CAUCHY TRANSFORMS AND BEURLING-CARLESON-HAYMAN
THIN SETS

Joel H. Shapiro

1. INTRODUCTION

Let A denote the open unit disc of the complex plane, and 7 the unit circle.
The Cauchy transform of a Schwartz distribution w on T is the function C,
holomorphic in A defined by

Col&) = Bln)z"=(wk) (€A,
n=0

where k, is the Cauchy kernel k2,(r) = (1 — %2) ', (+ € T) and & is the Fourier
transform of p [9; Chapter I, sec. 7, Problem 5, pp. 43-44]. In this paper we
characterize those closed subsets E of T for which C, has bounded characteristic
in A whenever support pn C E.

To get some feeling for this problem, observe that if E is a finite set and
support p C E, then C, is a linear combination of derivatives of Cauchy kernels,
hence simple estimates show that C, belongs to the Hardy space H” for all sufficiently
small p. In particular, C, has bounded characteristic in A. On the other hand,
if E = T then there are distributions which are “almost measures” for which
C, is not of bounded characteristic [8; Chapter X, Prop. 2, p. 110].

Our characterization involves the decomposition of T\ E into a countable disjoint
union of open sub-arcs (I,) of T. Letting ¢, denote the length of I,, we can state
the main result as follows:

THEOREM. The following statements about E are equivalent:

() If n is a distribution with support contained in E, then C, has bounded
characteristic in A.

(ii) E has measure zero and 2 €, log e, > —oo,

The sets E of measure zero for which 2 €, log €, > —oo are usually called Carle-

son sets, and they have an interesting history. They were first introduced by A. Beurl-
ing [2], who observed that if a function f is continuous on the closed unit
disc, holomorphic in the interior, and satisfies a Lipschitz condition on 7, then
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{+€ T:f(x) =0} is a Carleson set. Later Carleson [3; Theorem 1] showed that
every such set E is the boundary zero set of a function f;; continuous in the closed
disc, holomorphic in the interior, and n times continuously differentiable on T';
where n is any positive integer, but f; depends on n. More recently Novinger
[14] and Taylor and Williams [15] showed that f; can be taken to be infinitely
differentiable on T, Nelson [13] and Korenblum [11], gave shorter proofs of this;
and Caveny and Novinger [4] obtained Beurling’s result for functions with
derivative in H'. -

Simultaneously with Carleson’s work, Hayman [7] independently discovered
Carleson sets as a means for rescuing the Block-Nevanlinna conjecture [5; Chapter
5, page 92]. He showed that if a function f of bounded characteristic extends
over the complement of a Carleson set E to a domain D with certain geometric
properties, and if for each a € C the equation f(z) = « does not have too many
solutions in D away from oD, then each derivative of f has bounded characteristic.
Recently P. Ahern [1] showed that it is necessary in Hayman’s result that E
be a Carleson set, thus improving an earlier result of P. B. Kennedy [10].

This paper continues in the direction of Hayman, Kennedy, and Ahern. It is
not difficult to check that the Cauchy transform of a distribution p on T extends
holomorphically to ¢\ support . (C = extended complex plane), and no further.
Since the derivatives of such Cauchy transforms are themselves Cauchy transforms,
our first theorem states that if C, extends holomorphically over the complement
of a Carleson subset of T, then C, and all its derivaties have bounded characteristic
in A. This result, while similar to Hayman’s, does not follow from his, since C,
is not initially assumed to be of bounded characteristic.

In the other direction our result shows that if £ is not a Carleson set, then
there is a Cauchy transform C, which extends holomorphically to C\E, but is
not of bounded characteristic. In fact our C, will be the derivative of the Cauchy
transform of a measure supported in E, thus providing yet another class of
counterexamples to the Bloch-Nevanlinna conjecture. This part of our result is
close in spirit to the work of Ahern [1], who constructs a Blaschke product in
A which extends holomorphically across E, but has derivative not of bounded
characteristic.

The paper is organized as follows: The main result is stated precisely in the
next section, and Section 3 contains some preliminary work needed for its proof.
In particular, elementary facts about Gaussian random series play a role and
these are described in some detail. Finally the main theorem is proved in Section
4,

2. STATEMENT OF MAIN RESULT

From now on let m denote normalized Lebesgue measure on the unit circle
T. If f is a complex valued function on the open unit disc A, and 0 = r < 1,
we define f.: T— C by f,.(x) = f(r7), (+ € T). We will be dealing with the following
classical spaces of functions holomorphic in A. First there is the Nevanlinna class
N consisting of functions f of bounded characteristic, that is:
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0=r<1

sup S log™ | f,|dm < oo
T

An important subclass of N is the Smirnov Class N*, which is the collection
of f € N for which

2.1) lirln S log*| f.|dm = g log™ | f(x)|dm(7),
== J)r

T

where f(t)'= lim f(r1), and the limit exists for [m] a.e. v+ € T by Fatou’s radial

r—l—

limit theorem [5; Theorem 2.2, page 17].

The collection of finite complex Borel measures on T will be denoted by M(T),
and the Schwartz distributions on T by Z(T'). All ideas and notations about these
distributions will be as in [9; Chapter I, Sec. 7, pp. 43-44, Problem 5]. In particular:

(a) Z(T) is the dual space of C*(T'), with the pairing
(2.2) (me) = D A()e(-n)

where p € Z(T) and ¢ € C”(T'). Note that in [9] Katznelson defines the pairing
with ¢(n) instead of ¢ (—n); an inessential difference.

(b) The support of . € Z(T) is the complement of the largest open subset
U of T for which (u,p) = 0 whenever ¢ € C”(T) vanishes off U, If ¢ € C~(T)
and ¥ = 1 on support p, then Yp = p.

(¢) n has order n if p is a continuous linear functional on C"™ (T). The collection
of distributions on T of order n is denoted by 2" (T) (n = 0,1,2,...). In particular,

2°(T) = M(T), and the pairing (2.2) can be written (p,p) = S ¢dp for
T

¢ € C*(T) and p € 2°(T). 1t is easy to see that 2(T) = | J 2™(T).

n=0

(d) A simple calculation shows that if p. € Z(T'), then
(2.3) izC, (2) = C,.(2) (z € A)

where C|, is the derivative of C, with respect to 2z, and p’ is the (real variable)
distributional derivative of ., defined by the formula [i’(n) = in {i(n) for all
integers n. Note that support p.” C support w, so (2.3) asserts that C;, is essentially
the Cauchy transform of a distribution with support contained in that of p..

(e) One final bit of notation is convenient. If E is a closed subset of T, and
X C Z(T), then X; = {, € X:support p. C E}. In particular, M (T) denotes
all finite complex Borel measures on T with support in E.
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We can now state the main result of this paper. In what follows, E is a closed
subset of T' with T\E = U I, the canonical decomposition of the complement
of E into disjoint open intervals.

THEOREM 1. The following seven statements about E are equivalent:
@) m(E) = 0 and > m(I,)logm(,) > —.

(i) C, € N™ for every p € Z;(T).
(iii) C, € N for every p € Z(T).
(iv) C € N* for every p. € Mg(T) (n=0,1,2,...).
v) Cﬁ” € N for every p. € My(T) (n =0,1,2,...).
(vi) C|, € N™ for every p. € M(T).
(vii) C,, € N for every n € Mg(T).

We prove this result in Section 4, devoting the third section to the necessary
preliminaries. The reader should note that in Theorem 1 the implications
@) = (i), @{v) > (v), (iv) > (vi), (v) = (vii), and (vi) = (vii) are completely
trivial, while (ii) = (iv) and (iii) = (v) follow immediately from successive ap-
plications of (2.3). So in Section 4 we will only have to prove (i) = (ii) and
(vii) > (i). The former implication follows from a growth condition on C,, while
the latter depends on elementary properties of Gaussian random series.

3. PRELIMINARY RESULTS

a. Growth estimate for Cauchy transforms. If E is a subset of T and
|z| = 1, write pg(2) = dist (z,E) = in£ |* — 2|. For q > 0, write
TE

E ,={r€ T:psM<n)y=U L&

T€E

where I (1) is the open interval of T centered at = and having arc length 2v.
For ¢ € C*(T), let | ¢|l.. = max {|¢(7)| : 7 € T}. The following result is undoubted-
ly well known, but we have not been able to find a reference, so a proof is included.

LEMMA A. Suppose E is a closed subset of T and p € D% (T). Then there
is a constant A, > 0 such that

IC,.(2)] = A, pg(2)™ """

for each z in A.

Proof. It is convenient to regard funqtions ® in C”(7T) as 2m-periodic functions
¢ on R, by means of the formula ®(e”) = ¢(t). Since |¢’(£)] = |®’(e”)|, this
identification will cause no difficulty in the estimates to follow.

Our hypothesis is that there is a positive constant B, such that
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(3.1) ()| = B, ,Sup. lle Ml 5

for each ¢ € C”(T). Fix (forever) a nonnegative, even function ¢, € C*(T)
with support ¢, N [—mw] = [-1,1], and S ¢, dm = 1. For 0 < € < 1 define
¢. € C*(T) by
' -1
e Tolt/e), |tl=e
¢ (t) = {
0, e<|t|=m.
Then S ¢.dm =1for0<e=1.
Fix z in A, set € = pz(2)/6, and define ¢ € C*(T) by
P(6) = S ¢ (6 — t)ydm (¢)
EZE

Clearly ¢ = O off E,,. Since ¢y = 1 on I, (2) for each z € E, we also have
Y = 1on E,. Thus yp. = p since support p C E, hence:

Cp. (z) = (p“)kz) = (q‘,}‘l"kz) = ('J“’l""kz))
which, by (3.1) and Leibnitz’ formula yields:

IC. (@) =B, sup |k,

< B, sup (m )"‘!J D= _.
n i z ]
0

O=m=n 4
j=

Since support ¥ C E,_, we have |4 2" | =< |[vY).. sup |k (7)]. A straight-
TEE
forward calculation shows that for r € E,_: ’

k" (@) < pg, (2) ™"V = (pp(2)/2)" Y,

[0t
qff’( )
€

= G—j"(P(lj)ﬂl = (PE(Z)/6)—j"‘P(1j) lls>

by the definition of €. Also:

dm (t)

N,(j)(e)‘ < G_j S E—-l
Ege

where |||, denotes the norm in L' (7). From these estimates we obtain:

N & < 6™ Mo PNy pa(2) ™17,

hence:
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m

m .
ICP,(Z)! = Bu sup (J ) 6m+1"q’ Y)"lpE(z)_("‘“’

O0=ms=sn j=0
—(n+1)
= Au PE(Z) ’

which completes the proof, since ¢, does not depend on 2.

b. Gaussian random vectors. Suppose E is a complex vector space and % is
a sigma-algebra of subsets of E. The pair (E, #) is called a measurable vector
space if the vector operations, addition: E X E — E, scalar multiplication:
C X E — E, are measurable when the product spaces have their natural
product sigma-algebras. It is not difficult to see that if E is a separable, metrizable
topological vector space, and % (E) denotes the collection of Borel sets of E, then
(E, # (E)) is a measurable vector space. However, if E is nonseparable, then it could
happen that the product o-algebra Z(E) ® £ (E) is strictly smaller than
Z# (E X E), hence addition—which, by continuity, is measurable with respect to
# (E X E) —may not be measurable for Z (E) ® Z (E).

Suppose ({1, P) is a probability space, and (E, &) is a measurable vector space.
An E-valued random vector is simply an 7 — % measurable map X: Q — E.
Two such random vectors X and Y are said to be similar if

P{X € B} = P{Y € B}

for every B € #. An E-valued random vector is called Gaussian if, whenever
Y and Z are independent and similar to X, thensoare (Y + Z)/V 2and (Y — Z)/V 2.

We will consider only measurable vector spaces (E, % (E)) where E is a separable,
metrizable topological vector space. The E-valued random vectors we deal with
will all have the form

(3.2) X=> v.u,

where (u,) is a sequence in E, and (y,) is a sequence of independent, normally
distributed complex random variables with mean zero and variance one [8; Chapter
XI, Sec. 3, page 118]; and the series (3.2) is assumed to converge with probability
one. Henceforth we refer to (v, ) as the standard complex normal sequence, following
[8, Chapter XI, Sec. 3]. Since each v, is Gaussian in the sense of the last paragraph,
it is not difficult to see that X, as given by (3.2), is an E-valued Gaussian random
vector.

If E = C then a necessary and sufficient condition for the series (3.2) to converge
almost surely is:

(3.3) o= |u,|* <=,

in which case X has moments of all orders, and the distribution of X depends
only on o [8; Chapter XI, Sec. 3, page 118]. In particular, if 0 < p < o then
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there is a constant C, > 0, not depending on X, such that

(3.4) (X PH"? =C,o = C,(& (| X I?H%
where & {-} = S (-)dP.

For general measurable spaces E the situation is not so simple, however E-valued
Gaussian random vectors are still highly integrable. This is the content of the
next result, essentially due to X. Fernique [6]. Let us call a function
A : E — [0,0) monotone if A(ax) = A(x) whenever x € E and a € C with |a| < 1.

LEMMA B [6]. Suppose (E,#) is a measurable vector space and
A: E— [0,%) is a measurable, monotone, subadditive function. If X is a Gaussian
E-valued random vector, then there exist positive constants A and B such that
for each A = 0: P{A(X) > \} = Ae ? In particular, & {A(X)} < .

Remark. In [6] Fernique assumes A is a seminorm, and gets a better exponential
estimate on the distribution of A(X). The proof given below is just a slight
simplification of his: it is presented only for completeness.

Proof. Suppose Y and Z are independent and similar to X. Then for
t > s = 0 we have, just as in [6]:

PAX)<s} - PAX)>t}=PA(Y-2)/V2)=s and A(Y+2)/V2)>t}
= P{A(Y/V 2)-A@Z/V2)|< s and A(Y/V2)+A(Z/V2)> 1)
= P{t-s=<2A(X/V 2))%

From this inequality and the monotonicity of A we obtain:

(3.5) P{AX) >t} - (P{A(X)> (t —s)/2) )2

PAX)=s) P{A(X)= s}

Set t, = sand ¢,,, = 2¢, + s, so by induction, ¢, = (2"*" — 1)s. Let
x,=P{AX)>t}/P{AX) = s}

and choose s so that P {A(X) = s} > 1/2. Then iteration of (3.5) yields:

PAX)>@2"' '~ Ds)=x,=x=e"" (0=012..),

where ¢ = —log x, > 0O by our choice of s. After a little routine calculation,
this inequality yields the desired result.

c. Gaussian Cauchy transforms. Suppose (v, ) is the standard complex normal
sequence of section (b), and (m,) is a sequence of positive numbers with

z m, < «. Since & {|v,|*>} = 1 for each n, we have
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g.{z |y,,|m,,} => & tm,= D m, <o,

which shows that 2 v,m, converges absolutely with probability one. Therefore

if ({,) is a sequence of points of 7, and 3, is the unit mass at {,, then the expression

(3.6) B= Y.m,d,,

almost surely defines a finite Borel measure on 7. We will be concerned with
the Cauchy transform

(3.7) C.)=> T e,

- 4

n

of this random measure. We want to know when its derivative C; is almost surely
notin the Nevanlinna class N. Not surprisingly the answer depends on the quantity

(3.8) P =&(C.@) =3 -Ig—"i—"z—lr (2] = D).

LEMMA C. If X log odm = », then almost surely C, & N.

T

Proof. Consider N in the topology % of uniform convergence on compact subsets
of A — a separable metrizable topology on N — and let % denote the Borel sets
for this topology. Let

A(f) = sup S log1+|f.Ddm
0=r<1 T

for f € N. It is easy to check that A is a nonnegative, monotone, subadditive
function on N. Moreover the sets {f € N: A(f) =< €} (e > 0) are easily seen
to be #closed in N, hence A is %-measurable.

Suppose C, € N almost surely. Since almost surely the series

’ ’Yﬂ gnmn
ey

converges uniformly on compact subsets of A, it follows from the discussion in
section (b) that C, is an N-valued Gaussian random vector; hence by Lemma
B we have &{A(C})} < . Write f = C,,. Since log (1 + |f|) is subharmonic

on A, the integral means S log (1 + | f.|)dm increase with r .[5; Theorem 1.6,
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page 9], hence the monotone convergence theorem and Fubini’s theorem yield:

w > & {A(f)}

é’{lim X log (1 + lf,l)dm}

r—1-

r—1-

= lim S & (log(1 + | f,.D}dm
T
= lim S & {log| f,.|} dm.
r-l1- T

Now suppose o (2) is given by (3.8). For z € A:

& (log| f(2)|} = & {log| f(2) /o (2)]} + log o (2).

Since the random variable f(2)/o(z) has the same distribution as v, for each
z € A, we have: & {log|f(2)|]} = & {|v.|} + log 0(2) = C + log o(z) where C
is independent of n and z. Thus Fatou’s lemma and the previous inequality yield

r—l-—

o> C+ lim S log o(rv)dm ()
T

=C+ S log o (v)dm (z).
T
This shows that if log 0 dm = «, then C, & N with positive probability;

T
and it follows from the zero-one law [8; Chapter I, page 6] that C, & N almost
surely.

4. PROOF OF MAIN RESULT

In this section we prove Theorem 1. Recall from the discussion in Section 2
that only two implications need to be proved. Throughout this section E will denote
a closed subset of T with T\ E = U I, the decomposition of the complement
of E into at most countably many disjoint open intervals. As usual, m denotes
normalized Lebesgue measure on T, and we write ¢, = m(I,).

Proof of Theorem 1. (i) = (ii). Suppose m(E) = 0 and 2 €, log ¢, > —ox,

Then a straightforward calculation shows that

4.1) S log pz(t)dt > —oo.
T

WeclaimthatforO<r<land+ € T:
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4.2) pe(rm) = Virpg ).
To see this, write + = ¢‘° and choose 1, = €'°9 in E so that pert) = |7, — rv|.
Then

pe(r1® = 1 — 2rcos(6 — 6,) + r>

6—180
= (1—r)2+4rsin2( . 0)

e ()]

= rleie _ ei00|2_>— rpE(T)2,

which proves (4.2).

Suppose p. € Z%(T). We want to show that C, € N*. Assuming, as we may,
that A, = 1 in Lemma A, we have:

4.3) log* |C, (r)| = log* [r™/2 A, pgp(7) " "]
= log(r""?A,) — (n + 1) log pz (7).

Since logpy € L'(T) by (4.1), the dominated convergence theorem yields (2.1)
for f = C, hence C, € N™ as desired.

(vii) = (i). Suppose E does not satisfy condition (i). To complete the proof
of Theorem 1 we must find p. € M,(T) so that C| & N. There are two cases

to consider: (a) m(E) > 0, and (b) m(E) = O but Z €, log ¢, = —. The first

one is handled by the following proposition, which is nothing more than a slight
modification of [8; Chapter X, Section 6, Proposition 2, page 110].

PROPOSITION 2. Let E be a closed subset of T with m(E) > 0. Suppose (L)
is a sequence of independent T-valued random variables, independent of the standard
complex normal sequence (v,), with each {, uniformly distributed in E. Suppose

(m,) is a sequence of positive numbers with 2 m, < o, but 2 ml? = . Then
almost surely: p. = Z Yam, 8, € My(T), but C, & N.
Proof. The hypothesis on the distribution of {, is that

P{{, € B} =m(B N E)/m(E)

for any Borel subset B of T. Since the sequences ({,) and (vy,) are independent
of each other we can write the probability space (2, .7, P) as a product

Q,xQ,, %® I,P,®P,),
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where ({,) “lives” on Q,, and (y,) on (. We also write g} = S(-)de, and
&} = S(-)dpz.

For each o’ € Q, we know that p € My(T) almost surely [P,]. It follows
from Fubini’s theorem that p. € M (T) almost surely [P], so it remains to show
that C| & N almost surely [P].

For 1 € T and o’ € Q,, let o(r,0) be defined by (3.8):

2
mn

| L, (@) — 7]*

o’ (1) = o*(r,0’) = 2

Now suppose 7 is a fixed point of density in E. We claim that o(t) = o almost
surely [P;]. By the three series theorem [12; Chapter 2, Section 9, p. 34] it
is enough to show that

m2
(4.4) P {__rl_4. > 1} = o0,
2P 1L, — 7l

n

and this follows from the calculation below:

P‘{Mm—nPM} = Bt~ <Vm,)
" T

= m{Ly,, ®) N E}/m(E)=Vm, /2=

where the last inequality holds for all n sufficiently large because 7 is a point
of density of E. Since z \/_r;,: = o, we have (4.4). Thus for almost every [m]

point 7 in E we have o(7) = almost surely [P;]. By Fubini’s theorem it
follows that almost surely [P,] we have: o(r) = » for [m] a.e. v in E, hence

S log o (7) dm (r) = ©soby Lemma C, C, & N almost surely [P,]. Fubini’s theorem
T

again shows that almost surely [P] we have C, & N, which completes the proof
of Proposition 2.

To finish the proof of Theorem 1 we must show that whenever m(E) = 0
and Z €, log €, = —o, there exists p € M (T) with C| & N. This follows from

the next result.

PROPOSITION 3. Suppose m(E) = 0 and 2 €, log €, = —oo. Let {, denote
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either endpoint of I, and set p. = 2 €,Y,0; . Then almost surely p € My(T)
but C. & N. '

Proof. Note that in this proof ({,) is a fixed sequence of points in E, not
a sequence of E-valued random variables. As before, w € M. (T) almost surely,

so by Lemma C, it is enough to show that log o(v)dm(r) = o where o is
T
given by (3.8). The calculation in this case is similar to one in Ahern’s paper

[1}. For € I, we have

2

c 1/2
log o (1) = log (——"7) = —loge,,
T

o, —

hence

S log o(v)dm(7) = 2 S log o dm

n

= —2 €, loge,

=m’

which completes the proof of Proposition 3, and therefore of Theorem 1.
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