TURAN’S SECOND THEOREM ON SUMS OF POWERS
OF COMPLEX NUMBERS

T. W. Cusick and G. Kolesnik

Letz,,...,2,,b,,...,b, be complex numberssuchthat1 = |z, | = |2,| = ... = |2, |
and define S, = b,2% + ... + b 2%. P. Turan [3] considered the problem of finding
a lower bound for

M

m,

,=min max |S,],

m+ls=k=m+n

where the min is taken over all possible values of z,,...,z, subject to the above
constraints. He proved in [3] that

n n
anz( ” ) min | b, + ... + b;|
’ 24e” (m + 2n) j

and applied this result to various problems, including the question of the distribution
of the zeros of {(s) in the critical strip.

Later V. T. Sos and P. Turan [2] improved the estimate by showing that

n n
(1) anz(———) min|b, + ... + b
’ A@m +n) 1sjsnl ! d

holds with A = 2¢'**/*, It was pointed out by Uchiyama [4] that the method

of [2] will actually give (1) with the better constant A = 8e. In fact, it is not
hard to see that using the same method one can get

m ™ n "
M, = —— | min|b, + ... + b,};
' m+n 8(m + n) l=j=n

here the factor (m/(m + n))™ always exceeds e " but tends to e™" as m — oo.

In this paper we give a further improvement of the constant A in (1); our
resultis A < 7.81e. At the cost of some complications, our method could undoubtedly
be modified to give a slightly smaller constant.

The problem of finding a lower bound for the best possible constant A in (1)
has been considered. The best known result is A = 4e, due to Makai [1].

We need the following lemma in our proofs.

LEMMA. Letm be a positive integer and let z,, ...,z,, be any complex numbers.
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Then there is a 8 with m/(m + n) = 8 = 1 such that for all z with |z| =3
the inequality

holds for each r = 1,2, ...,n.

Proof. The lemma follows easily from Chebyshev’s inequality; see the lemma
of Sos and Turan [2, pp. 246-247].

The key fact which we need to obtain our improved estimate for A in (1)
is:

THEOREM 1. Let m and n be positive integers and let x,, ...,x,, be real numbers
such that1 = x, = x,= ... = x, = 0. Define f(x) =x"(x — x,) - ... - (x — x,,). Then

n n
2 “\dm+m /)
o pax ol = (")

where A = 3.905 e.

Proof. First suppose that m = pn, where p = 3 is a parameter to be chosen
later. The function x*/(x + 1)* decreases if x = 0, so by the Lemma we have

n n m m n n u nn
o e (gt ) (25T () (25)
0=x=1 4(m +n) m+n 4(m + n) p+1

whenever m = pn.

Now suppose that m > pn. Define H = an/(m + n), where o is a parameter
satisfying 1 < a < 2, and let 2 be the largest integer less than or equal to n
such that the interval [1 — Hkn',1] contains x,, ...,x,. We consider three different
cases. )

Case 1. k = n. We choose

x=1-

nim+n+ am) m (1 an )
m-+n ’

(m + n)? m+n

it follows from the definition of f(x) that
m " an " fnm+n+am) an ¢
flx) = 1-— - -
m+n m+n (m+n) m+n

n n m m an m+tn
= 1__
m-+n min m-+n

14

Calculation shows that the function (x/(x + 1))*(1 — a(x + 1)7")**! increases if
x = 3, so we obtain
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o) () ()
“) max IF@I=1 0 ) e Sl

whenever m > pn.

Case 2. k =< Bn, where B = 4/(4 + e) is a parameter.

Let I denote the interval [1 — Hkn™',1]. Using Chebyshev’s inequality, we

obtain
HE \*
max [(x —x;) - ... - (x—x)|= 2| — ] .
xel 471

We also have x, < 1 — Hjn 'for k + 1 = j = n, so we get

n n n

HR\™ (HR\* H 2H (n—k)H
max | f(x)| = max |fx)] =2 (1 — —) (4_) .
x€E n

O=<x=<1 n
( Hk)"‘ (H/e)® (n— k)" *(ek)”
> — — N - ;
n 4% n"

for the last inequality above we made use of the fact ¢! = (t/e)".

Calculation shows that the function (1 — Hxn ") (n — x)" *(ex/4)* decreases
if x=4n/(4 + e), so we obtain

maxlf(x)|>(1— “B") ( = ) L 4TP P (1) TR B,
O=x=<1

m-+n m-+n

We also have that

a X
(5) (1 — ) decreasesif x(2 —a)+ 2 — 2a > 0;
x+1

since a3 < 8/(4 + e) and m/n > p = 3, (5) implies that
(1—aBn@m+n)"")" > e P",

Thus we conclude that

(6) max | f(x)] = e *P" (_a_n_) (B/4)P" (1 —B)/e)"*"
m-+n

O0<x=1

Case 3. k > Bn. Let v and & be two parameters such that v >3 > k/n. Let
J denote the interval [1 — vH,1 — 3H]. Using Chebyshev’s inequality, we obtain

max [(x — 2ppy) - oo s (x—x )= 2(y = 3) " *(H/4)"*
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max | fx)] = max | f) =20 (1 —x,— He/n) (v —3)" " (H/4)"*

where x, is some number in J. It is easily verified that for x in </, the function
x™(1 — x — Hkn')* takes its minimum at one of the endpoints of J. Thus

x7(1 — xy— Hk/n)* = min (1 —vH)" H — Hk/n)*, (1 —8H)™ (3 H — Hk/n)*)

and so we obtain

y=3\"*( an \"x
max |fx)|= | ——
O=x=1 4 m-+n
. ayn \" kE\ adn \" EY
min 1- vy——),11- & — — .
m+n n m+n n

Now we consider the right-hand sides of the inequalities (3), (4) and (6), and

we define
1 L T8 I 1% a pt+l
) () ()
4 \p+1 p+1 n+1

A;=e"aB/H°((1-B)/e)' "

(7)

Also, we define g(v,3,%k/n) to be the n-th root of, ((m + n)/n)” times the right-hand
side of (7). Plainly (2) is proved if we can choose the parameters «, 3, p in such
a way that

(8 min(4,,A,,A;, min min max g{,3,k/n))>A"" =.094207 ....

m>pn B=k/n=1~vy>5>k/n
The choice we make is
a =105 B=.49, p=20.
Then calculation gives
A, =.094222 ..., A,=.128..., A,=.095...

so we need only consider the last of the four numbers inside the min in (8).
To do this, we let t = k/n, v = yt, 8 = zt and we define R (i,v) by

R (u,v) = min min maxat(y ; z) min (i (y), 2 (2))

m>pn ust<v y>z>1

where A (x) = (1 — axtn(m + n) ')™/"(x — 1)*. To complete the proof of (8), we
need only show that R (.49,1) > A™"'. For this we consider four different cases.
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Case A. 49 =t =< .57. We choose y = 3.12, z = 1.32.

It follows from (5) that A(x) = e ™" (x — 1)’ for x =y or 2, and ¢ in the given
interval. Furthermore, as a function of ¢ the expression t(4(x — 1) e **(y — 2) 7 !)*
is increasing for x = y or z, so we may fix ¢ = .49 in estimating R (.49,.57). We
find that R (.49,.57) > .099 > 47",

Case B. .57 =t = .65. We choose y = 2.87, z = 1.4.

It follows from (5) that A(x) = e " (x — 1)’ for x = z and ¢ in the given interval.
We also have

9) h(y) = min(e ™, (1 — ayt/21) *°)(y — 1)

a

since m/n > p = 20; calculation shows that e ™ actually gives the minimum.
As in case A, we may fix ¢ = .57 in estimating R (.57,.65), and we find that
R(.57,.65) > .099 > A",

Case C. .65 =t =< .7. We choose y = 2.67, z = 1.48.

Proceeding in the same way as in case B, we obtain the estimate
R(.65,.7)>.1>A"".

CaseD. .7 <t = 1. We choose y = 2.57, z = 1.53.

As in case B, we have A(z) = e **(z — 1)‘ for ¢ in the given interval and also
(9) holds. In this case, neither of the two numbers inside the minimum in (9)
is smaller than the other for all values of £ such that .7 < ¢ = 1. Calculation shows
that R(.7,1) >.101 > A™'. This completes the proof that R(.49,1) > A"}, so
Theorem 1 is proved.

THEOREM 2. Let m,n be positive integers; then

n n
Mm,nz( ) min | b, + ... + b |.
7.81e(m + n) l=j=n

Proof. The theorem can be proved using the method of Sos and Turan [2].

Here we give a simpler proof.

Let z,,...,2, be any complex numbers such that 1= [z,|=|z,|= ... = |z,].
Define

f@=]]e-2) a=i=n, f=f0,

and consider the polynomial

n N

¥4

P — m+1 _ —l_ J
(2) = z ;f(z)(z z,) T o
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where N is a large positive integer and & is a number satisfying 0 < 8§ < 1
and

n n
10 87 G — 1)(B — |2,]) oo - (38— |2, )| = :
(10} 187 ( )@ — |2,]) (d— |z, Dl (3.905e(m+n))

Such a 3 exists by Theorem 1

Define ¢; form + 1 =i =m + n by

m-+n

P(2) = Z ¢,z
i=m+1
Since P(z;) =z} (2]’ —8") 7", we have
Shee st S g(§;¢4).
J=1 Jj=m+1 i=1

Letting N — « we get

n K
. N N Ny —
; M1iwmfﬁ“' 2.0
(11) max |S;|= T =t
m+l<j=m+n m+n m+n
> el > gl

J=m+1 J=m+1

where K is an integer satisfying 1 = |z2,| = |z,|= ... = |2x| > 8 > |2, |- Thus
we need an upper bound for

Norm (P(2)) = > |¢;|.
J=m+1
We need the identities
i
fr_1(2))

(12) z—z)'=> "2 (a=j=n)

i (2
and

fio1(2) _ =\ froa(z)

(13)
(@ = i)

(z — ZJ)—I' (1= k= n).

Putting (12) in the definition of P(2) gives

m+1 . @) 2"_11"\r - far (zj)
Pl =2"" 2, 2 (z)2""" 2 ~8") 2 he

Jj=1
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e [ fui(z)zy
/ —F 2 f(2) 2 AT A

k=1 j=k J

Since |z;| = 1, we have trivially that Norm (z™*" f(2)/f, (z)) = 2" 7%, s0

n n N
(14) Norm (P(Z)) < E 2n—k 2 fkﬁl(Z,-)zJ
k=1

=k f’ (z,) ij+1 (Z_iv —-3%)

because Norm (P(z)) satisfies a triangle inequality. The inner sum (using partial
fractions) is

. fk—l(zj) al m 2witm{N 2wt/ Nyy —1
z—f'(z) 2 (N3™e (z,—de ))
J=k s/ t=1

= fk——l (Zj)

(NameZ‘tritm/N)—l
1 ; f (Z,)

(Name2'n'ilm/N) -1 fk_l (Bezﬂi‘/N)
/ f(ae2nit/N)

(8 e21-r /N _ Zj) -1

I
|
M=

t

I
l
M=

t

by (13). Thus (14) and (10) give

fk_]_ (Se 2‘:1'![/N)
f(8e2-n-it/N)

n N
Norm (P(z)) = > 2"7* > (Ns™)™!

n N
=3 2"t W) G-z (512D
k=1 t=1

(3.905 e(m + n) )"
< 2" .

n

Putting this together with (11) gives Theorem 2.
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