double covering of N(g;). Consider the various pull-backs

—— T S~ T [y, T ~——
N(g)~——— N(g;)) =—=—N(gi+1) ~——N(g)

s | 5 | o | 5

N(g)+=——N(gi)+——N(gi+1) = N(g).

Since 73°7,°7; iIs homotopic to the identity on NTé), we can use the argument
from above to show that NE) is orientable. Hence, ¢, is the orientation double

covering. Similarly, ¢,: N/(?:l) —>N(g;;+) is the orientation double covering.
Note that we have used the fact that since 7 is homotopic to the identity, ¢; is
equivalent to ¢.

Let Z' be the coefficient bundle of twisted integers on N(g). From above, it
follows that the pull-backs 7(g,g;) *Z' and (7(g,g;)°7(gi,gi+1)) *Z' are the
coefficient bundles of twisted integers on N(g;) and N(g; ) respectively. Hence,
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if we use these coefficients, Hy (N(g)) =Z and each of 7(g, g;), 7(gi,&i+1), and
7(&i+1, &) induces isomorphisms on the kth homology.

Therefore, in either case (N(g) orientable or non-orientable), each of 7(g, g;),
7(8i, & +1), and 7(g; 41, &) is a degree one map.

Since 7(g;41,g) is degree one, the induced homomorphism of fundamental
groups w1 (N(g)) = m;(N(g;+,)) is onto, and therefore, since 7 is homotopic to
the identity, is an isomorphism. It then easily follows that both 7(g;, gi;) and
7(g, g;) also induce isomorphisms on fundamental groups.

Let A be the integral group ring of these groups. If N(g) is orientable let
us now use A as a coefficient bundle for homology, and if N(g) is non-orientable
let us use AQZ' as a coefficient bundle [15, p. 223]. By [15, Lemma 2.1], the
degree one maps 7(g, g;), 7(&i, & +1), and 7(g; 4, &) induce epimorphisms in ali
homology groups. Again, using the fact that 7 is homotopic to the identity, one
can show that 7(g;;,&), 7(&i, & +1), and then 7(g, g;) induce isomorphisms of
all homology groups. With our choice of coefficients, the Whitehead theorem
[17, Theorem 1] attests that the induced maps on the universal coverings of
N(g), N(gi), and N(g;,) are homotopy equivalences. It then follows that in
particular 7(g;, g;,1) is a homotopy equivalence, and we have a contradiction.
Therefore p(8) is nowhere dense in M/G, and the proof of Proposition 2.6 is
completed. O

Dydak and Segal [6] have introduced the following definition. Amap f: X—>Y
is homology r-stable if, given y €Y and a neighborhood U of y in Y, there exists
a neighborhood V of y contained in U such that for all z€ V:

(a) the natural homomorphism H;(f~'(z)) = H;(f~"(V)) is a monomor-

phism for all i <r, and

(b) the image of H;(f~'(V))—>H;(f~"(U)) is equal to the image of

Hi(f' () = H;(f~'(U)) for all i<r.

Here all homology groups have integral coefficients and H;(f~!(z))=
ljr_n{Hi(f”'(W)) | W is a neighborhood of z in Y and the bonding maps are
induced by inclusions }. We have the following result from Dydak and Segal [6,
cf. Corollary 4.9].

THEOREM 2.7. Let f: X =Y be a closed surjection of metrizable spaces such
that XELC™ !, Y is complete, f is homology r-stable, and for each y€Y,
S7Y(») is an FANR. Then YELC™ .

PROPOSITION 2.8. p(G—8)ELC" foreachr.

Proof. By the previous theorem, it suffices to show that p|p~ ' (p(S—38)) is
homology r-stable for each r. This follows directly from the definitions; how-
ever, for completeness we include the proof. Suppose U is a neighborhood of
p(g)in p(G—S8) for some g€ G —S8. Let V be a neighborhood of p(g) such that
p'(V)SU(g,s+1)SU(g,s)Sp~ ' (U), for some s for which all h€C with
h<U(g,s) give rise to a homotopy equivalence 7(g, 4). Choose ¢ such that
Ug,)sp™ (V).

From Proposition 2.1,
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g g g |3 .3 3
B ps_ix ... puf | image pé_ |, : image pf, . — image pé,

is an isomorphism. It follows that the image Hj(p“(V)) —H;(U(g,s)) is pre-
cisely image uf,. By Proposition 2.1, the natural homomorphism H;(g)—
H;(U(g,s)) and o, : H;(N(g)) = H;(U(g,s)) are isomorphisms onto image p&,.

Let #€G such that S p~ ! (V); choose v such that U(h,v)Sp~ (V). Con-
sider the commutative diagram

. , )«
H;(N(h)) 7{g. ) H;(N(2))
Oll/}* Bg+1* ad,
1
H;j(U(h,v)) hi(p~'(V))——H;(U(g,s+1))— H;(U(g, s))
K'}} r 7\.'(1’,'
H;(h)

where all unnamed homomorphisms and A are induced by inclusion. By Proposi-
tion 2.1, «/! and o/, are isomorphisms onto image u”,. Since 7(g, /), is an iso-
morphism, A |image a,f’,,, is one-to-one; hence k! is one-to-one and we have
shown (a) of the definition of homology r-stable.

To see (b), note that by using the above commutative diagram, the image of
b'!j(h) in H;(U(g,s)) is image(ab.°7(g, h)) =image ¥, which (from above) is
the image oij(p‘l(V)) in H;(U(g,s)). O

Note that if, in the definition of homology r-stable, we replace the homology
groups by homotopy groups, then we have the definition of an r-movable map
given by Coram and Duvall in [4]. Using an argument similar to that given in the
proof of Proposition 2.8, we have the following.

PROPOSITION 2.9. p| p Y (p(Q —8)) is an r-movable map for each r.

THEOREM 2.10. Suppose M is a connected n-manifold without boundary,
G is a u.s.c. decomposition of M into continua having the shape of closed
connected k-manifolds such that M/G is finite dimensional, and p: M —>M/G
is the natural map. Then there exists a dense open subset USM/G such that
p|lp WU): p~I(U) > U is an approximate fibration.

Proof. Let U=p(G —38). Since M/G is finite dimensional, it follows from
Proposition 2.8 and [1, p. 124] that U is an ANR. By Proposition 2.9, p Ip"( U)
is an r-movable map for all r and the conclusion follows from [4, Corollary
3.4]. ]

As mentioned in the introduction, examples of such decompositions G, for
which p: M —> M/G is not an approximate fibration over all of M/G, can be
found in [5, §5]. Coram and Duvall [4, p. 240] have given examples with the
same effect, involving decompositions G of M=S5*"*!into k-spheres such that
M/G~=S%*! We want to exhibit an elementary example: if N is any closed, con-
nected k-manifold not homotopy equivalent to S*, and G is the decomposition
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of M=NxR**!into Nx {0} and the spheres {g} xrS*, gEN, and r>0, then
p: M- M/G cannot be an approximate fibration everywhere, because the fibers
do not all have the same shape.

3. Approximate fibrations and generalized manifolds. The main result of this
section is the following theorem.

THEOREM 3.1. Let p: M— B be a proper map which is an approximate
fibration of the connected m-manifold (without boundary) onto an ANR B.
Then B is a k-dimensional generalized manifold over Z; moreover, if M is
orientable, then the fiber of p has the shape of a Poincarée duality space of formal
dimension m—Kk.

Our proof is motivated by the corresponding result for Hurewicz fibrations
proved by Raymond [14] (see also [13]). A version of the above theorem was
stated without proof by Quinn in [12].

We refer the reader to [13] for a definition of generalized manifold. We shall
actually show that B is a singular homology k-manifold over Z and then apply
Proposition 3.4 of [14] to deduce that B is a generalized manifold.

A space B is a singular homology k-manifold over Z if B is a Hausdorff space
such that

Z r=k
0 r#k

(B) there exists a covering of B by open sets { U,} such that the inclusion-
induced homomorphism Hy(B,B—cl(U))—> H,(B,B—{y}) is an isomorphism
for all ye U,; and

(C) B has finite cohomological dimension over Z; that is, there exists an
integer / such that HZ(U)=0 for all open subsets U of B and all j >/.

Let us now assume that M is orientable and that the fibers of p have the shape
of a compact connected polyhedron F. Let x€ B and let U, be a neighborhood of
x. As in §2, there exist a sequence of neighborhoods U(p~'(x),i) and maps
ai: U(p~Y(x),i)>Fand B;: F- U(p~'(x), i) having similar properties to those
in §2. Suppose that U(p~!(x),1) € p~'(U,) and choose a neighborhood U of x
such that p~(U)< U(p~'(x), 2). By local contractibility, choose a connected
neighborhood V of x such that V contracts to x in U. Let a: p~' (V) = F be the
restriction of «,. The result stated below is well known [9].

(A) H,(B,B—{y]):{ for all yeB;

PROPOSITION 3.2. The map pX «: p~ (V) = VX F induces isomorphisms of
homology groups H, (p~"(V), p™'(V—{x})) > H. (VX F, (V—{x]}) X F).

By duality,
Z=Hp '(x)=H,(p~'(V), p ' (V={x)))=H,(VXF, (V—{x)) X F)

= [é”) Hy_i(V,V— KX})®H,-(F)]® [torsion].
i=1

Hence, there exists k& such that
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Z i=k
0 i#k.

Let v and 8 be generators of H, (V, V—{x}) and H,,_; (F), respectively.
Letting V; =V, choose a nested sequence of open neighborhoods {V;};~, of x

in B such that N2, V;={x]} and V;, is contractible in V; for each i. Let +; be the

generator of Hy(V;, V;—{x]}) which is sent by the inclusion map to vy, =4.
Consider the following

Hi(V, V= (x})®H_;(F) ={

HIEFY =50 i ) D01 XB) gy X E, (V= (x]) X F)
l *5*? pi Bix
B — iy — 0 2B) g E (V= (x]) X F)

where u; and §; are inclusions, =; is projection, and (N (y; X 8) is the homo-
morphism induced by cap products. Note that using properties of cap prod-
ucts, one can show that the above diagram commutes up to sign; that is,
psxe (N (vip1 XB))ep*= (N (v; XB)). Therefore, if we are careful in our choice
of the v;’s, then we may assume that the above diagram commutes. Taking limits,
we have an induced homomorphism

D: H/(F) > lim (H,,_;(V; X F, (Vi—{x]) X F)}.

Since each u;+ is an isomorphism, we have a natural isomorphism
P : LiIgl{Hm-j(VfXF, (Vi {xDXF)} > Hy_;(VXF, (V={x}) XF)
and it is straightforward to check that u, D(w)=v X (wN§g).
If y€p~!(x), note that the inclusion maps induce isomorphisms
Hy(M,M~{y)=H,(M,M—p~'(x))=H,(p~'(V}), p~ (Vi= [x})));

let £;€H,,(p " (Vi), p (Vi —x)) correspond to the orientation class of M. We
have a commutative diagram

N&iv

H(p~ (Vi) Hy_j(p 7 Vi), 07 (Vig1 — (X))
Hi(p~! Né; -1 -1

(p (Vi) H, _i(p” (V),p” (Vi—{x})
which, when we take limits, gives us an isomorphism

H(p~'(x)) = lim H, _j(p~ (VD) p 7' (Vi= (X)) = Hpj(p ™' (V), p 7 (V= (X))

which, of course, is Alexander duality. By using the map
pxa: (p7'(V),p~ (V={x}) = (VXF, (V= {x]) X F)

and Proposition 3.2, one can show that the fact that the above limit homo-
morphism is bijective implies that D is an isomorphism.
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From the Kunneth theorem we then obtain the facts that
NB: H/(F) = Hyy_k_;(F)

is an isomorphism for each i, and that

nél-_)me_j_,(V, V—{x}))®H;(F) |®[torsion]=0.
1=0
I#k

It follows that H;(V, V—[x}) =0 unless j =k, and we have shown condition (A).
The proof of condition (B) is very similar to that given by Raymond for Hurewicz
fibrations [14]. Condition (C) is a well-known consequence of (A) and the fact
that B is an ANR. Therefore, B is a k-dimensional generalized manifold.

If M is non-orientable, then consider the composition M M 5 B, where \ is
the orientation double covering. Note that po\ is also an approximate fibration.

If the fiber of p does not have the shape of a compact polyhedron, then con-
sider the composition M x S' 5 M 5 B where = is projection. The fiber of pew
now has the shape of a compact polyhedron [7] and pe is still an approximate
fibration.

If the fiber of p is not connected, consider the monotone-light factorization of
p, M5B B, 1t is easily seen that p is an approximate fibration and ¢ is a
covering map.

4. An exact sequence. In this section we construct an exact sequence, analo-
gous to the Thom-Gysin sequence, for a subcontinuum of M having the shape of
a manifold. (We emphasize the non-orientable case because it is more compli-
cated than the orientable one.) This exact sequence will be used in §5 (Prop-
osition 5.13) as a key part of our analysis of the homological equivalence in
codimension one decompositions.

Let M be an open connected non-orientable #-manifold and let gSM be a
continuum with the shape of a closed non-orientable r-dimensional manifold N.
Furthermore, suppose that if A: M — M is the orientation double covering of M,
then A\~ !(g) is connected. Let {U;};2, be a sequence of compact connected
n-dimensional submanifolds of M such that U; ., S interior U; for each i, bound-
ary U; is locally flat in M, and N;2, U;=g. Note that for each i, \"!(U;) is con-
nected and hence U; is non-orientable. Let Z be the bundle of twisted integers on
M; then the restriction of Z' to Uj is the bundle of twisted integers on U; for each i.

By Poincaré duality [15, p. 224], there exists a class [U;] € H, (U;, bdry U;; Z*)
such that cap product with [U;] induces isomorphisms

¢;: H"™*(U;; Z) = Hs (U, bdry Uy; ZY).
Consider
H(M,M~—U; Z") Hy(U;, bdry Uj; Z') H"™(U;; Z)
Bi‘ Yi l

H(M,M—U;,;Z') P Hy (Ui 4y, bdry Uiy Z7) vy H"(Uj; 13 Z)
i 1

o;

o
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where all homomorphisms except ¢; and ¢;,; are induced by inclusions. By
excision, «; and «; ;. are isomorphisms. If [U;] is chosen such that 8; o; ([ U;]) =
ai+1[Ui;1], then it follows from properties of cap product that the above
diagram commutes. [In order to see this, consider the following diagram:

QS'

H(U;,bdry U; Z'y=——H""%(U;; Z)

7]

Hy (U, Wi 2y~

~———H"(U; Z)

72 Yi
Hy(Uys1, bdry Usy 3 Z) ~250 H7=5(Us, 15 Z)

where W;=cl(U;—U;,), 7 and 7, are induced by inclusions, and ¢; is cap
product with 7, ({ U;])]. Passing to direct limits, we obtain an isomorphism

H""(g; Z)=lim H"~*(U;; Z) > lim Hy(M,M~U; Z')
=H,(M,M—g; 7).

Since g has the shape of a non-orientable r-manifold, H"~%(g; Z) is isomorphic
to H,_,.s(g;Z"). By excision, we have the following.

PROPOSITION 4.1. For each neighborhood U of g in M, H, (U, U—g;Z") is
isomorphic to H,_,.,(g;Z").

Let U2V be neighborhoods of g in M and consider the following commuta-
tive diagram:

> H(U—-g;2') > H(U; ') > Hy (U, U~g; Z') > Hy | (U~g; Z') = - -+

I l o]
o H(V—g; 2"y > H(V; 2> H (V,V—g; 2"y > H;_((V—g;Z') > -+

Note that « is an isomorphism by excision. Hence, if we take inverse limits using
the neighborhood system of gin M, then limy H;(U, U— IV AE H,_ nis(3ZY)
and limy Hy(U;Z")= H.(g;Z"). Therefore, {H,(U—g;Z")} is stable and we
have an exact sequence

oo > lim(H(U—g; 2"} > Hy(g; Z')
- r—n+s(g;Zt) i lim{Hs—l(U_g;Z’)} e

We write Hy(endy(g); Z°) for lim{H,(U—g;Z")}, where we think of end,(g)
as the end of M determined by g.

This establishes the non-orientable case in the following theorem. The orient-
able case is easier; Proposition 4.1 is well-known duality, and the rest of the
argument carries over directly.

THEOREM 4.2. Let M be an open connected n-dimensional manifold and
let g M be a continuum such that g has the shape of a closed r-dimensional
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manifold N. In case M is orientable, suppose N is orientable and & is a product
coefficient bundle over M; in case M is non-orientable, suppose N is non-
orientable, the preimage of g in the orientation double covering of-M is con-
nected, and ® is the twisted integers coefficient bundle over M. Then there exists
an exact sequence

- > H(endy(g); ®) > H(g; B) > H,_,15(g; B) = Hy_ (endp(g); B) = -+ -.

5. Codimension one decompositions. In this section we focus attention on an
u.s.c. decomposition G of an n-manifold M into continua having the shape of
(n—1)-manifolds such that M/G is R'. The goal is to prove that the inclusion
g = M induces homology isomorphisms for all g€ G.

PROPOSITION 5.1. If M is orientable, then each g€ G has the shape of an
orientable manifold.

Proof. By duality, H,(M,M—g) is isomorphic to H" !(g) (using Z-coeffi-
cients). If g had the shape of a non-orientable manifold, then H"~!(g) would be
cyclic of order two. Hence, from the long exact sequence of the pair (M, M —g),
we would see that Hy (M —g) is isomorphic to Hy(M ), which is isomorphic to Z.
Therefore g would not separate M, contradicting the fact that p(g) separates R'.

O

Our next aim is to prove the following non-orientable analogue of Proposi-
tion 5.1.

PROPOSITION 5.2. If M is non-orientable, then each g€ G has the shape of a
non-orientable manifold.

In order to show this, we need to derive some other results. Let M be non-
orientable and let N\: M — M be the orientable double covering of M. Let § be
the decomposition of M whose elements are the components of A™!(g) for each
g€G. Hence, N induces an onto mapping A: M/G — M/G. We claim that A is
one-to-one. Note that for x€ M/G, N™!(x) contains either one or two points. By
[S, Theorem 3.3’], M/C is a 1-manifold (possibly with boundary); hence, let <
designate order relations on M/C and M/G which are induced from R!. Now
suppose that there exists x€M/G such that A\~'(x)={y,z}, y<z. Choose
weM/C such that y<w<z and, without loss of generality, suppose that
A(w)>x. It follows that the image of A is bounded above and we contradict the
fact that A is onto. Therefore A is a homeomorphism. We have the following.

LEMMA 5.3. For each g€G, N'(g) is connected.
LEMMA 5.4. For each g€ G and each i, U(g, ) is non-orientable.

Proof. Since U(g,i) is connected, then N~ (U(g, i)) is connected. Hence,
there is a loop / in U(g, i) which is not homotopic to a loop from the image of
N1 (U(g, i)). By definition of orientation double covering, / must be orientation-
reversing. O
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LEMMA 5.5. Let N be a locally flat connected closed (n—1)-dimensional sub-
manifold of M such that N separates M and \~' () is connected. Then N is non-
orientable.

Proof. As in the proof of the previous proposition, there exists a loop / in N
which is orientation-reversing in M. Since N separates M, N is bicollared in M ; it
follows that / is orientation-reversing in V. O

COROLLARY 5.6. Let Z' be the twisted integers coefficient bundle over M;
then the pull-back of Z' by the inclusion map NS M is the twisted integers coef-
ficient bundle over N.

Proof. Since N"'(N) is connected and A~} (V) separates M, the argument in
Proposition 5.1 shows that A (V) is orientable. Hence A\ | A"!(N) is the orien-
tation double covering of NV, and the conclusion of Corollary 5.6 follows. O

LEMMA 5.7. Let U be an open neighborhood of N in M such that no compo-
nent of U— N has compact closure. Then the inclusion-induced homomorphism
iy:H,_ (N;Z'|N)—>H,_(U;Z'|U) is a monomorphism.

Proof. Since the pair (U, N) is homotopy equivalent to a pair (K, N) where K
is an (n—1)-dimensional complex, H,(U, N;Z'| U)=0. Now consider the long
exact homology sequence of the pair (U, N).

LEMMA 5.8. Given g€G and r, there exists a connected locally flat (n—1)-
dimensional submanifold NS U(g,r) which separates the two ends of U(g,r),
NNg=0, and such that \"'(N) is connected.

Proof. Let NyS U(g, r) be alocally flat submanifold which separates the two
ends of U(g,r) and N,Ng= &. There exists a component W of U(g,r)— (N,Ug)
such that cl(W) is compact. Since each A~!(g!) is connected, it is easily seen that
A~ (cl(W)) is also connected. Suppose that A~'(V;) is not connected and let «
be a locally flat arc in cl(W) —g such that bdry « =N;Na and such that a com-
ponent of A"!(«) meets both components of N"'(N,). If we attach to N, a 1-
handle whose core is o, and remove its interior, we obtain the required N. O

Proof of Proposition 5.2. Suppose that for some g€ G, g has the shape of an
orientable manifold N(g). Find a locally flat closed connected (»n —)-manifold
N, S U(g,1) such that N, separates the ends of M, N;Ng=g, and A\~ (V) is
connected. Find a locally flat closed connected (n—1)-manifold N,S U(g, 3)
such that N, separates the ends of M, N;NN,= @, and A\~ (N,) is connected. By
Lemma 5.5, N, and N, are non-orientable, and (by Corollary 5.6 and [15,
p. 224]) H,_(N;; Z' | Ny) and H, _(N,; Z' | N,) are isomorphic to the integers.
If N, and N, are chosen sufficiently close to g, we may assume that NyUN, is
the boundary of a compact submanifold of M. If we let i;: N;>U(g,1) de-
note inclusion, j=1, 2, then i, (H,_|(N;Z' | N}))) =iz (H,_(N2; Z' | N,)) in
H,_,(U(g,1);Z"). By Lemma 5.7, these subgroups are isomorphic to Z.

Recall the homotopy commutative diagram
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U(g, 1) 2~ U(g, 2)~2—U(g, 3)
]al B ‘ o B ]a3
N@)” = N@” = Na.

Since ¢ is homotopic to p; «;, the bundles of(Z'| U(g, 1)) and a3(Z' | U(g,2))
are isomorphic. Since N(g) is orientable (by Poincaré duality [15, p. 223]),
H,_(N(g); a}(Z")) is isomorphic to H(N(g); a}(Z")).

Let 1\7?57) be the double cover of N(g) which is induced by the covering

N: M- M. Since A!(g) is connected, N(g) is connected. Fix y,€N(g) and
consider the action of 7, (IN(g), ) on the bundle a}*(Z') restricted to y,, which
we can identify with Z. Since N(g) is connected, any loop not in the image of
7 (N(g)) in 7 (N(g)) will induce the automorphism of Z given by x —» —x. By
[16, p. 275], HY(N(g); a}(Z")) is the trivial group.

Recall that by Proposition 2.1 p4 | pax (H,—1(U(g, 3); Z")) is an isomorphism
onto uy (H,_;(U(g,2);Z") and that

gut Hy 1 (N(8); a3(Z1)) = pau (H, -1 (U(g,3); 21))

is an isomorphism. In particular, u;, is the trivial homomorphism. Since
iy Hy_ (N33 Z')Y > H,_(U(g,1); Z") factors through pu,., we have a contradic-
tion. The proof of Proposition 5.2 is completed. O

Note that if i: N, = U(g,2) denotes inclusion, then i, (H,_(Ny;Z"))CS
oz5 (Hp— 1 (M(g); a3(Z")). Consider the exact homology sequence of the pair
(U(g,Z),NZ):

0= H, |(Ny;Z') > H, (U(g,2); Z') > H,_1(U(g,2),Nj;Z') > - -+,

As in the proof of Lemma 5.7, there exists an (n—1)-dimensional complex K con-
taining N, such that the pairs (U(g,2), N,) and (K, N,) are homotopy equivalent.
Hence, H,_,(U(g,2), N,; Z") has no torsion. It follows that i, (H,_;(N5; Z')) =
oz (H,_ 1 (M(g); a3(Z")). More generally one can show Proposition 5.9 below.

If M is orientable let B denote the product Z-coefficient bundle over M; if M
is non-orientable let & denote the twisted integers coefficient bundle over M. In
order to simplify the notation we shall also use @3 to denote the restriction, ® | X,
of @& over a subset X of M.

PROPOSITION 5.9. Let g€G and let NS U(g,r+1) be a locally flat closed
connected (n—1)-dimensional submanifold such that N separates the ends
of M, NNg=@, and N is non-orientable when M is non-orientable. Then
L. (H, \(N;B))=a,.(H,_{(N(g); a(®))) wherei: N—-> U(g,r) denotes inclu-
sion and r 22. Furthermore, both i, and «,, are one-to-one.

Let g#heG such that hSU(g,3) and choose r=3 such that U(h,r)<
U(g,3). Let N be a locally flat closed connected (#—1)-dimensional subman-
ifold of U(h,r+1) such that N separates g from 4 and such that N is non-
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orientable when M is non-orientable. Let i: N> U(h,r)and j: U(h,r) > U(g,2)
denote the inclusion maps. By Proposition 5.9, o (H,,_;(N(g); a3 (®))) =
(Ji)« (Hy—1(N; ®)) and o, (H,_1(N(h); o/ (®))) =i (H,_(N; &)). Further-
more, (ji), and i, are one-to-one. It follows that

7(8, M) Hy—(N(h); o/ (®B)) = H, 1 (N(8); a3(®))
is an isomorphism. Therefore, we have the following.
PROPOSITION 5.10. 7(g, h) is a degree one map from N(h) to N(g).

The next result is a well-known consequence of Proposition 5.10 (see, for
example, the proof of Lemma 2.1 in [15]).

PROPOSITION 5.11. Foreach i, 7(g,h)+«: Hi(N(h); of(®)) > H;(N(g); a3 (®))
is onto and splits.

COROLLARY 5.12. For each i, F(g,h)*:ﬁ,-(h;&)ﬂﬁ,-(g;(ﬁ) is onto and
splits.

In order to simplify notation, we shall omit the mention of @3 in what follows.
Let V; and W; denote the components of U(g,i)—g so that V; SV, for all i.
Let g; € G such that g; € V;. Consider the following commutative diagram (see §2):

'F(g’gl)*
. / .
iy (g — e Hy (V) —2 (U (g, 1)

Vi ‘ Hix I

~ g; E * . Ki4 1% >
Hi(giy)— Hj (Vi) —22 Hi(U(g, i+ 1) —= 2 Hj(g)
/ .

H;(g)

[ —

7(g, 8i+1)«

where all the homomorphisms except the 7(g, g;)«’s are induced by inclusion
maps. It follows from results in §3 that { H;(V;)} is essentially constant; hence,
without loss of generality, we may assume that for each i,

Vix | IMAgE v; 414 iIMAge v; 41+ —> image ;.

is an isomorphism.
By Corollary 5.12, 7(g, g;)« is onto and splits; therefore,

Eiv0iy: Hi(g;) — image p;.
is onto and splits. Now note that when we pass to inverse limits, the induced
homomorph;sm lim; { H;(V;)} — lim; { H; (U(g,l))}—H (g) is onto and splits.
Let H; (g)=lim{H, (V)}®K+ where Kf is the kernel of the latter homomor-
phlsm

Similarly, the induced homomorphism lim;{H;(W;)} = lim;{H;(U(g,i))}=
H (g) is onto and splits; again, write H; (g)—llm[H (W)}@K"
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By Theorem 4.2, there exists a long exact sequence
-+ = H;(g) — H;(endy(2)) ~ Hi(g) > H; 1 (g) > .

Note that H;(end(g)) is naturally isomorphic to lim;{ H;(W;)}®lim;{ H;(V})}
and, from the results above, this long exact_sequence consists of short split
exact sequences 0 = H;(g) = H;(end(g)) = H;(g) — 0. Hence

H;(g) ®H;(g)=Hj(endy(g)) =lim (H;(W;)]®lim {H; (V)]

=(Hi(g) DK )® (H;(g) DK}").

Since all these groups are finitely generated, K;” and Kf are the trivial groups.
Hence we have the following.

PROPOSITION 5.13. The inclusion induced homomorphisms
lim (H;(V))} > lim (H;(U(g, 1))} and lim (H;(W,)) = lim (H;(U(g, i)))
i i i i

are isomorphisms.

PROPOSITION 5.14. Let Y be a connected open subset of M/G; then the
inclusion-induced H, (p~(Y)) = H, (p~'(cl(Y))) is an isomorphism.

Proof. Let g€ G such that p(g) €cl(Y)— Y. Continuing with the notation from
above, we may assume that p‘l(Y)ﬂU(g,i)zV,-. Let ¥;* =p_l(Y)UU(g,i).
Consider the commutative diagram:

o Hy (YF) = Hi(V) ~H(p~' (V)@ Hj(U(g, i) — Hj(¥*) >---

. | |

s Hp (Y > Hj(Vig) > Hi(p T (Y) @ H;(U(g, i +1) > Hj (Yih ) =+

where rows are from the Mayer-Vietoris sequence and where vertical homomor-
phisms are induced by inclusions. Passing to inverse limits and using Proposition
5.13, we obtain short exact sequences

. 5* * — * — C2x% -
0 lim (B, (V) —= L8+ 11 (5 (V) @ H, ()~ =2 1 (p™1(Y) Ug) >0

where all indicated homomorphisms are induced by inclusion maps. Using the
fact that £, is an isomorphism, one can easily show that
e Hi(p~'(Y)) > Hi(p™'(Y)Ug)

is an isomorphism.
Similarly, if g’€ G such that p(g’)ecl(Y)—-Y—p(g), then

H,(p~'(Y)—>H.(p~ (Y)Ug")

is an isomorphism. Finally, we can repeat this argument to obtain Proposition
5.14. O
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THEOREM 5.15. Let G be an u.s.c. decomposition of an n-manifold M into
continua which have the shape of closed (n—1)-manifolds such that M/G is R'.
Then, for each g€ G, the inclusion induced homomorphism H, (g)>H, (M) is
an isomorphism.

Proof. The proof is similar to the proof of Lemma 6.2 in [5]. Let us identify
M/G with R and let p(g)=0. Let S={s€ (0, + ) |I:I* (g)>H, (p_'(—s,s)) is
one-to-one}. If we choose s>0 such that p'l(—s,s)EU(g,Z), then s€S by
Proposition 5.14. Note that for each 7€ (0,s), if s€S then ¢t€S. Hence,
S=(0,s], (0,s), or (0, +o0). Since p~!([—s,s]) is an FANR, an analogue of
Proposition 2.1 implies that there is a neighborhood U of p ~!([ —s, 5]) such that
H.(p~ Y[ -s,s])) > H,(U) is one-to-one. Hence, S#(0,s]. Suppose that
S=(0,s) and hence H,(g) > H.(p '(—s,s)) is not one-to-one. Note that a
cycle representing an element of the kernel of the latter homomorphism bounds
on a compact subset of p~!(—s, s) and we have a contradiction. It follows that
H,(g)—H, (M) is one-to-one.

Let

T={s€(0, +) |image(H, (p~'(—s,5)) > H,(M))
=image(H,. (g) > H,.(M))}.

An argument similar to the above shows that 7= (0, + o) when one notices
that if X is an FANR, then there are neighborhoods USV of X such that
image(ﬁ* (X)—>H,(V))=image(H,(U)—>H,(V)) (see Proposition 2.1).
Again, this implies that H, (g) > H, (M) is onto. O

COROLLARY 5.16. Suppose G is a u.s.c. decomposition of an n-manifold M
into continua having the shape of (n—1)-manifolds such that M/G is a 1-
manifold without boundary. Then all pairs of elements of G are homologically
equivalent.

Illustrating the sharpness of Theorem 5.15, Example 5.3 of [5] sets forth a
decomposition G of an n-manifold M (n 26) into closed (n —1)-manifolds such
that M/Q is R!, but some pairs of elements fail to be homotopically equivalent
due to differences in 7.

With controls on 7; we can obtain stronger results.

THEOREM 5.17. Let G be an u.s.c. decomposition of an n-manifold M into
continua which have the shape of closed (n—1)-manifolds such that M/G
is R! and such that, for each g€QG, the inclusion induced homomorphism
m1(g) = w1 (M) is an isomorphism. Suppose that the integral group ring Zw (M)
is Noetherian. Then the natural map M — M/G is an approximate fibration.

COROLLARY 5.18. For n 26, there exists a closed (n—1)-manifold N such
that M is homeomorphic to the product N X R and N has the shape of elements

of G.

COROLLARY 5.19. For n 26, the natural map M — M/G can be approximated
by locally trivial bundle maps.
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The changes in the above proof which are needed in order to prove Theorem
5.17 are essentially in the choice of coefficients for the homology groups. We use
the bundle of local coefficients as described in [15, p. 223]. If g,h€ g, then
the fact that 7(g,4) is a homology isomorphism now implies that 7(g, &) is
a homotopy equivalence. As in §2 this implies that M — M/G is an approximate
fibration. Corollaries 5.18 and 5.19 follow from [9]. The collection of groups
whose integral group rings are Noetherian include the finite extensions of poly-
cyclic groups (in particular, finite groups and finitely generated Abelian groups).

COROLLARY 5.20. Suppose G is an u.s.c. decomposition of an n-manifold M
into continua having the shape of closed (n—1)-manifolds with Abelian or finite
JSundamental groups, such that M/G is a 1-manifold without boundary. Then the
natural map M — M/G is an approximate fibration.

One can derive the following result as we did Theorem 5.17.

THEOREM 5.21. Let G be an u.s.c. decomposition of a closed n-manifold M
into continua which have the shape of closed (n—1)-manifolds such that for
each g€ G, the inclusion-induced homomorphism ,(g) = (M) is an isomor-
phism onto a fixed subgroup of w(M). Suppose that the integral group ring of
#1(g) is Noetherian. Then the natural map M — M/G is an approximate fibra-
tion and, for n 26, M can be obtained from a near-product h-cobordism W [5]
by homeomorphically identifying the two components of the boundary of W.

For n 26, if a certain obstruction in the Whitehead group of Z%,(g) vanishes,
then the natural map M —> M/G can be approximated by locally trivial bundle
maps whose fibers have the same shape as elements of G.

THEOREM 5.22. Let G be an u.s.c. decomposition of an n-manifold M into
continua which have the shape of closed (n—1)-manifolds such that M/G is
[0, +0). Then the inclusion of p~'(0) into M is a homology equivalence.

Proof. Choose >0 such that p~'([0,¢]) SU(p~'(0),2). It follows that the
1mage of H,(p~'([0,t])) in H,(M) is the image of H, (p~1([0, £])) in H, (M)
and H,(p~'(0)) > H.(p~'([0,1])) is one-to-one. It follows from Proposition
5.14 that the inclusion-induced H, (p~'(¢)) = H. (p~'([t, +))) is an isomor-
phism. By excision, H, (M, p~'([0, t])) =H, (p~'([¢, +)), p~!(¢)) =0 and the
theorem follows. O

QUESTION. Suppose that the inclusion induced #,(p ~'(¢)) = (M) is an iso-
morphism for =0 and is an isomorphism onto a subgroup of index two for
t>0. It is true that M is the twisted line bundle over some submanifold which has
the shape of p~1(0)? If p~1(0) is a manifold, then it is not difficult to see that
this is true.
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