INTERPOLATION BY FUNCTIONS IN BERGMAN SPACES

Richard Rochberg

I. Introduction. We begin by describing a special case of our main result. Let U be
the upper half plane and let A be the Bergman space consisting of functions f which
are holomorphic in U and for which

(L.1) I7k= [§ 1+ axdy

is finite. Let S={{,]} be a sequence of points in U; {,=x,+iy,. We are interested
in the relation between the geometry of S and the values which functions in A can
take on S. Using the area mean value theorem for a disk centered at {=x+iy in U
and having radius y we find that for any fin A4

(1.2) IF(O] < el flly2
Using a similar estimate for derivatives we find that
1.3) IO < elflly>

On the basis of (1.2) we see that the sequence Tf= {y2f(¢{,)} is in /”(S). On the
basis of the form of (1.1) and the analogy with the known results for the Hardy
spaces we then ask for the relation between /!(S) and { Tf;f€ A}. (1.3) suggests one
constraint. In order for there to be functions f,, in A which satisfy

1.4) Ja($m) =0n m
and which have | f,| uniformly bounded it is necessary that
(1.5) inf d(&,, &) =K > 0.

nsem

Here d(-, ) denotes the invariant distance (i.e., the hyperbolic distance) on U.
A particular case of our main result is that this condition is very close to being
sufficient.

THEOREM. There is a K so that if S satisfies (1.5) with K> K then {Tf;f€A}=
1N(S). In fact for all fin A

(a) ;ﬁvwmsduu

and for any {\,} €1'(S), there is an fin A with | f|| < c||{N;}|| and
(b) yaf(&) =\, n=12...
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The proof of (a) is based on the fact that the sum in (a) is essentially a Riemann
sum for the integral in (1.1). The proof of (b) uses the theory of molecular decompo-
sition of functions in Bergman spaces which was developed by R.R. Coifman and
the author in [2]. That theory gives specific functions f,, in A which almost satisfy
(1.4) and which have uniformly bounded norms. Thus the function g; = X\, f,, is the
first approximation to the function f which satisfies (b). The estimates in [2] are
sufficient to insure that iteration of this approximation scheme will converge to the
required function f. .

A virtue of this approach is that, using the results of [2], the proof is seen to work
with little extra effort in various other contexts. For example, if p and r are given;
0<p<oo, —1<2r, then we obtain analogous results for the space of functions f
holomorphic in U which satisfy {fy|f|?y ~? < c. We also obtain similar results for
analogously defined spaces of functions defined on domains in C” which are biholo-
morphically equivalent to bounded symmetric domains. In particular we obtain
results for the Bergman spaces on the ball and polydisk.

In Section 2 we give definitions, background and a precise statement of our
results. The proof is in Section 3. Additional comments are in the final section.

These problems have a rich history which we will not summarize here. The interested
reader can consult the books by Shapiro [9], Duren [3], Koosis [7], and Garnett [5].

Our results extend recent work by E. Amar [1]. Discussion of the relation between
our results and methods and his is given in the final section.

II. Statement of the theorem. Let D be a symmetric homogenous domain in C”.
For example, D could be the unit ball, unit polydisk or the product of half planes.
Associated with such a D is a Bergman kernel function B= Bp(-, -) and an invariant
distance d =d(-, -). (For background on these objects see [6] or {10].) Although we
will never use estimates based on explicit formulas we note that for D the unit ball in
C" 2=(2y, .-+, 2,) and {= ({1, -+, &) in D, Bp(z, ) = cy(1— Lz &) "L, For
the unit polydisk Bp(z, ) =c, IT(1—z4 &) ~2. Associated with any such D is a
number ep which is defined to be the constant of Theorem 2 of [2] for the un-
bounded realization of D. ¢p is between 0 and 1, ep = 1/2 for a product of half
planes, ep =1/(n+1) for the ball in C”.

For p,r with 0<p<oo, —ep<r; we let A”"(D) =AP" be the generalized Berg-
man space consisting of holomorphic functions f defined on D for which

115, = SD |f(z)|PB(z,2) " "dV(z) < .

Here dV(z) denotes the volume element of the ambient C”. The choice p=1, r=0,
D = U produces the space A considered in the introduction.
In order to make full use of the results of [2] we assume for now that

(*) D has a transitive group of affine automorphisms.

We will motivate the formulation of the theorem and prove the theorem using (*).
We will then observe that the formulation is invariant under changes of variable and
hence (*) is irrelevant. Suppose (*) holds.
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Let S={¢;};2, be a set of points in D. We regard D, S, r and p as fixed and wish
to study the relation between the geometry of S and the values taken on S by func-
tions in A”"(D).

Let o= (14r)/p.

The first observation is an analogue of (1.2). (Proofs of the lemmas are in the next
section.)

LEMMA 2.1. Suppose (*) holds. There is a constant c=c(D, p,r) so that for all ¢
in D and all f in AP"(D),

@.1) 17D < eB(& O fp,r

On the basis of (2.1) we define the map 7 from A”" to [™(S) by (Tf) (&) =
B($k, $x) ~%f(&x) . The next lemma (which is based on a derivative estimate analo-

gous to (1.3)) shows the relation between the separation of points of S and variability
of Tf.

LEMMA 2.2. Suppose (*) holds. There is a constant c=c(D,p,r) so that for all
21,22 in D with d(z;,2,) <1

(2.2) |B(21,21) " %f(z1) — B(22,22) " %f(22)| < cd(z1,22) | fllp,r-

Thus, in order for the characteristic function of every singleton of S to be realized
as Tf with fin A”" and | f]|,,, dominated by a uniform constant, it is necessary that

2.3) infd({;, &) = K> 0.
i#f

Our main result is that if K is large then this is a sufficient condition to insure that T
maps A”" onto I°(S).

THEOREM. Suppose D is biholomorphically equivalent to a bounded symmetric
domain. Suppose p, r, S are given and S satisfies (2.3). Then T is a continuous map
of AP" into IP(S). That is, there is a constant c so that for all fin AP'"

2.4) 1T = X 1Bk, $6) ~f ()P < || f115, -

There is a Ky so that if K of (2.3) is larger than Ky then T maps onto 1°(S). In fact,
there is a continuous linear map R of 17(S) into A" (D) so that TR=Ip,.

II1. Proofs. Many of the details of the proof are direct consequences of calcula-
tions and estimates in [2]. We will make free use of those results and often only
indicate how those calculations can be modified to our current purposes. We first
give a proof using (*). We begin with the lemmas. Pick a base point e of D. If 4 is
holomorphic in D and B is a small Euclidean ball in D centered at e then, using the
subharmonicity of |k|, we have

lh(e)| < cp SBlh(zndV(z).

We now replace the integral by an integral over a slightly larger invariant ball cen-
tered at e. Thus, |h(e)| < c{z|h| dV where B is an invariant ball and c is a constant
which can be chosen to depend only on the domain D. Let { be a different point in D
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and let g be an affine automorphism of D which takes e to {. We apply the previous
estimate to #(z) =f(g(z)) and obtain |f({)| < clz]f(g(2))|dV(z). Let w=g(z)
be a new integration variable. The Jacobian factor obtained when we change vari-
ables, |detg’|~2 (which is constant because g is affine) equals cB({, {) (equation
(2.2) of [2]). Thus |f($)|<c(fz|f(w)|dV(W))B(, §). The desired conclusion is
now obtained by using Lemma 2.5 of [2] to estimate the integral. O

To prove the second lemma we estimate two terms; B(z;,2;) ™ *|f(z;) —f(z,)| and
|(B(23,22)/B(z1,21))*—1|B(22,22) ~*|f(z3)|. The required estimate on the first
term is a consequence of a volume integral estimate of the gradient of f. (This is done
in detail in the proof of Lemma 2.6 of [2]). The second term is estimated using the
previous Lemma and Lemma 2.3 of [2]). O

We now prove the theorem. We start with the data D, p, r, e (the base point of D),
S, and K (the constant of (2.3)). Without loss of generality we can assume that S is
maximal with respect to the condition (2.3). For {;, {; in S we write B;;= |B({;, {;)|.

We now verify (2.4). Rereading the beginning of the proof of Lemma 2.1 and
using the fact that |f(z)|? is subharmonic for any positive p we obtain the estimate
| /(NP < eB( §) S5 f(w)|? dV(w). Here B is the invariant ball of fixed radius and
centered at {. By adjusting ¢ we may assume that this radius is K/2. Thus, denoting
the ball centered at ¢; with radius K/2 by B({) we have

3.1 LBiP|f(§)P < cXBi" SB“) |S(W)|P dV(w).

By Lemma 2.3 of [2], the ratio B;;"/B(w,w) ™" with win B({) is bounded above and
below by constants which depend only on KX, r, and D. Thus the sum in (3.1) is
dominated by c X {p(; | /(W) |?B(w, w) " dV(w). Because the B(i) are disjoint, this
last integral is dominated by | f]|5,, and (2.4) is established.

We now prove the second half of the theorem. We start with the case p< 1. In that
range it suffices to exhibit functions f,... which are uniformly bounded, i.e.,
|.fillp,- < c and for which

3.2) LIB /s —olP <3 i=12...

Once we have such an estimate we can then construct R iteratively as follows. Let e;
be the function in /2(S) given by e;({;) = 0;;. Define R, e;= f; and extend by linear-
ity. For p with p<1 we have the estimate || R, (L \;¢;) |15, ,< X|Ni|?| fi]|5., and hence
R; is continuous. Using (3.2) we find that

||(TR1—I)(E)\,-e,-)I|§ <X [Nl 2] TRlei_ei”g < %E IN:] P

Thus TR, is invertible. The required operator R is R;(TR;) .

We now describe the required f;. In fact we give a family of such with a free
parameter e. Pick and fix €> 0. Let f;({) =B ¢B({, ¢;)* €. The uniform estimate
on the A”" norm of f; is Lemma 2.2 of [2]. To obtain (3.2) we first note that
Bie(fi(¢)) =1. Thus we must estimate the sum over all j distinct from i of terms
Bj;*PBj;?BgP* P, 1t is in making this estimate that crucial use is made of the
assumption that K is large and of (*). O
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LEMMA 3.1. Given 6> 0 there is a constant c=c(D,p,r,K,8) so that for all i

[+ ]
(3.3) E B,-]j+r+5B,-;l_r < CB?,

o
For fixed D, p, r, § it is possible to choose c to be arbitrarily small if we allow K to be
arbitrarily large.

Proof of the lemma. The basic invariance property of the Bergman kernel is that if
g is a holomorphic automorphism of D then B(gz,g{) detg’(z) detg’({) =B(z,¢).
If g is affine then g’ is constant and we have

(3.4) B(gz,g{)|detg’|> = B(z,{).

(This is (2.2) of [2].) Let g; be an automorphism of D such that g;(e) =¢;. Let
£;=gi (7). Using (3.4) we find

Bilj+r+cSBj}-l—rBi?6 = B(e, Ej)l+r+8B(Eja E,-)""B(e,e)“s.

The automorphism g; is an isometry with respect to the invariant distance hence the
set {£;} satisfies (2.3) with the same constant. Thus the problem of showing (3.3) for
general S and general { is reduced to establishing (3.3) for i=1 and an S which has
¢1 =e. We now consider that case.

The sum (3.3) is roughly Riemann sum for cfp|B(e, {)|'* T °B(f, §)~"dV(z)
which is bounded by Lemma 2.2 of [2]. More precisely, let B(i) be the invariant ball
of radius one centered at ;. Let |B(i)| be the Euclidean volume of B(i). Write
BIFTB1"" as [gy B TOB1TT|B(j)|"'dV(y). By Lemma 2.3 of [2] we can
find a constant ¢ which depends on D, p, r, § (but not S, j or X) so that

Bj'|B()|'<c
and
sup{|B(e, ) *"*°B(5, ©)7'|; ¢ € B(j)} < cBlj "B,

Using this and the fact that the B(j) are disjoint we see that the sum in (3.3) is
dominated by

cT | BB T av) =c |
J B{(j)

=2 UjZ, B()

All points in Uj2, B(/) are at invariant distance at least K—1 from e. Thus we have
the estimate

L BB < c | IB(e, " H<B(% §) " dV($).
j=2 d(t,e)>K—1

The integral on the right is finite by Lemma 2.2 of [2]. Hence, by selecting K large we

can obtain an arbitrarily small upper bound for the sum. The lemma is proved. O

For p>1 we will need to estimate the norm of a sum of terms with coefficients in
/P. One technique for doing this which is often used in this context (e.g., Lemma
2.1.2 of [1]) is the following Lemma of Schur. (For a proof, see [4].)
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LEMMA 3.2. Suppose p, q are given 1<p,q<; 1/p+1/q=1. Let A be an
infinite matrix, A = (a;;) with nonnegative entries. Suppose there is a constant ¢ and
a sequence h; of nonnegative numbers so that L;a;hf<chi, i=1,2,... and
L a,-jh,p < chf. Then the map A of I? to itself which takes f= (f;) to Af defined by
(Af)i=L; a;;f; is bounded and has operator norm at most c.

We now suppose p>1. Let g be the conjugate index; p~'4+g 1=1. We will
identify /?(S) with the abstract /P space consisting of sequences {\;} for which
Y|N;|? < oo. Pick € so that

3.5) e>a(p—1)=(1+r)/q

(further constraints on e will be imposed later). For each i, let f;({) = B(¢, ¢&)*teBj7e.
We wish to construct a map R from /” to A”»". We start with an approximation R,
defined by Ro({A;}) = X \;f;. Theorem 2 of [2] insures that R, is a bounded map of
I? into AP, TR, maps the sequence {M\;} to the sequence {U;} given by U,;=
> j(B,-,T"‘B;}*fBJ}‘))\j. We now claim that TRy— I is an operator of small norm. The
matrix TRy—1is (a;) with a;;=0if i=/, ar,~j=B,—,T"‘B,-‘}f""BJ,-7e if i#j. We now apply
the Lemma 3.2 with 4;=B%. Thus we must show

(-]

(3.6) _)31 BteB<tP1 < cBytha
I=
J#i

for some small ¢ which is independent of i/ and we must similarly show that for some
small ¢ which is independent of j

0

3.7) Y BgteB;;*t8a < cBgtAp,

=

-
Both of these estimates follow from Lemma 3.1 as soon as we verify that the appro-
priate inequalities are satisfied by the exponents. The quantity r in (3.3) must satisfy
r>—ep; thus —1—r<—1+4e¢p. Hence to have (3.6) and (3.7) be instances of (3.3)
we must have:

3.8) —e+Bg<—1+¢p
3.9) a+B8g>0
(3.10) —a+Bp<—l+¢p
3.11) e+B8p>0.

From (3.9) and (3.10) we find —a/g<B<(—1+¢ep+a)/p. We can find a 8 which
satisfies this if —a/q < (1+¢p+ a)/p. However, this inequality simplifies as r> —¢p.
Once S is selected we can then choose e large enough to insure that (3.5), (3.8) and
(3.11) are all satisfied. Thus if the separation constant K is large then S= TRy— I has
small norm. R=R,(I+S) ! is the required operator. The proof is now complete in
the case where (*) holds. O
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" The general result follows upon noting that the formulation is invariant. That is,
let B be any domain which is biholomorphically equivalent to a bounded symmetric
domain. There is a D which satisfies (*) and a biholomorphic map g of D to B [8].
The mapping from functions f(z) on B to F({) =f(g({))(detg’({))** is a norm
preserving map from A”"(B) onto AP-"(D). This is an immediate consequence of
the invariant property of the Bergman kernel ((2.9 of [2]).

Bp(g(z),8(¢)) (detg’(2))(detg’({)) = Bp(z, ).

Also, using this invariance we find that Bp*(§, O F($) =B (g($), 2())f(g({)).
g is an isometry from (D, dp) to (B, dg) and hence the theorem for B follows from
the result for D.

1V. Comments.

A. Some restrictions on K in (2.3) are needed. In fact, if D, p, r are given and KX is
sufficiently small then any S which satisfies (2.3) with that choice of K and which is
maximal with respect to that condition will fail to satisfy the conclusions of the
theorem. (See Proposition 4.1 of [2].) Also, the examples in [1] show that S can
satisfy the conclusion of the theorem for some p and r and not for others. This
suggests that K in the theorem depends in an essential way on p and r.

B. There are many unexplored questions related to these ideas. One is the question
of the validity of these results for harmonic functions on domains in R” (one
approach would be to develop the analogues of the results of [4]). Another is the
finding of the appropriate p= o (i.e., A =the Bloch space) result. This might be
more difficult (note, for example, that Lemma 3.2 does not apply).

C. Suppose D is the upper half plane and p=2. The spaces A" converge to
H*(R) as r— — % The interpolation problem for H?(R) is known to have a differ-
ent (and more delicate) solution. Roughly, our results are based on Lemmas 3.1 and

3.2 and hence are related to conditions on points z;= x;+iy; in U which insure that
ylrraylizie

the matrix ( ) be a bounded operator on /2 for various positive e;, €,.

IZi_Zj|1+E] +62
The numbers ¢; and e, can be taken near zero if r is close to —i. The H? inter-

polation theorem is related to conditions on the z; which insure that the matrix
172,172
(y—‘—yf_—) is bounded on /2 (see [7]).

|zi— Z;]

D. If D is the ball or polydisk and r= 0 then most of these results were obtained
earlier by Amar [1]. His proof uses estimates which are more explicit than ours. In
part this is because we lean on [2] and in part because we exploit the affine homo-
geneity to reduce Lemma 3.1 to the case {;=e. If we had tried to prove the Lemma
directly for the ball or polydisk we would have been led to calculations very much in
the spirit of [1]. Thus the difference in appearance between our analysis and his
should not obscure the fact that our analysis can be understood as Amar’s proof
done “‘in general’’.
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