CAUCHY TRANSFORMS AND BEURLING-CARLESON-HAYMAN THIN SETS

Joel H. Shapiro

1. INTRODUCTION

Let Δ denote the open unit disc of the complex plane, and T the unit circle. The *Cauchy transform* of a Schwartz distribution μ on T is the function C_{μ} holomorphic in Δ defined by

$$C_{\mu}(z) = \sum_{n=0}^{\infty} \hat{\mu}(n) z^{n} = \langle \mu, k_{z} \rangle \qquad (z \in \Delta),$$

where k_z is the Cauchy kernel $k_z(\tau) = (1 - \bar{\tau}z)^{-1}$, $(\tau \in T)$ and $\hat{\mu}$ is the Fourier transform of μ [9; Chapter I, sec. 7, Problem 5, pp. 43-44]. In this paper we characterize those closed subsets E of T for which C_{μ} has bounded characteristic in Δ whenever support $\mu \subset E$.

To get some feeling for this problem, observe that if E is a finite set and support $\mu \subset E$, then C_{μ} is a linear combination of derivatives of Cauchy kernels, hence simple estimates show that C_{μ} belongs to the Hardy space H^p for all sufficiently small p. In particular, C_{μ} has bounded characteristic in Δ . On the other hand, if E = T then there are distributions which are "almost measures" for which C_{μ} is not of bounded characteristic [8; Chapter X, Prop. 2, p. 110].

Our characterization involves the decomposition of $T \setminus E$ into a countable disjoint union of open sub-arcs (I_n) of T. Letting ϵ_n denote the length of I_n , we can state the main result as follows:

THEOREM. The following statements about E are equivalent:

- (i) If μ is a distribution with support contained in E, then C_{μ} has bounded characteristic in Δ .
 - (ii) E has measure zero and $\sum \epsilon_n \log \epsilon_n > -\infty$.

The sets E of measure zero for which $\sum \epsilon_n \log \epsilon_n > -\infty$ are usually called *Carle-*

son sets, and they have an interesting history. They were first introduced by A. Beurling [2], who observed that if a function f is continuous on the closed unit disc, holomorphic in the interior, and satisfies a Lipschitz condition on T, then

Received June 29, 1979. Revision received January 7, 1980.

Research partially supported by the National Science Foundation.

Michigan Math. J. 27 (1980).

 $\{\tau \in T: f(\tau) = 0\}$ is a Carleson set. Later Carleson [3; Theorem 1] showed that every such set E is the boundary zero set of a function f_E continuous in the closed disc, holomorphic in the interior, and n times continuously differentiable on T; where n is any positive integer, but f_E depends on n. More recently Novinger [14] and Taylor and Williams [15] showed that f_E can be taken to be infinitely differentiable on T, Nelson [13] and Korenblum [11], gave shorter proofs of this; and Caveny and Novinger [4] obtained Beurling's result for functions with derivative in H^1 .

Simultaneously with Carleson's work, Hayman [7] independently discovered Carleson sets as a means for rescuing the Block-Nevanlinna conjecture [5; Chapter 5, page 92]. He showed that if a function f of bounded characteristic extends over the complement of a Carleson set E to a domain D with certain geometric properties, and if for each $\alpha \in \mathbf{C}$ the equation $f(z) = \alpha$ does not have too many solutions in D away from ∂D , then each derivative of f has bounded characteristic. Recently P. Ahern [1] showed that it is necessary in Hayman's result that E be a Carleson set, thus improving an earlier result of P. B. Kennedy [10].

This paper continues in the direction of Hayman, Kennedy, and Ahern. It is not difficult to check that the Cauchy transform of a distribution μ on T extends holomorphically to $\hat{\mathbf{C}} \setminus \text{support } \mu$ ($\hat{\mathbf{C}} = \text{extended complex plane}$), and no further. Since the derivatives of such Cauchy transforms are themselves Cauchy transforms, our first theorem states that if C_{μ} extends holomorphically over the complement of a Carleson subset of T, then C_{μ} and all its derivatives have bounded characteristic in Δ . This result, while similar to Hayman's, does not follow from his, since C_{μ} is not initially assumed to be of bounded characteristic.

In the other direction our result shows that if E is not a Carleson set, then there is a Cauchy transform C_{μ} which extends holomorphically to $\hat{\mathbf{C}} \setminus E$, but is not of bounded characteristic. In fact our C_{μ} will be the derivative of the Cauchy transform of a measure supported in E, thus providing yet another class of counterexamples to the Bloch-Nevanlinna conjecture. This part of our result is close in spirit to the work of Ahern [1], who constructs a Blaschke product in Δ which extends holomorphically across E, but has derivative not of bounded characteristic.

The paper is organized as follows: The main result is stated precisely in the next section, and Section 3 contains some preliminary work needed for its proof. In particular, elementary facts about Gaussian random series play a role and these are described in some detail. Finally the main theorem is proved in Section 4.

2. STATEMENT OF MAIN RESULT

From now on let m denote normalized Lebesgue measure on the unit circle T. If f is a complex valued function on the open unit disc Δ , and $0 \le r < 1$, we define $f_r : T \to \mathbb{C}$ by $f_r(\tau) = f(r\tau)$, $(\tau \in T)$. We will be dealing with the following classical spaces of functions holomorphic in Δ . First there is the Nevanlinna class N consisting of functions f of bounded characteristic, that is:

$$\sup_{0\leq r<1}\int_{T}\log^{+}|f_{r}|\,dm<\infty.$$

An important subclass of N is the Smirnov Class N^+ , which is the collection of $f \in N$ for which

(2.1)
$$\lim_{r\to 1^{-}}\int_{T}\log^{+}|f_{r}|\,dm=\int_{T}\log^{+}|f(\tau)|\,dm\,(\tau),$$

where $f(\tau) = \lim_{r \to 1^-} f(r\tau)$, and the limit exists for [m] a.e. $\tau \in T$ by Fatou's radial limit theorem [5; Theorem 2.2, page 17].

The collection of finite complex Borel measures on T will be denoted by M(T), and the Schwartz distributions on T by $\mathcal{D}(T)$. All ideas and notations about these distributions will be as in [9; Chapter I, Sec. 7, pp. 43-44, Problem 5]. In particular:

(a) $\mathcal{D}(T)$ is the dual space of $C^{\infty}(T)$, with the pairing

(2.2)
$$\langle \mu, \varphi \rangle = \sum_{-\infty}^{\infty} \hat{\mu}(n) \hat{\varphi}(-n)$$

where $\mu \in \mathscr{D}(T)$ and $\varphi \in C^{\infty}(T)$. Note that in [9] Katznelson defines the pairing with $\hat{\varphi}(n)$ instead of $\varphi(-n)$; an inessential difference.

- (b) The *support* of $\mu \in \mathscr{D}(T)$ is the complement of the largest open subset U of T for which $\langle \mu, \varphi \rangle = 0$ whenever $\varphi \in C^{\infty}(T)$ vanishes off U. If $\psi \in C^{\infty}(T)$ and $\psi \equiv 1$ on support μ , then $\psi \mu = \mu$.
- (c) μ has order n if μ is a continuous linear functional on $C^{(n)}(T)$. The collection of distributions on T of order n is denoted by $\mathscr{D}^n(T)$ (n=0,1,2,...). In particular, $\mathscr{D}^0(T)=M(T)$, and the pairing (2.2) can be written $\langle \mu, \varphi \rangle = \int_T \varphi d\mu$ for $\varphi \in C^\infty(T)$ and $\mu \in \mathscr{D}^0(T)$. It is easy to see that $\mathscr{D}(T)=\bigcup_{n=0}^\infty \mathscr{D}^n(T)$.
 - (d) A simple calculation shows that if $\mu \in \mathcal{D}(T)$, then

(2.3)
$$izC'_{\mu}(z) = C_{\mu'}(z) \qquad (z \in \Delta)$$

where C'_{μ} is the derivative of C_{μ} with respect to z, and μ' is the (real variable) distributional derivative of μ , defined by the formula $\hat{\mu}'(n) = in \ \hat{\mu}(n)$ for all integers n. Note that support $\mu' \subset \text{support } \mu$, so (2.3) asserts that C'_{μ} is essentially the Cauchy transform of a distribution with support contained in that of μ .

(e) One final bit of notation is convenient. If E is a closed subset of T, and $X \subset \mathcal{D}(T)$, then $X_E = \{\mu \in X : \text{support } \mu \subset E\}$. In particular, $M_E(T)$ denotes all finite complex Borel measures on T with support in E.

We can now state the main result of this paper. In what follows, E is a closed subset of T with $T \setminus E = \bigcup I_n$ the canonical decomposition of the complement of E into disjoint open intervals.

THEOREM 1. The following seven statements about E are equivalent:

(i)
$$m(E) = 0$$
 and $\sum m(I_n) \log m(I_n) > -\infty$.

- (ii) $C_{\mu} \in N^+$ for every $\mu \in \mathscr{D}_E(T)$.
- (iii) $C_{\mu} \in N$ for every $\mu \in \mathscr{D}_{E}(T)$.
- (iv) $C_{\mu}^{(n)} \in N^+$ for every $\mu \in M_E(T)$ (n = 0,1,2,...).
- (v) $C_{\mu}^{(n)} \in N$ for every $\mu \in M_E(T)$ (n = 0,1,2,...).
- (vi) $C'_{\mu} \in N^+$ for every $\mu \in M_E(T)$.
- (vii) $C'_{\mu} \in N$ for every $\mu \in M_E(T)$.

We prove this result in Section 4, devoting the third section to the necessary preliminaries. The reader should note that in Theorem 1 the implications (ii) \Rightarrow (iii), (iv) \Rightarrow (v), (iv) \Rightarrow (vi), (v) \Rightarrow (vii), and (vi) \Rightarrow (vii) are completely trivial, while (ii) \Rightarrow (iv) and (iii) \Rightarrow (v) follow immediately from successive applications of (2.3). So in Section 4 we will only have to prove (i) \Rightarrow (ii) and (vii) \Rightarrow (i). The former implication follows from a growth condition on C_{μ} , while the latter depends on elementary properties of Gaussian random series.

3. PRELIMINARY RESULTS

a. Growth estimate for Cauchy transforms. If E is a subset of T and $|z| \le 1$, write $\rho_E(z) = \text{dist } (z, E) = \inf_{\tau \in E} |\tau - z|$. For $\eta > 0$, write

$$E_{\eta} \stackrel{\cdot}{=} \{ \tau \in T : \rho_E(\tau) < \eta \} = \bigcup_{\tau \in E} I_{\eta}(\tau)$$

where $I_{\eta}(\tau)$ is the open interval of T centered at τ and having arc length 2η . For $\varphi \in C^{\infty}(T)$, let $\|\varphi\|_{\infty} = \max \{|\varphi(\tau)| : \tau \in T\}$. The following result is undoubtedly well known, but we have not been able to find a reference, so a proof is included.

LEMMA A. Suppose E is a closed subset of T and $\mu \in \mathscr{D}_{E}^{n}(T)$. Then there is a constant $A_{\mu} > 0$ such that

$$|C_{\mu}(z)| \leq A_{\mu} \rho_E(z)^{-(n+1)}$$

for each z in Δ .

Proof. It is convenient to regard functions Φ in $C^{\infty}(T)$ as 2π -periodic functions φ on \mathbb{R} , by means of the formula $\Phi(e^{it}) = \varphi(t)$. Since $|\varphi'(t)| = |\Phi'(e^{it})|$, this identification will cause no difficulty in the estimates to follow.

Our hypothesis is that there is a positive constant B_{μ} such that

$$|\langle \mu, \varphi \rangle| \leq B_{\mu} \sup_{0 \leq i \leq n} \|\varphi^{(j)}\|_{\infty},$$

for each $\varphi \in C^{\infty}(T)$. Fix (forever) a nonnegative, even function $\varphi_1 \in C^{\infty}(T)$ with support $\varphi_1 \cap [-\pi,\pi] = [-1,1]$, and $\int \varphi_1 dm = 1$. For $0 < \epsilon < 1$ define $\varphi_{\epsilon} \in C^{\infty}(T)$ by

$$\varphi_{\epsilon}(t) = \begin{cases} \epsilon^{-1} \varphi(t/\epsilon), & |t| \leq \epsilon \\ 0, & \epsilon < |t| \leq \pi. \end{cases}$$

Then $\int \varphi_{\epsilon} dm = 1 \text{ for } 0 < \epsilon \leq 1.$

Fix z in Δ , set $\epsilon = \rho_E(z)/6$, and define $\psi \in C^{\infty}(T)$ by

$$\psi(\theta) = \int_{E_{2\epsilon}} \varphi_{\epsilon}(\theta - t) dm(t)$$

Clearly $\psi \equiv 0$ off $E_{3\epsilon}$. Since $\psi \equiv 1$ on $I_{\epsilon}(z)$ for each $z \in E$, we also have $\psi \equiv 1$ on E_{ϵ} . Thus $\psi \mu = \mu$ since support $\mu \subset E$, hence:

$$C_{\mu}(z) = \langle \mu, k_z \rangle = \langle \psi \mu, k_z \rangle = \langle \mu, \psi k_z \rangle,$$

which, by (3.1) and Leibnitz' formula yields:

$$|C_{\mu}(z)| \leq B_{\mu} \sup_{0 \leq m \leq n} \|(\psi k_{z})^{(m)}\|_{\infty}$$

$$\leq B_{\mu} \sup_{0 \leq m \leq n} \sum_{i=0}^{m} {m \choose i} \|\psi^{(j)} k_{z}^{(m-j)}\|_{\infty}.$$

Since support $\psi \subset E_{3\epsilon}$, we have $\|\psi^{(j)} k_z^{(m-j)}\|_{\infty} \leq \|\psi^{(j)}\|_{\infty} \sup_{\tau \in E_{3\epsilon}} |k_z^{(m-j)}(\tau)|$. A straightforward calculation shows that for $\tau \in E_{3\epsilon}$:

$$|k_z^{(m-j)}(\tau)| \le \rho_{E_{3*}}(z)^{-(m-j+1)} \le (\rho_E(z)/2)^{-(m-j+1)},$$

by the definition of ϵ . Also:

$$|\psi^{(j)}(\theta)| \leq \epsilon^{-j} \int_{E_{2\epsilon}} \epsilon^{-1} \left| \varphi_1^{(j)} \left(\frac{\theta - t}{\epsilon} \right) \right| dm(t)$$

$$\leq \epsilon^{-j} \|\varphi_1^{(j)}\|_1 = (\rho_E(z)/6)^{-j} \|\varphi_1^{(j)}\|_1,$$

where $\|\cdot\|_1$ denotes the norm in $L^1(T)$. From these estimates we obtain:

$$\|\psi^{(j)} k_z^{(m-j)}\|_{\infty} \le 6^{m+1} \|\varphi_1^{(j)}\|_1 \rho_E(z)^{-(m+1)},$$

hence:

$$\begin{aligned} |C_{\mu}(z)| &\leq B_{\mu} \sup_{0 \leq m \leq n} \sum_{j=0}^{m} {m \choose j} 6^{m+1} \|\varphi_{1}^{(j)}\|_{1} \rho_{E}(z)^{-(m+1)} \\ &\leq A_{\mu} \rho_{E}(z)^{-(n+1)}, \end{aligned}$$

which completes the proof, since φ_1 does not depend on z.

b. Gaussian random vectors. Suppose E is a complex vector space and \mathscr{B} is a sigma-algebra of subsets of E. The pair (E,\mathscr{B}) is called a measurable vector space if the vector operations, addition: $E \times E \to E$, scalar multiplication: $\mathbf{C} \times E \to E$, are measurable when the product spaces have their natural product sigma-algebras. It is not difficult to see that if E is a separable, metrizable topological vector space, and $\mathscr{B}(E)$ denotes the collection of Borel sets of E, then $(E,\mathscr{B}(E))$ is a measurable vector space. However, if E is nonseparable, then it could happen that the product σ -algebra $\mathscr{B}(E) \otimes \mathscr{B}(E)$ is strictly smaller than $\mathscr{B}(E \times E)$, hence addition—which, by continuity, is measurable with respect to $\mathscr{B}(E \times E)$ —may not be measurable for $\mathscr{B}(E) \otimes \mathscr{B}(E)$.

Suppose (Ω, \mathcal{T}, P) is a probability space, and (E, \mathcal{B}) is a measurable vector space. An *E-valued random vector is* simply an $\mathcal{T} - \mathcal{B}$ measurable map $X: \Omega \to E$. Two such random vectors X and Y are said to be similar if

$$P\{X \in B\} = P\{Y \in B\}$$

for every $B \in \mathcal{B}$. An *E*-valued random vector is called *Gaussian* if, whenever Y and Z are independent and similar to X, then so are $(Y+Z)/\sqrt{2}$ and $(Y-Z)/\sqrt{2}$.

We will consider only measurable vector spaces $(E, \mathcal{B}(E))$ where E is a separable, metrizable topological vector space. The E-valued random vectors we deal with will all have the form

$$(3.2) X = \sum \gamma_n u_n$$

where (u_n) is a sequence in E, and (γ_n) is a sequence of independent, normally distributed complex random variables with mean zero and variance one [8; Chapter XI, Sec. 3, page 118]; and the series (3.2) is assumed to converge with probability one. Henceforth we refer to (γ_n) as the standard complex normal sequence, following [8, Chapter XI, Sec. 3]. Since each γ_n is Gaussian in the sense of the last paragraph, it is not difficult to see that X, as given by (3.2), is an E-valued Gaussian random vector.

If $E = \mathbf{C}$ then a necessary and sufficient condition for the series (3.2) to converge almost surely is:

$$\sigma^2 = \sum |u_n|^2 < \infty,$$

in which case X has moments of all orders, and the distribution of X depends only on σ [8; Chapter XI, Sec. 3, page 118]. In particular, if 0 then

there is a constant $C_p > 0$, not depending on X, such that

$$(\mathscr{E}\{|X|^p\})^{1/p} = C_p \sigma = C_p (\mathscr{E}\{|X|^2\})^{1/2},$$

where
$$\mathscr{E}\{\cdot\} = \int (\cdot) dP$$
.

For general measurable spaces E the situation is not so simple, however E-valued Gaussian random vectors are still highly integrable. This is the content of the next result, essentially due to X. Fernique [6]. Let us call a function $\Lambda: E \to [0,\infty)$ monotone if $\Lambda(ax) \le \Lambda(x)$ whenever $x \in E$ and $a \in \mathbb{C}$ with $|a| \le 1$.

LEMMA B [6]. Suppose (E,\mathcal{B}) is a measurable vector space and $\Lambda: E \to [0,\infty)$ is a measurable, monotone, subadditive function. If X is a Gaussian E-valued random vector, then there exist positive constants A and B such that for each $\lambda \geq 0$: $P\{\Lambda(X) > \lambda\} \leq Ae^{-B\lambda}$. In particular, $\mathcal{E}\{\Lambda(X)\} < \infty$.

Remark. In [6] Fernique assumes Λ is a seminorm, and gets a better exponential estimate on the distribution of $\Lambda(X)$. The proof given below is just a slight simplification of his: it is presented only for completeness.

Proof. Suppose Y and Z are independent and similar to X. Then for $t > s \ge 0$ we have, just as in [6]:

$$\begin{split} P\{\Lambda(X) \leq s\} & \cdot P\{\Lambda(X) > t\} = P\{\Lambda(Y - Z)/\sqrt{2}) \leq s \quad \text{and} \quad \Lambda(Y + Z)/\sqrt{2}) > t\} \\ & \leq P\{|\Lambda(Y/\sqrt{2}) - \Lambda(Z/\sqrt{2})| \leq s \quad \text{and} \quad \Lambda(Y/\sqrt{2}) + \Lambda(Z/\sqrt{2}) > t\} \\ & \leq P\{t - s \leq 2\Lambda(X/\sqrt{2})\}^2. \end{split}$$

From this inequality and the monotonicity of Λ we obtain:

$$(3.5) \qquad \frac{P\left\{\Lambda\left(X\right) > t\right\}}{P\left\{\Lambda\left(X\right) \le s\right\}} \le \left(\frac{P\left\{\Lambda\left(X\right) > (t-s)/2\right\}}{P\left\{\Lambda\left(X\right) \le s\right\}}\right)^{2}$$

Set $t_0 = s$ and $t_{n+1} = 2t_n + s$, so by induction, $t_n = (2^{n+1} - 1)s$. Let

$$x_n = P\{\Lambda(X) > t_n\}/P\{\Lambda(X) \le s\}$$

and choose s so that $P\{\Lambda(X) \le s\} > 1/2$. Then iteration of (3.5) yields:

$$P\{\Lambda(X) > (2^{n+1} - 1)s\} = x_n \le x_0^{2^n} = e^{-c \cdot 2^n}$$
 $(n = 0, 1, 2, ...),$

where $c = -\log x_0 > 0$ by our choice of s. After a little routine calculation, this inequality yields the desired result.

c. Gaussian Cauchy transforms. Suppose (γ_n) is the standard complex normal sequence of section (b), and (m_n) is a sequence of positive numbers with

$$\sum m_n < \infty$$
. Since $\mathscr{E}\{|\gamma_n|^2\} = 1$ for each n , we have

$$\mathscr{E}\left\{\sum |\gamma_n| \, m_n\right\} = \sum \mathscr{E}\left\{|\gamma_n|\right\} m_n \leq \sum m_n < \infty,$$

which shows that $\sum \gamma_n m_n$ converges absolutely with probability one. Therefore if (ζ_n) is a sequence of points of T, and δ_{ζ_n} is the unit mass at ζ_n , then the expression

$$(3.6) \mu = \sum \gamma_n m_n \delta_{\zeta_n}$$

almost surely defines a finite Borel measure on T. We will be concerned with the Cauchy transform

(3.7)
$$C_{\mu}(z) = \sum \frac{\gamma_n m_n}{1 - \overline{\zeta}_n z} \qquad (z \in \Delta),$$

of this random measure. We want to know when its derivative C'_{μ} is almost surely *not* in the Nevanlinna class N. Not surprisingly the answer depends on the quantity

(3.8)
$$\sigma^{2}(z) = \mathscr{E}\{|C'_{\mu}(z)|^{2}\} = \sum \frac{m_{n}^{2}}{|\zeta_{n} - z|^{4}} \qquad (|z| \leq 1).$$

LEMMA C. If
$$\int_{T} \log \sigma dm = \infty$$
, then almost surely $C'_{\mu} \notin N$.

Proof. Consider N in the topology \mathscr{K} of uniform convergence on compact subsets of Δ – a separable metrizable topology on N – and let \mathscr{B} denote the Borel sets for this topology. Let

$$\Lambda(f) = \sup_{0 \le r < 1} \int_{T} \log (1 + |f_r|) dm$$

for $f \in N$. It is easy to check that Λ is a nonnegative, monotone, subadditive function on N. Moreover the sets $\{f \in N: \Lambda(f) \leq \epsilon\}$ $(\epsilon > 0)$ are easily seen to be \mathscr{X} -closed in N, hence Λ is \mathscr{R} -measurable.

Suppose $C'_{\mu} \in N$ almost surely. Since almost surely the series

$$C'_{\mu}(z) = \sum_{n} \frac{\gamma_{n} \zeta_{n} m_{n}}{\left(1 - \overline{\zeta}_{n} z\right)^{2}}$$

converges uniformly on compact subsets of Δ , it follows from the discussion in section (b) that C'_{μ} is an N-valued Gaussian random vector; hence by Lemma B we have $\mathscr{E}\{\Lambda(C'_{\mu})\} < \infty$. Write $f = C'_{\mu}$. Since $\log (1 + |f|)$ is subharmonic on Δ , the integral means $\int \log (1 + |f_r|) dm$ increase with r [5; Theorem 1.6,

page 9], hence the monotone convergence theorem and Fubini's theorem yield:

$$\infty > \mathcal{E}\left\{\Lambda(f)\right\} = \mathcal{E}\left\{\lim_{r \to 1^{-}} \int_{T} \log\left(1 + |f_{r}|\right) dm\right\}$$

$$= \lim_{r \to 1^{-}} \int_{T} \mathcal{E}\left\{\log\left(1 + |f_{r}|\right)\right\} dm$$

$$\geq \lim_{r \to 1^{-}} \int_{T} \mathcal{E}\left\{\log|f_{r}|\right\} dm.$$

Now suppose $\sigma(z)$ is given by (3.8). For $z \in \Delta$:

$$\mathscr{E}\left\{\log|f(z)|\right\} = \mathscr{E}\left\{\log|f(z)/\sigma(z)|\right\} + \log\sigma(z).$$

Since the random variable $f(z)/\sigma(z)$ has the same distribution as γ_n for each $z \in \Delta$, we have: $\mathcal{E}\{\log|f(z)|\} = \mathcal{E}\{|\gamma_n|\} + \log \sigma(z) = C + \log \sigma(z)$ where C is independent of n and z. Thus Fatou's lemma and the previous inequality yield

$$\infty > C + \lim_{r \to 1^{-}} \int_{T} \log \sigma(r\tau) dm(\tau)$$

$$\geq C + \int_{T} \log \sigma(\tau) dm(\tau).$$

This shows that if $\int_T \log \sigma \ dm = \infty$, then $C'_{\mu} \notin N$ with positive probability; and it follows from the zero-one law [8; Chapter I, page 6] that $C'_{\mu} \notin N$ almost surely.

4. PROOF OF MAIN RESULT

In this section we prove Theorem 1. Recall from the discussion in Section 2 that only two implications need to be proved. Throughout this section E will denote a closed subset of T with $T \setminus E = \bigcup I_n$ the decomposition of the complement of E into at most countably many disjoint open intervals. As usual, m denotes normalized Lebesgue measure on T, and we write $\epsilon_n = m(I_n)$.

Proof of Theorem 1. (i) \Rightarrow (ii). Suppose m(E) = 0 and $\sum \epsilon_n \log \epsilon_n > -\infty$. Then a straightforward calculation shows that

$$(4.1) \qquad \int_{T} \log \rho_{E}(t) dt > -\infty.$$

We claim that for $0 \le r < 1$ and $\tau \in T$:

To see this, write $\tau = e^{i\theta}$ and choose $\tau_0 = e^{i\theta_0}$ in E so that $\rho_E(r\tau) = |\tau_0 - r\tau|$. Then

$$\begin{split} \rho_E(r\tau)^2 &= 1 - 2r\cos(\theta - \theta_0) + r^2 \\ &= (1 - r)^2 + 4r\sin^2\left(\frac{\theta - \theta_0}{2}\right) \\ &\geq r \left[2\sin\left(\frac{\theta - \theta_0}{2}\right)\right]^2 \\ &= r \left|e^{i\theta} - e^{i\theta_0}\right|^2 \geq r\rho_E(\tau)^2, \end{split}$$

which proves (4.2).

Suppose $\mu \in \mathscr{D}_{E}^{n}(T)$. We want to show that $C_{\mu} \in N^{+}$. Assuming, as we may, that $A_{\mu} \geq 1$ in Lemma A, we have:

(4.3)
$$\log^{+} |C_{\mu}(r\tau)| \leq \log^{+} [r^{-1/2} A_{\mu} \rho_{E}(\tau)^{-(n+1)}]$$
$$= \log(r^{-1/2} A_{\mu}) - (n+1) \log \rho_{E}(\tau).$$

Since $\log \rho_E \in L^1(T)$ by (4.1), the dominated convergence theorem yields (2.1) for $f = C_{\mu}$ hence $C_{\mu} \in N^+$ as desired.

(vii) \Rightarrow (i). Suppose E does not satisfy condition (i). To complete the proof of Theorem 1 we must find $\mu \in M_E(T)$ so that $C'_{\mu} \notin N$. There are two cases

to consider: (a)
$$m(E) > 0$$
, and (b) $m(E) = 0$ but $\sum_{n=0}^{\infty} \epsilon_n \log \epsilon_n = -\infty$. The first

one is handled by the following proposition, which is nothing more than a slight modification of [8; Chapter X, Section 6, Proposition 2, page 110].

PROPOSITION 2. Let E be a closed subset of T with m(E) > 0. Suppose (ζ_n) is a sequence of independent T-valued random variables, independent of the standard complex normal sequence (γ_n) , with each ζ_n uniformly distributed in E. Suppose

$$(m_n)$$
 is a sequence of positive numbers with $\sum m_n < \infty$, but $\sum m_n^{1/2} = \infty$. Then

almost surely: $\mu = \sum \gamma_n m_n \delta_{\zeta_n} \in M_E(T)$, but $C'_{\mu} \notin N$.

Proof. The hypothesis on the distribution of ζ_n is that

$$P\{\zeta_n \in B\} = m(B \cap E)/m(E)$$

for any Borel subset B of T. Since the sequences (ζ_n) and (γ_n) are independent of each other we can write the probability space (Ω, \mathcal{I}, P) as a product

$$(\Omega_{\zeta} \times \Omega_{\gamma}, \mathscr{T}_{\zeta} \otimes \mathscr{T}_{\gamma}, P_{\zeta} \otimes P_{\gamma}),$$

where (ζ_n) "lives" on Ω_{ζ} , and (γ_n) on Ω_{γ} . We also write $\mathscr{E}_{\gamma}\{\cdot\} = \int (\cdot) dP_{\gamma}$, and $\mathscr{E}_{\zeta}\{\cdot\} = \int (\cdot) dP_{\zeta}$.

For each $\omega' \in \Omega_{\zeta}$ we know that $\mu \in M_E(T)$ almost surely $[P_{\gamma}]$. It follows from Fubini's theorem that $\mu \in M_E(T)$ almost surely [P], so it remains to show that $C'_{\mu} \notin N$ almost surely [P].

For $\tau \in T$ and $\omega' \in \Omega_{\zeta}$, let $\sigma(\tau,\omega')$ be defined by (3.8):

$$\sigma^{2}(\tau) = \sigma^{2}(\tau,\omega') = \sum \frac{m_{n}^{2}}{\left|\zeta_{n}(\omega') - \tau\right|^{4}}.$$

Now suppose τ is a fixed point of density in E. We claim that $\sigma(\tau) = \infty$ almost surely $[P_{\xi}]$. By the three series theorem [12; Chapter 2, Section 9, p. 34] it is enough to show that

(4.4)
$$\sum_{n} P_{\zeta} \left\{ \frac{m_{n}^{2}}{\left| \zeta_{n} - \tau \right|^{4}} > 1 \right\} = \infty,$$

and this follows from the calculation below:

$$P_{\zeta}\left\{\frac{m_n^2}{\left|\zeta_n - \tau\right|^4} > 1\right\} = P_{\zeta}\left\{\left|\zeta_n - \tau\right| < \sqrt{m_n}\right\}$$
$$= m\left\{I_{\sqrt{m_n}}(\tau) \cap E\right\}/m(E) \ge \sqrt{m_n}/2\pi$$

where the last inequality holds for all n sufficiently large because τ is a point of density of E. Since $\sum \sqrt{m_n} = \infty$, we have (4.4). Thus for almost every [m] point τ in E we have $\sigma(\tau) = \infty$ almost surely $[P_{\zeta}]$. By Fubini's theorem it follows that almost surely $[P_{\zeta}]$ we have: $\sigma(\tau) = \infty$ for [m] a.e. τ in E, hence $\int_T \log \sigma(\tau) \, dm(\tau) = \infty$ so by Lemma C, $C'_{\mu} \notin N$ almost surely $[P_{\gamma}]$. Fubini's theorem again shows that almost surely [P] we have $C'_{\mu} \notin N$, which completes the proof of Proposition 2.

To finish the proof of Theorem 1 we must show that whenever m(E)=0 and $\sum \epsilon_n \log \epsilon_n=-\infty$, there exists $\mu \in M_E(T)$ with $C'_{\mu} \notin N$. This follows from the next result.

PROPOSITION 3. Suppose m(E) = 0 and $\sum_{n=0}^{\infty} \epsilon_n \log \epsilon_n = -\infty$. Let ζ_n denote

either endpoint of I_n , and set $\mu = \sum_{n} \epsilon_n \gamma_n \delta_{\zeta_n}$. Then almost surely $\mu \in M_E(T)$ but $C'_{\mu} \notin N$.

Proof. Note that in this proof (ζ_n) is a fixed sequence of points in E, not a sequence of E-valued random variables. As before, $\mu \in M_E(T)$ almost surely, so by Lemma C, it is enough to show that $\int_T \log \sigma(\tau) dm(\tau) = \infty$ where σ is given by (3.8). The calculation in this case is similar to one in Ahern's paper [1]. For $\tau \in I_n$ we have

$$\log \sigma(\tau) \ge \log \left(\frac{\epsilon_n^2}{|\alpha_n - \tau|^4}\right)^{1/2} \le -\log \epsilon_n,$$

hence

$$\int_{T} \log \sigma(\tau) dm(\tau) = \sum_{n} \int_{I_{n}} \log \sigma dm$$

$$\geq -\sum_{n} \epsilon_{n} \log \epsilon_{n}$$

$$= \infty,$$

which completes the proof of Proposition 3, and therefore of Theorem 1.

REFERENCES

- 1. P. Ahern, On a theorem of Hayman concerning the derivative of a function of bounded characteristic. Pacific J. Math. 83 (1979), 297-301.
- 2. A. Beurling, Ensembles exceptionnels. Acta. Math. 72 (1940), 1-13.
- 3. L. Carleson, Sets of uniqueness for functions regular in the unit circle. Acta. Math. 87 (1952), 325-345.
- 4. D. J. Caveny and W. P. Novinger, Boundary zeros of functions with derivative in H^p . Proc. Amer. Math. Soc. 25 (1970), 776-780.
- 5. P. L. Duren, *Theory of H^p Spaces*. Pure and Applied Mathematics Vol. 38. Academic Press, New York-London, 1970.
- 6. X. Fernique, Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris Sér. A, 270 (1970), 1698-1699.
- 7. W. Hayman, On Nevanlinna's second theorem and extensions. Rend. Circ. Mat. Palermo (2) 2 (1953), 346-392.
- 8. J. P. Kahane, Some random series of functions. D. C. Heath and Co., Lexington, Mass. 1968.
- 9. Y. Katznelson, An introduction to harmonic analysis. John Wiley and Sons Inc., New York-London-Sydney, 1968.

- 10. P. B. Kennedy, On a theorem of Hayman concerning quasi-bounded functions. Canad. J. Math. 11 (1959), 593-600.
- 11. B. I. Korenblum, Functions holomorphic in a disc and smooth in its closure. Dokl. Akad. Nauk SSSR 200 (1971), 24-27. English translation: Soviet Math. Dokl. 12 (1971), 1312-1315.
- 12. J. Lamperti, *Probability*. A survey of the mathematical theory. W. A. Benjamin Inc., New York-Amsterdam, 1966.
- 13. J. D. Nelson, A characterization of zero sets for A^{∞} . Michigan Math. J. 18 (1971), 141-147.
- 14. W. P. Novinger, Holomorphic functions with infinitely differentiable boundary values. Illinois J. Math. 15 (1971), 80-90.
- 15. B. A. Taylor and D. L. Williams, *Ideals in rings of analytic functions with smooth boundary values.* Canad. J. Math. 22 (1970), 1266–1283.

Department of Mathematics Michigan State University East Lansing, MI 48824