A MATHEMATICAL MODEL FOR A WAKE

David E. Tepper

1. Introduction. This paper concerns a type of free boundary problem which
gives a mathematical model for a wake around an obstacle in the flow of a
two-dimensional fluid which is incompressible, irrotational and inviscid. To
formulate the problem, we begin with an infinite striplike region S=
[(x+iy:d;(x)<y<¢,(x), —o<x<o0}, ¢ and ¢, continuous. If « is a Jordan
curve with interior A contained inside of S, then a wake around « is a doubly
connected region wC S such that ANw=©@, dw=03SU+y, where dSNy=0, and
there is a harmonic function V,, in w satisfying:

(a) V,(z)=0 for z€4aS,

(b) V,(z)=1"for z€~, and

(c) |grad V,(z)|=p for z€y—c.

The number p is a constant. (See Figure 1.)

The set v — o is made up of free stream lines [6] and is called the free boundary.
We will show that there is a region w when dS and « are starlike. The methods in
[5] can be used to prove existence. In particular, a solution to this problem is
obtained by considering

J@)= || (901 +1120) p?) dxy,
S-aA

where 14 is the characteristic function of A. If K={v:v=10ndS, v=20inS—A},
then u,, a minimum for J(v), will give a wake around « by letting w={u,>0]}
and V,=1-u,. However, Beurling’s paper [4] and various qualitative results in
[8], [9] and [10] can be used to get existence with the additional information that
the free boundaries are starlike. Furthermore, we obtain values for the constant
p where the solution will be non-degenerate, i.e., vy —a# @. The main idea is to
first formulate the problem for compact regions and then approximate S by a
sequence of these compact regions. In the compact case we are able to use results
in [1], [4], [8], [9] and [10] to find wakes. However, the results in these papers are
formulated for doubly connected regions and must be extended to the simply
connected case. Before beginning, we mention that wakes are also studied in
[10], which includes a survey of classical methods to attack the problem of an
infinite wake.

2. COMPACTNESS. Suppose D is simply connected on the compact Riemann
sphere and I' is the boundary of D which is compact in the open plane but does
not reduce to a point. Let C be the class of all doubly connected regions wC D
such that dw=T'"U+y where yNT'=@ and v is compact in the open plane. We call
v the free boundary of w. (See Figure 2.)
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Figure 1. A typical wake around « is shown. The free boundary v may intersect « but this
need not be the case. If =+, then the wake will be called trivial.

For each region w € C, we define the stream function of w to be the harmonic
function V satisfying

1) | V(z)=0, for z€T
2) V(z)=1, for z€H~.

Suppose Q is a continuous bounded positive function in D. When D is doubly
connected in the complex plane, Beurling in [4] gave necessary and sufficient
conditions for there to exist a region w € C such that

3) |grad V(z)|=0Q(z) for z€y.

Such a region w is called a solution (for the function Q). Although Beurling’s
existence theorem is stated for the case where D is doubly connected in the finite
plane, we show that the result holds for the case where D is simply connected.

THEOREM 1. If there exists w; € C with stream function V) such that for all ¢
on the free boundary of w, we have

) lgrad Vi (z)|

4) lim sup ——— <1,
2> Q(Z)
Z€w

then there exists a solution wyCw;. If in addition there exists w, € C with stream
Sunction V, such that v, Cw,, and for all { on the free boundary of w, we have

dv.
) lim inf 1E24 V2@ )
=¢ Q(Z)
ZEO)Z

then there is a solution wg, w,CwyCw,. Furthermore, if ever there is more than
one solution, then there is a particular pair of solutions ' and " with o' Cw".

Proof. For the case where D is doubly connected in the finite plane, the result
is shown in [4]. When D is doubly connected we first suppose there is a point z,
interior to D—w,. If f is a conformal mapping of {w: |w|>1} to D such that z,
corresponds to the infinite point, then Beurling’s theorem for the doubly con-
nected case will apply in {w: |w|>1} for the function Q(f(w))|f’(w)|. The
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Figure 2. Typical regions w in C where (a) D is doubly connected in the finite plane and
(b) D is simply connected in the finite plane.

image of this solution under the mapping f will be a solution for the function
Q(z). If no such point z exists then we replace Q(z) by Q,(z) =Q(z) +¢, where
€>0. For the function Q, we can find a region w; . whose stream function will
satisfy (4) for the function Q,(z) and w; Cw,. Furthermore, D—w,; . will have
an interior point z.. It follows that w; . contains a solution w, for the function
Q.(z) and w= U 5o w; . Will be a solution for the function Q(z). Since similar
reasoning is used to show (5) and the nested property, we omit the details in this
paper. O

A simple application of Theorem 1 is the following corollary.

COROLLARY 2. If D is simply connected and contains the disk |z| <R, then
Jor Q(z) 2e/R there is at least one solution.

Proof. Let w have free boundary |z|=¢ for 0<e<R. If V, is the stream func-
tion of w,, then for |z|=¢ we have

AV.(z)|€ ——.
lerad Ve(2)| < oo

If we let R/e=e, then for |z|=¢ we have
1 e
lgrad V. (z)|< —= — < Q(2).
e R

We see that (4) holds for w, € C and therefore w, contains a solution w. O

3. UNIQUENESS. In order to prove uniqueness, we must put conditions on D
and Q; in particular, we suppose D is starlike. That is, a set 4 is starlike if for
each z € A, the line segment [0, z] is contained inside of A. We also say that the
complement of a starlike set is starlike and the boundary of a starlike set is star-
like. The following lemma extends Lemma 11 of [1].
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LEMMA 3. Suppose D is starlike. If D is simply connected in the finite plane
and pQ(pz) is a strictly decreasing function of p for each 7€ D, then there is at
most one solution. If D is doubly connected in the finite plane and pQ(pz) is a
strictly increasing function of p for each 7€ D, then there is at most one solution.
Furthermore, in either case the free boundary of this solution will be starlike and
contain no radial segments.

Proof. Lemma 11 of [1] shows that the doubly connected case holds. To
extend to the simply connected case, we map D to D by the function 1/z. T will
map to ' which will also be starlike. The function O(w) =O(1/w) [w| ~2can have
only one solution by the doubly connected case. Since there is a one-to-one corre-
spondence between the solutions in D for the function Q and the solutions in D
for the function O, the proof is complete. O

4. WAKES. Suppose D is starlike and contains the disk |z] < R. By Corollary 2,
there exists a constant Ap such that Ap <e/R and there is a solution for all func-
tions Q(z) 2 \p. For the case where Q(z) =\ a positive constant greater then \p,
we denote this solution @,. Furthermore, if D; D D,, then Ap, <Ap,. Suppose a is
a smooth Jordan curve contained inside D and  is the annulus in C which has o
as its free boundary. If V is the stream function of @, then let 4= sup|grad V(z)|
for z€a. We see that u 2 Ap.

We call w € C a wake around « if the stream function V of w satisfies, for
Z€(dw—a)NQ, |grad V(z)|=p for some constant p. We say the wake is non-
trivial if (dw—a)NQ = @. The following theorem gives sufficient conditions for
there to exist non-trivial wakes for a range of values of the constant p.

THEOREM 3. If D and « are starlike, then there exists a constant pp < p such
that there are non-trivial wakes for N>pp. Furthermore, if Q#a,, then pp <p.

Proof. For A 2 pu the result follows from Theorem 1. For u>A>\p we give a
procedure to construct the wake. Finally, we show that when &, this con-
struction gives a non-trivial wake for values of A, u—e<A<u. To do this we let
f(z) be a conformal mapping of 2 to {w: 1<|w|<R} such that « corresponds to
|w|=1and I to |w|=R. Since D is starlike, | f(z)] will increase as |z| increases [9,
p. 179]. For positive integers n define:

A, for 1+1/n<|f(z)|<R
O.(z)=1 N/[n(|f(z)|-1)], for 1+N/nu<|f(z)|<1+1/n
W, for 1<|f(z)|<1+N/np.

If we define Q, (z)=pu for z€ D —Q, then Q satisfies the hypothesis of Theorem
2. It follows that for each n there exists a solution {2, for the function Q,. It
follows that w)= U ,, will be a wake around «.

To see that there will be non-trivial solutions when 2 #a,, we observe that if
V, is the stream function of @,, then |grad ¥, (z)|> A for z on the free boundary
of Q,. Theorem 1 and uniqueness of solutions implies &@\Dw,. Therefore,
w)C @\ N which assures us that there will be non-trivial solutions whenever @,
does not contain .
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For S and « starlike, we obtain a model for a wake by letting D=D, =

SN{z:|z|<n} and Q, the member of the corresponding class C, whose free
boundary is . Let U, be the stream function of Q, and g, = sup|grad U, (z)| for
Z€a. Since p, decreases as n — o, we see that (a), (b), and (c) hold whenever
p>lim u,. We could apply the methods of [10] to relax the condition that S be
starlike. In such a case S will have to be the limit of starlike regions. O

10.

11.
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