A COVARIANT VERSION OF Ext

Vern Paulsen

1. Introduction. If H is a separable Hilbert space, and G is a topological group
with a strongly continuous unitary representation on H, then G acts by conjugation
on the bounded linear operators L(H) and on the Calkin algebra Q(H) =
L(H)/K(H), where K(H) denotes the compact operators. If G also acts on a
C*-algebra A, then *-monomorphisms of A into Q(H) which are compatible with
these two actions are called covariant extensions. In this paper we construct three
groups out of equivalence classes of covariant extensions, when G is 2nd countable
and compact, and A is separable and nuclear. Two of these groups are the analogues
of the weak and strong Ext groups of [3].

A systematic study of covariant extensions and of several closely related topics has
been undertaken in [4], [8], and [11]. In [4] an equivalence relation was defined on
the set of covariant extensions and in the case when G is finite and A = C(X), it was
proved that the equivalence classes of covariant extensions together with a binary
operation induced by direct sum forms an abelian group. We have been able to
generalize this result somewhat, but at the expense of a slightly weaker notion of
equivalence. However, we shall show that for G finite the two notions of equivalence
coincide.

Section 2 contains some preliminary definitions together with a covariant version
of Stinespring’s Theorem [12]. In Section 3 we introduce three equivalence relations
on the covariant extensions. Following the ideas of [2], we combine the covariant
version of Stinespring’s Theorem together with a result on the existence of covariant
completely positive liftings to prove that, for each of the three equivalence relations,
the collection of equivalence classes forms a group. We close Section 3 by describing
some of the relationships between these three groups. Some discussion of the
possibility of extending these results to noncompact G is included. In Section 4 we
calculate each of these groups for the case of the circle group acting on itself by
multiplication.

Our techniques and constructions are similar to those of Kasparov ([5], [6], and
[7]), but the special case we are interested in, while considerably simpler, allows for
some additional structure. In particular, our theory admits a natural action of the
representation ring of G, while this does not appear to be possible in Kasparov’s
theory. It is this action that facilitates the calculations of Section 4. In addition, we
feel that our construction is more amenable to generalizations to non-compact G.
We discuss the relationships between our theory and Kasparov’s in Section 5.

We would like to acknowledge many helpful conversations with William Paschke.
In addition, this paper rests heavily on the ideas introduced by Kaminker, Loebl, and
Schochet in their sequence of papers.
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2. Preliminaries. Let G be a topological group, A a C*-algebra, and Aut(A4) the
group of automorphisms of A. We shall call a homomorphism a: G— Aut(A4) an
action of G on A and call A a G-C*-algebra. If g — «a(g)(a) is continuous for all a
in A, then following [9], we shall call (A4, G, «) a C*-dynamical system. If p: G—> A
is a homorphism of G into the unitary elements of A4, then setting a(g)(a) =
p(g)ap(g~") defines an action of G on A, which we denote by ad(p). If A and B
are G-C*-algebras with actions « and S, respectively, and ¢ : A — B is any map, then
we say ¢ is covariant if ¢(a(g)(a)) =p(g)(¢(a)) foralla€ A and g€G.

The following is a spatial version of [6, Theorem 3]. The hypothesis that G be
compact can be omitted in this version.

THEOREM 2.1. (Covariant Version of Stinespring) Let (A,G,«) be a unital
C*-dynamical system, and let p be a strongly continuous unitary representation of G
on a Hilbert space H. If y: A — L(H) is a unital covariant, completely positive
map, then there exists:

i) a Hilbert space K,

ii) a representation © of A on K,

iii) a strongly continuous unitary representation p of G on K,

iv) an isometry V:H—>K
such that

1) Y(a)=V*'n(a)V,

2) V(H) reduces g and p(g) =V*p(g)V,

3) = is covariant with respect to ad(p).

Furthermore, if A and H are separable, then K may be taken to be separable.

Proof. Statements 1), ii), and iv) are part of the standard version of Stinespring’s
Theorem. It will be sufficient to include in the construction of K a representation j.
We only sketch the construction; the details are routine.

Recalling the proof of Stinespring’s Theorem from [1], one first forms the
algebraic tensor product, A ®H, and endows it with a pre-inner product by setting
(a®v, bOW) 40 = (¥ (b*a)v, w)y and extending linearly. To obtain K one
divides by the kernel of (, )4gx and completes. The representation 7 of A is
defined by 7 (a) (b&®w) = (ab) ® w. The isometry V: H—>K is defined by V(w) =
lA XXw.

We define p: G— L(K), by setting g(g)(a®v) =(a(g)a)X(p(g)v) and ex-
tending linearly to A ® H. Since

(5(g)(a®v), p(g)(b®W)aen = ((a(g)a)®(p(g)v), (a(g)D)R(p(g)W))aon
=Y (alg)(b*a))p(g)v, p(g) Wiy
= (Y (b*a)v, wig = (a®u, bR W)y,

we have that 5(g) extends to an isometry on K. Furthermore, since 5 is clearly a
group homomorphism, we have that 5(g) is unitary.

A similar calculation, using the norm continuity of «(g)(@) and the strong
continuity of p shows that g is strongly continuous on finite sums of elementary
tensors and then the fact that ||5(g)|| <1 allows one to pass to limits. Finally, we
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note that p(g) = V*s(g)V, from which it follows that V(H) reduces g, since p(g)
and g(g) are unitary, and that

T(a(g)a) (b®w) = ((a(g)a)b) ®w = p(g)w(a) (g~ ") (b W).
This completes the proof of the theorem. a

3. The main results. Throughout this section we shall assume that (A, G, «) is a
covariance system, with G a 2nd countable, compact group and A a separable,
nuclear, unital C*-algebra. For 7 in L(H), we shall let T denote its image in the
Calkin algebra, Q(H)=L(H)/K(H).

By a covariant extension we mean a pair (7, p) where 7 is a unital *-monomor-
phism of A into @ and p is a strongly continuous unitary representation of G on H,
such that 7 and ad(p) are covariant. We define a covariant extension to be split, if
there is a unital *-monomorphism 0 of A into L(H) with § = 7 such that  and ad(p)
are covariant. Two covariant extensions (7, p) and (7', p’) are rigidly equivalent
(denoted: (r,p)~,(7’,p')), if there exists a unitary U in L(H) with U*r(a) U=
7’(a) and U*p(g)U=p’'(g) for every a€ A and g € G. We shall call two covariant
extensions strongly equivalent ((7, p) ~;(7’,p")), if there exists a unitary U in L (H)
with U*r(a) U= 1'(a) and U*p(g) U=p’(g) for every a€ A and g €G. If Uis only
required to be unitary in Q(H) in the above relationships then we shall call (7, p)
and (7', p’) weakly equivalent ((7,p)~, (7', p’)). Finally, two covariant exten-
sions (7, p) and (7', p’) are (respectively, rigidly, strongly, weakly) stably equiva-
lent if there exist split extensions (¢, ¢) and (¢’, ¢’) such that (7@ ¢, p@o) and
(r"De’, p’@Do’) are respectively, rigidly, strongly, or weakly equivalent. We shall
use (7,p0)=,(7', p’), (7, p)=s(7', p’), and (7, p) =, (7', p’) to denote, respec-
tively, rigid, strong, and weak, stable equivalence.

We note that all six of the above relationships are, indeed, equivalence relations
and that the rigid, strong, and weak (respectively: stably rigid, stably strong, stably
weak) are linearly ordered from finest to coarsest. In addition, all split extensions are
equivalent in all three of the stable relations. We denote the stable equivalence class
of (7, p) by [7, pl,, [7, o], Or [7, o], respectively, and the collection of stable
equivalence classes by Ext;(A), Ext;(A), or Extg(A4). We shall frequently omit
the subscripts, or superscripts, and refer only to equivalence or stable equivalence
when the particular equivalence relation is unimportant.

REMARK 3.1. The set Ext;(A) is non-empty; that is, there always exists a split co-
variant extension. To see this let 6 be a faithful representation of A on a separable
Hilbert space, H, with §(A) NK(H) = (0), and define a faithful representation O of
A on L?%(G,H) by (0(a)®)(g)=0(a(g a)®(g). Let 5 be the strongly con-
tinuous unitary representation of G on L?(G,H) given by left translation, i.e.,
(p(g)®)(h)=®(g~'h). Then since © and p are covariant and since ©(A4) misses
the compact operators on L2(G, H) we have (0, p) is a covariant extension. Note
that we used the 2nd countability of G to insure that LZ2(G, H) was separable.

REMARK 3.2. We note that in the above construction of the covariant extension
(9, p), every irreducible representation of G occurs as a subrepresentation of p with
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infinite multiplicity. If (7, ¢) is any covariant extension, then (7, ¢) = (7@®0, c®p)
as can be seen by direct summing the left- and right-hand sides with the split exten-
sions (6@®8, p@p) and (b, p), respectively. Thus, every covariant extension is stably
equivalent to a covariant extension (7, p,,) where every irreducible representation of
G occurs as a subrepresentation of p, of infinite multiplicity.

We define a binary operation on Extg(A) by [7,p]l+ 7,01 =[7®7, p@Dp’],
where the usual identification of H@®H with H has been made. The following is
immediate:

' PROPOSITION 3.3. Extf;(A), Ext5(A4), and Exti(A) are abelian semigroups
with identity. The identity is, respectively, the rigid, strong, or weak stable equiv-
alence class of the split extensions. Furthermore the maps i, :[7,p], = [1,pls;
irw:lnpl, = [70)y, and i, : 7, p)s—> [ 7, pl,, define semigroup homomorphisms
which are onto, with i ,°i, =i, ,.

We note that if (7, p) is a covariant extension with a faithful representation 6 of 4
and a strongly continuous unitary representation ¢ of G such that § and ¢ are co-
variant with =7, 6=, then (7, p) is strongly equivalent to a split extension.

We shall occasionally need to integrate strongly continuous operator valued func-
tions. We record the following observation for future reference.

LEMMA 3.4. Let X be a compact topological space, u a finite measure on X, and
let T(x) be a strongly continuous operator valued function. If T(x) is a compact
operator for all x, then | T(x) du is a compact operator.

Proof. Let P, be a sequence of finite rank projections converging strongly to 1
and let K, =[P, T(x)P,dy, then K, is finite rank. Since sup,e x| 7(x) || < + % by
the uniform boundedness principle and the fact that X is compact, we have

IK=K, | < [ 17(x) = P, T(x) P, di = 0,

as n—> o0 by the Dominated Convergence Theorem and since
| T(x)—P, T(x)P,|| =0
pointwise. Hence K is compact. O

We are now in a position to proceed with the proof that Ext;(A) is a group. We
begin with a lemma.

LEMMA 3.5. (Existence of Covariant Completely Positive Liftings) Let (A4, G, )
be a C*-dynamical system with G compact and A separable and nuclear with unit. If
(7, p) is a covariant extension of A, then there exists a unital completely positive
map : A— L(H) with =7 such that  and ad(p) are covariant.

Proof. Since A is nuclear, there exists a unital completely positive lifting ¢ of 7.
We set

V(@ = |o(@) "elal))nle) dg,

where dg is Haar measure on G.
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It is easily checked that ¢ is unital and completely positive. Furthermore,
p(g)*e(a(g)a)p(g) — ¢(a) is strongly continuous and since (7, p) is a covariant
extension it assumes compact values. Hence, by Lemma 3.4, y=¢=7.

Finally, ¢ is covariant with respect to ad(p), since for h€G,

p(R)Y(a)p(h™1)* = Sp(hg"’hp(a(g)a)p(gh"l) dg

= {p(ee(ate'marn(e’) dg’ = v(ama),

where g’=gh . 0

THEOREM 3.6. Let (A, G, «a) be a C*-dynamical system with G compact and 2nd
countable and with A separable and nuclear with unit, then Ext;(A), Extg;(A), and
Ext$(A) are groups.

Proof. By Proposition 3.1 it will be sufficient to show that Ext;(A) is a group.
Let (7, p) be a covariant extension, again by Proposition 3.1 it will be sufficient to
construct a covariant extension (7’,p’) such that (+®7’, p@p’) is rigidly stably
equivalent to a split extension. To this end let ¥ : A — L (H) be a completely positive
lifting of 7 which is covariant with respect to ad(p). Applying the covariant version
of Stinespring, we have a representation #:A4 — L(K), with K separable and a
strongly continuous unitary representation g:G— L(K). If we let P denote the
projection onto V(H)*, where V:H—K is the isometry guaranteed by Proposi-
tion 2.1, then as noted in [2], P essentially reduces §. Furthermore, by Proposi-
tion 2.1, P reduces g. Thus, we may define (7’,p’) by 7'(a) = PO(4) P@TO(G) and
p'(g)=0(g) | px @po(g) where (79,p¢) is a split extension. It is straightforward to
check that (7@ 7', p@p’) is split. a

REMARK 3.7. We note that the proof of the theorem shows that even if G is non-
separable but compact, then the existence of any covariant extension (7, p) insures
the existence of a split extension (on a separable Hilbert space) and hence an identity
for Ext;(A). Thus, even for non-separable, compact G, if there exist any covariant
extensions at all, then the sets Ext;(A), Ext;(A), and Extg(A) are groups.

REMARK 3.8. Let (A4, G, a) be a C*-dynamical system with G locally compact and
2nd countable, and A separable and nuclear with unit. Remark 3.1 combined with
the proof of Theorem 3.6 actually shows that the set of stable equivalence classes of
covariant extensions, that have covariant, completely positive liftings, forms a
group. We do not know whether or not all covariant extensions enjoy this lifting
property, or how to characterize those that do.

We shall now partially describe the relationship between the groups Extgz(A),
Ext;(A) and Extf(A). We obtain a generalization of the fact that Ext" is a
quotient of Ext® by an action of Z. Recall the definition of inds; from [8]. If p is a
strongly continuous unitary representation of G on H, then an operator T is called
G-Fredholm if T'is Fredholm and 7 is fixed by ad(p) . In this case T= S+ K where S
is fixed by ad(p) and K is compact [8, Proposition 3.1]. Since S is fixed, ker (S) and
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ker(S*) are G-invariant subspaces, and one defines
indg(S) = [ker §] — [ker S*] € R(G)

where R(G) is the representation ring of G. One sets indg(7) =indg(S) and
this definition is independent of the particular fixed operator S. If every irreduc-
ible representation of G appears infinitely often, then ind; maps onto R(G),
[8, Theorem 5.1}.

Let (7,p) be a split extension of A, with every irreducible representation of G
appearing infinitely often. Let m € R(G) and let U be G-Fredholm, and essentially
unitary with indg(U) =m. Note that (U*7U,p) defines another covariant exten-
sion. We claim that the rigid equivalence class of this extension is independent of the
choice of U. That is, if V is G-Fredholm and essentially unitary with indg5 (V) =m,
then (V*7V,p) ~,(U*rU,p). To see this, note that indg(¥V*U) =0 and so by [8,
Theorem 3.2] there exists a fixed unitary W with W—V*U compact. Hence,
W(U*TUyW* = V*7V and WpW* =p. A similar check shows that the rigid stable
equivalence class of (U*7U, p) is independent of the split extension (7, p), and we
denote it by [7, p],,-

In what follows we let Ry(G) denote the subgroup of R(G) consisting of formal
differences of G-modules, nm; —m, for which dim(m,) = dim (m,).

THEOREM 3.9. The following sequences are exact:

il' w
R(G) — Extz(A) > ExtE(A4) — 0,
and _
’r,s
Ry(G) — Extg(A) — Extiz(A) — 0.

Proof. First we show that m — [7, pl,, is a homomorphism. Let m,, m, € R(G),
and let U;, U, be G-Fredholm, essential unitaries with indg(U;) =m;, i=1,2. We
have (Ut UsrU,U,, p) =, (UtU3r U, U, @1, p®p). Since indg(UF®U,) =0, by
[8, Theorem 3.2] there is a unitary V which commutes with p+p, indg(V) =0, and
Ut @U,~V is compact. Thus, (UtUsrU, U, @7, p@®p) ~, (V* (Ut U310, U, 1) V,
V¥ (p®p) V) = (UirU, @ UtrU,, p®p), and so [7,0)m +m, =7, 0)m, + (7 010,
Hence, m — [ 7, p],, is a homomorphism.

Next, let [7/,p’1, € ExtG(A) be an element in the kernel of i/, ,. That is,
(7',p")=, (7, p), where (7, p) is split, and p contains every irreducible representa-
tion with infinite multiplicity. Let (v, o) and (vy’, ¢’) be split extensions such that
(7"®DY, p'@P0’) ~, (7D, p@0o). Without loss of generality, we may assume that
p'@c’=p@o. Thus, since we have an essential unitary U with U*(7@~v)U=
@y’ and U*(p@é) U= p@s, we see that U is also G-Fredholm and if m =
indg (U), then [7/,p0'] =i, ,([T®y, pD0c],,). Hence, the top sequence is exact.

The proof that the second sequence is exact is identical, once one observes that
m€E€Ry(G) and indg(U) = m implies ind (U) = 0. O

We close this section with a result relating the covariant Ext groups to the ordinary
Ext groups in the case where G is finite. We let G X_,A4 denote the crossed product



A COVARIANT VERSION OF Ext 137

(or covariance algebra) [6] of (A, G, a). We recall that G XA is the C*-completion
of the continuous functions from G to A with respect to a certain involution and
product. For finite G, the map g — 6., where 4, is the characteristic function of {g]}
times the identity of A, defines a homomorphism from G into the unitaries in
GXx,A. Also, for ain A, if we set @a=6,+a, then a— a defines a *-monomorphism
of A into GX,A4, and GX,A is the C*-algebra generated by the set of §,’s and &’s.
Further, if p is a homomorphism from G into the unitary group of some C*-algebra
B, and 6 is a *-homomorphism of A into B such that # and ad(p) are covariant, then
there is a *-homomorphism of G X, A into B given by 6, —>p(g), @—>0(a). Finally,
if C*(G) denotes the subalgebra of G X, A generated by the image of G, then since
G is finite C*(G) will be finite dimensional. The following result is essentially con-
tained in [4].

PROPOSITION 3.10. Let G be a finite group, then Ext” (G X,A) and Ext{(A) are
isomorphic. In addition, there is an exact sequence

0 — Ext5(A) — Ext (Gx,A) —> ExtS(C*(G)) — 0,
where i: C*(G) — G XA denotes inclusion.

Proof. We begin by proving the second statement. Given a covariant extension
(7, p), by the above observations there is a *-homomorphism of G XA into Q(H)
given by 6, = p(g), a—>7(a). By direct summing (7, p) with a split extension, we
can make the above map into a *-monomorphism without changing the stable
equivalence class of (7, 0). A moment’s reflection shows that given two covariant
extensions (7,p) and (7', p’) the *-monomorphisms of GX,A obtained in this
fashion will be strongly equivalent if and only if (7, p) and (7/,p’) are strongly
stably equivalent. This shows exactness at Ext;(A).

If [o] € Ext’(GX,A) with i*[¢] =0, then we may define a covariant extension
(7, p) by setting 7(a) =0o(a), and letting p(g) = ¢(8,) where ¢ is a lifting of o
restricted to C*(G). Clearly, o will be the *-monomorphism associated with (7, p).
This shows exactness at Ext*(G X, A4).

Finally, to see that /* is onto, we note that since C*(G) is finite dimensional,
Ext¥(C*(G)) = 0. Thus, every element of ExtS(C*(G)) is weakly equivalent to the
trivial element. Hence, by conjugating the trivial element of ExtS(GXx,A4) by
essential unitaries of non-zero index, one obtains elements of Ext*(G x,A) which
restrict to any element of ExtS(C*(G)).

To obtain the isomorphism between Ext#(A4) and Ext (G X,A), one repeats the
above argument with strong equivalence replaced by weak equivalence and observes
that since Ext*(C*(G)) =0 one actually obtains an isomorphism. O

In the next section we give an example of a non-discrete group for which Ext%(A4)
and Ext” (G Xx,A) are not isomorphic.

4. The circle group. Let 7 denote the circle group. We define an action of 7 on
C(T) by (a(N)f)(z) =f(Az), so that (C(T), T, «) is a C*-dynamical system. In
this section we shall prove that
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+o0
Ext7(C(T)) = Y @Z,

Exty(C(T)) =Z®Z, and Ext¥(C(T)) =2Z

where Z denotes the integers and the direct sum denotes the collection of infinite-
tuples of integers which are 0 in all but finitely many entries. For convenience we
write an element of the direct sum as ¥ n;e; where e; denotes the vector which is 1 in
the jth coordinate and O elsewhere. In addition, one has

ExtS(TX,C(T)) = Ext"(TX,C(T)) = (0).

We begin by making a few observations. First, given a covariant extension (7, p),
by Remark 3.2 we may assume that p=p, without changing the stable equivalence
class of ('r, p) For the circle group, o Dy is the strongly continuous unitary representa-
tion on L,J=°_ . @ H, by pu(N) = F e DN 1y, where each H,=H and dim(H) =
+o0, Let ¢ be a completely positive covariant lifting of 7, and let Z denote the
coordinate function on T. A simple check shows that the doubly infinite operator
matrix, ¢ (Z) = (V; ;)2 _ must satisfy ¥; ;=0 when i—j# 1. For convenience we
set V;=V, ;_,. Since y(Z) is essentially unitary, we have that V*V;—1, V;V*—1 are
compact for all i, and that as |i| > + oo, their norms tend to 0. Using the polar
decomposition, we write V; = U; P;, then each U, is also essentially unitary, V;— U, is

compact, and as |i| — +o0, it tends in norm to 0. Furthermore, if |[VVi—1]<l

and || V;¥*~1|| <1, then U; is unitary. We set U= (U, ;);"/2 _o with U; ;=0 when
i—j#1, and U,,,_l = U;. By the above we have that y(Z)—U is compact, U is
essentially unitary, and there is an N such that for |n| > N, U, is unitary.

Now given two covariant extensions (7,p,) and (7',p,), let U and U’, respec-
tively, be the essential unitaries associated with them by the above construction. We
claim (7, p,) =,(7, p,) if and only if ind(U;) =ind(U;’) for all i. Note that if (v, p,)
is split and W is the associated essential unitary, then necessarily ind ( W;) = 0 for all
i. Thus to prove the above claim, it will suffice to prove that (7, p,) ~,(7’, p,) if and
only if ind (U;) =ind(U/) for all i.

So assume (7, p,) ~, (7', p,). Thus, there is a unitary W, which commutes with p,
such that W*UW — U’ is compact. Since W commutes with p,, we have that W=
(W, ;)2 _ with W; ;=0 when i#j. Setting W; =W, ;, we need W}U;W;_;— U/ to
be compact and tend in norm to 0 as |i/| = +. Since each W, is unitary we have
ind(U;) =ind(U;) for all i.

Conversely, assume ind(U;) =ind(U;) for all i. We know that there is an N such
that for |n|> N, U, and U, are unitary. We define W as follows.

Let Wy=1. Assume W,_, is defined and unitary for 0 <i< N. Since ind(U;) =
ind(U/), ind(U; W;_, U/*) =0, and thus there is a compact operator K; such that
UW;,_ U/*+K;= W; is a unitary. For i> N, let W;=U,;W,_,U/*. Similarly, for
N<i<0,weset W,_,=UW,U/+K;_,, where K;_, is compact and chosen to make
W;_, unitary. For i< —N—1, we simply set W;_, = U}W,U/. Let W=YL‘t° , ®@W,.

Since W}rU,; W;_, — U/ is compact for —N—1<i<N and is 0 for all other values
of i, we have W*UW - U" is compact, where W is a unitary that commutes with p,.
Thus, (7,p,) ~,(7", p,), which completes the proof of the claim.
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The above claim shows that we have a well defined, one-to-one homomorphism,
+ o0
r:Ext;(C(T)) » ¥ ®Z,

given by r([7,0,1,) = e ind (U;)e;, where the essential unitaries U; are as above.
Furthermore, this map is onto since given any sequence L3 n ;ej, we may define
U= (U; ;)2 — by setting U; ;=0 if i—j#1 and letting U,;_, be an essentlal
unitary of index n;. We then have a covariant extension (7, p,) given by 7(Z) =

and r([7,p,]1,) =X nje;.

REMARK 4.1. We remark that even though the U defined above is not in the usual
domain of the T-index map, since p,(N) Up#()\“) = AU, we have that ker (U) and
coker (U) are T-modules. Thus, we obtain an element of R(7’) by setting indg(U) =
[ker U]—A[coker U]. If we let j(A) =M, then we may identify R(T) with Y @®Z
via X njj— L nje;. We see that with these identifications, if U is the essential uni-
tary associated with [7,p,], then r([7, p,]) =ind (V).

To prove that Ext3-(C(T)) = Z® Z we shall make use of Theorem 3.9. Let (7, p,)
be the split extension defined by 7(Z) = B, where B denotes the block bilateral shift,
i.e., B=(B;;) with B; ;=0 if i—j#1 and B;;_;=1y. Let ¥ n;j be an arbitrary
element of Ry(T), so that ¥ n; =0, and let W be an essentially 7-Fredholm unitary
with ind7(W) = ¥ n;j. Thus, we may set W= Y @ W; where each W; is essentially
unitary with ind (W) = n;, and when n; =0, W; is unitary. We have W*BW = (U, ;),
where U; ;=0, if i—j#1 and U;=U;;_, is an essential unitary of index n;_; —n;.
Thus, the exact sequence of Theorem 3.9 becomes

Ry(T) 5 L®Z — Ext5:(C(T)) = 0

with qo(E njf) =Y (nj_; —nj)e;. To identify Ext7-(C(T)) we need only compute the
cokernel of this map. To this end, we define h: Y ®Z—>ZDZ by h(EmJe,)
(X nj, Xjn;). We claim that 4 is onto and that ker () =im(¢). First, & (e,) = (1,0)
and h(e; —ep) = (0, 1), so that & is onto. Next, note that

he(Lnsi) = h(Z (o1 —npe;) = (T(njes —ny), Tinje = 1)) = (0,0).
J
Thus, im(¢) Sker(h). Let ¥ mje; € ker(h), and say m; =0 for |j|>N. Set n;=0
for j2 N, and let n;_; =m;+nj; then n;_, =0 for j < —N. Also,
Yong=Yj(nj_y—ny) = Yjm;j=0.

Hence, Enjfe Ry(T) and go(Enjf) = Y. mje;, so that ker(h) <im(g). Thus, the
cokernel of ¢ and hence Ext%(C(T)) are isomorphic to Z@®Z. O

A similar application of Theorem 3.9 yields the result for Ext%(C(7)). We sum-
marize the above results in the following:

THEOREM 4.2. Let a: T— C(T) be given by (a(N)fY(Z) =f(NZ); then
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+ o0
Ext7(C(T)) = _)%@Z,

Ext3(C(T)) =Z®Z, and Ext}(C(T)) = Z.

Furthermore, if (1,p,) is a covariant extension with associated essential unitary
U= (U, ), then the above isomorphisms are given by the maps:

[, 0,1, —>Eind(U,-,,-_1)e,-,
[7,0,)s = (Tind(Ugim), i-ind(Uyin),

[70,] = Lind(U;;-y).

REMARK 4.3. A calculation similar to the one carried out in Theorem 4.2 shows
that for (C(T), T, «") one has Ext¥(C(T)) = Z". As before, one associates to a co-
variant extension (7, p,,) an essential unitary U= (U, ;) and finds that U; ; =0, unless
i—j=n. Setting U;= U, ;_,, one obtains an n-tuple ( £{=_ ind(Uy,4;))j=; which
only depends on the weak equivalence class of (7, p,). This correspondence defines
the isomorphism between Extg(C(7T)) and Z". However, T X »C(T) is isomorphic
to the direct sum of n copies of the compacts [10], and hence Ext¥(T X ~C(T)) =
(0). The above examples show that Extf% can distinguish between group actions
which Ext" of the corresponding covariance algebra identifies.

5. Relationship with Kasparov’s Ext(A, B). Kasparov has constructed a group
Ext(A, B) from equivalence classes of extensions of C*-algebras of the form

(1) 0 >BRK(H) > E—>A-50

where A is nuclear and separable, B has countable approximate unit, a 2nd count-
able, compact group G acts on both A and B, and all homomorphisms respect the
actions of G. The Busby invariant identifies extensions of the above form with
*-monomorphisms of the type we consider and leads to an identification of one of
our groups with one of Kasparov’s. It is the purpose of this section to describe this
identification.

Unfortunately, Kasparov is somewhat vague in describing the action of G on
B®K(H) and this will be necessary to our identification. A careful reading of
[6, Lemma 4] shows that for the isomorphism between Kz and BQK(H) to respect
the G-actions, the action of G on 1 @ K(H) cannot be the trivial action as is implied
in [7, Section 7(2)]. Instead, the action of G on BQK(H) must be taken to be
B&®ad(p,), where § is the action on B and ad(p,) is the action on K(H) induced by
a strongly continuous unitary representation p, of G on H in which every irreducible
representation of G occurs with infinite multiplicity.

When B=C, CQK(H) =K(H) and an exact sequence of the above form induces
a possibly non-unital *-homomorphism 75 of A into Q(H). The requirement that
the homomorphisms in (1) respect the actions of G, is equivalent to requiring that
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(7g,p,) be covariant. Conversely, given a covariant extension it is stably equivalent
to one with a representation unitarily equivalent to p, and determines an extension
of the form (1).

The group Ext (A, C) consists of equivalence classes of extensions of the form (1),
where two extensions 75 and 7g- are equivalent if there exist (not necessarily unital)
split extensions (¢, p,) and (¢’, pu), and a unitary Uon L(H® H) fixed by p, @ p,
such that U*(1:® ) U = 75 @ ¢’. The existence of nonunital split extensions
makes Kasparov’s seemingly rigid equivalence relation identical with our weak stable
equivalence relation. An analogous identification occurs between the weak and
strong Ext [3], without group actions, when the unital hypothesis is dropped and our
argument is the same. For completeness we sketch the argument.

If (79,p9) and (7,,p,;) are two covariant extensions which are stably weakly
equivalent then we shall show they are equivalent in Kasparov’s sense. To see this it
will be sufficient to assume that py=p; = p, and that there exist unital split exten-
sions (¢9,0,), (¢1,p,), and an essential unitary U in L(H®H) which essentlally
commutes with 0, ®p, such that U*(To@qao) U= T1@¢,. Since indg(UDU*) =
there will exist a unitary Win L(H®H®H® H) which commutes with

PL@p. Do, Dp,,

is a compact perturbation of U® U*, and hence

W*(1o® po@0DO) W = 7,® 0; ®ODO.

Thus, (79,p¢) and (7,,p;) are equivalent in Kasparov’s sense.
Conversely, suppose there are (not necessarily unital) split extensions (¢g,0,),
(¢1,p,) and a unitary U which commutes with p, @ p, such that

U (10@ ) U=1@ o).

Let y4 and +; be covariant *-homomorphisms which are lifting of ¢, and ¢,, respec-
tively, and set P;=+;(1) for i=1,2. Setting V= (1®Py)U(1®P;) defines an
essential unitary from the range of 1@ P; to the range of 1® Py, which commutes
with p, @ p,. Thus, the compression of (7;® ¢;, o, Dp,) to the range of 1®P; for
i=1,2 are unital covariant extensions which are weakly equivalent. Finally, since
(¢isp,) compressed to the range of P; is still split for i=1,2, we have (7¢,p,) and
(71,p,) are stably weakly equivalent.

The above identification of Kasparov’s equivalence classes of extensions with our
stable weak equivalence classes of covariant extensions is a bijection which preserves
the group operations.

THEOREM 5.1. Let (A,G,«a) be a C*-dynamical system with, G 2nd countable
and compact and A separable and nuclear with unit, then Ext}(A) and Ext(A, C)
are isomorphic.
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