SOME REMARKS ON NIELSEN EXTENSIONS
OF RIEMANN SURFACES

Noemi Halpern

Let S be a Riemann surface of finite type (g; n, m), that is, a surface of genus
g with n punctures and m holes. Assume that 6g—6+2n+3m >0 and m > 0.
Then S can be represented as U/G where U denotes the upper half-plane and G a
torsion-free Fuchsian group of the second kind. Let 9 be the set of maximal open
intervals on RU{e} on which G acts discontinuously. For each I €9 the
stabilizer of I in G is generated by a hyperbolic element whose axis A(7) is the
non-Euclidean line joining the endpoints of the interval. The Nielsen convex
region N (G) is the complement of the union of the closures of all the half-planes
bounded by 7 and A(Z), I € 9. The surface Sy = N(G)/G is the Nielsen kernel of
S; S is the Nielsen extension of Sy. Every surface has a Nielsen extension [1].

Given a surface S, let S; be the Nielsen extension of S;_; or equivalently let
Sy _1 be the Nielsen kernel of S, for & € Z. Define the infinite Nielsen extension
of Sy to be S =S;US,U .- and define the infinite Nielsen kernel of S, to be
S_o=8S_NS_,N---.

The purpose of this paper is to obtain several inequalities concerning the
lengths of certain geodesics of Nielsen extensions and kernels. The Poincaré
metric is used throughout and the length of a boundary curve denotes the Poin-
caré length of the geodesic to which it is freely homotopic.

THEOREM 1. Let S be a finite Riemann surface with a boundary curve of
length I. Then the length of the corresponding boundary curve of the Nielsen
kernel of S is greater than 21.

Proof. Assume that S=U/G has a boundary curve C corresponding to
X:z—elz. Let J be the conformal map that takes the Nielsen convex region of S
onto U and which fixes 0, 1, and co. Then the Nielsen kernel of S is §_; =
U/fGf~!. The function f; : z = z? maps the first quadrant, which contains the
Nielsen convex region of S, onto U. Then f = f;-f; for some conformal map f5
which takes a region U; & U onto U.

Let Cy be the corresponding boundary curve of S_; and let /; be its length. Let
d denote length in the Poincaré metric of U. Since U, is a proper subset of U,
d(C,) is greater than d(f5 ' (Cyp)). Cy is a simple curve in U whose endpoints are
identified by fXf~!. No other points of C, are equivalent under any other
element of the group fGf ~'. Therefore the only points of f5 !(Cp) equivalent
under any element of f;Gf;"! are its endpoints, which are identified by f, Xf;~'.
So d(f5 (Cy)) cannot be less than the length of the shortest geodesic joining the
semicircles x> +y2=1 and x2+y?=e? y> 0. Therefore

lo=d(Co)>d(fs 1 (Cy)) =d(i,e¥i)y=2l O
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COROLLARY. Let S be a finite Riemann surface with a boundary curve. The
length of the corresponding boundary element of the infinite Nielsen extension is
zero; the “‘length’’ of the corresponding ‘‘boundary element’ of the infinite
Nielsen kernel is infinite.

The corollary follows immediately from the theorem. The first statement has
been proven by L. Bers [1]; the second by J. Wason [3].

THEOREM 2. Let S be a Riemann surface with a boundary curve and with
a geodesic of length x not homotopic to a boundary curve. If x, is the length
of the corresponding geodesic of the Nielsen extension of S then x; <x. More-
over, if all the boundary curves of S have length less than | then x| > kx where
kx1—(2/7)tan""(2sinh I/2).

Proof. Assume that S = U/G has a geodesic C of length x. Let S; = U/G, be its
Nielsen extension with the corresponding geodesic C; of length x;. Let f be the
conformal map that takes the Nielsen convex region of S; onto U and let d
denote the Poincaré metric of U. Since SC S, and S# S,, d(C) must be greater
than d(f ~'(C)). Therefore

X1 =d(C))<d(f71(C))<d(C)=x

and the first inequality is proved.

There exists a collar of width w=sinh~!(1/(2sinh //2)) around all holes of
length less than / which is disjoint from the collars of all other geodesics of the
surface [2]. If all the boundary curves of S have length less than / then, by
Theorem 1, the same must be true of boundary curves of S;. Therefore there is a
collar region A of width w around C; which lies completely within the Nielsen
convex region of S;. Assume that C; corresponds to the element z = e*1z of G;.
Then A is bounded by the lines O = + 0y and O =7 — Oy where tan Oy =2 sinh //2
and ACfI(U). Let f,(z) = (e "C0z)™(™=2%)_ The function f; maps A con-
formally onto U. Since A is a proper subset of the Nielsen convex region of S,
d(f1(C))) is greater than d(f(C,)). Therefore

1 1
x=d(C) <d(f(C1)) <d(fi(Cp) = 1-d(Cp) = x

where kK =1-20 /7. a

COROLLARY. Assume the hypothesis of Theorem 2 and let x,, (X ) denote the
length of the corresponding geodesic of the nth (the infinite) Nielsen extension.
Then the x,,’s satisfy the following inequalities:

(A) k"x<Xx,<x, where k is as in the theorem.

(B) x,>{1—(2/7)tan"'(2sinh //2")}x,_;.

(C) x, > knx where k,=TI", {1 — (2/x) tan~'(2sinh //2')}.

(D) X > koox where ko =112, {1—(2/7) tan~!(2sinh 172} is a convergent
infinite product. _

(B) CpXp <Xeo <Xn where c, =TI2,{1—(2/x)tan~'(2sinh //2")} and ¢, — 1
asn—> o,
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Proof. (A) the inequality follows from applying the theorem » times.

(B) If all the boundary curves of S have length less than / then, by Theorem 1,
all the boundary curves of its Nielsen extension must have length less than %l.
Therefore all the boundary curves of its nth Nielsen extension must have length
less than (1/2")I. By applying Theorem 2 to the nth Nielsen extension one
obtains the inequality x,, > {1 — (2/7) tan "' (2sinh //2")}x,_;.

(C) Apply inequality (B) to each of the n Nielsen extensions. Then

X, > {1—(2/7) tan~!(2sinh 1/2"))x,_,
> {1—(2/x)tan"!(2sinh 1/2")}{1 — (2/7) tan~"!(2sinh //2" ") }x, _,
> ...
n L
> [1{1—(2/x)tan"!(2sinh I/2)}x.

i=1

(D) The inequality follows from (C). To show that
I1{1— (2/x)tan~'(2sinh I/2%)}
i=1

converges it is sufficient to show that
0< (2/w)tan"!(2sinh //27) <1
and that
Y (2/7) tan~!(2sinh //2°)
i=1
converges. Since / >0, 2sinh 1/2'>0 and
0 <tan~'(2sinh //2') <= /2.

Since tan ~"'u <u for u >0,

Y (2/7)tan~!(2sinh /727y < ¥ (2/7) 2sinh /2.
i=1 i=1
But this series converges by the ratio test.
(2/m)2sinh [/2'*1 | | sinhi/2' | sinh //2'*!
(2/x)2sinh {72° | | sinh2(//2"*Yy | | 2sinh 772" cosh 172!
1 1

< —.
2cosh /721 = 2
(E) Inequalities (B), (C), and (D) imply the inequality. Since

(1—(2/7)tan "' (2sinh //27)}
=1

i

converges,

I1{1— (2/7)tan~!(2sinh I/2")}

i=n

must approach 1 as n — oo,
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