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INTRODUCTION

In a most remarkable paper Halter-Koch [6] gives the following abstract
of his results (translated from German): “By means of the Modified Jacobi-Perron
Algorithm, Bernstein, Hasse and Stender have constructed a system of independent
units for some (infinite) classes of totally real algebraic number fields; they have
shown that in certain cases (for infinitely many algebraic fields of degree n = 3, 4, 6)
this system represents a basis of fundamental units or how such a basis can
be obtained from the system. In the present paper I shall disclose maximal
independent systems of units for a much wider class of algebraic number fields.
Whether these units can again be obtained from an algorithm, and in which cases
they turn out to be fundamental, is subject to further investigations.” (The remarks
in parentheses were added by the author.)

In this paper the author will solve the first of the two challenging problems
posed by Halter-Koch: he will construct an algorithm by means of which he will
obtain all the units found by Halter-Koch.

It must be emphatically mentioned that the Jacobi-Perron [7], [8] algorithm
or its modification as used by the author [2] are especially significant when they
become periodic. The author succeeded in disclosing a few classes of infinitely
many algebraic number fields of any degree n = 2, a proper basis of which becomes
periodic by the Jacobi-Perron algorithm or its generalization [1], [2]; on the basis
of an important theorem by Hasse and the author [5], units from these algorithms
which were in some cases a maximal independent system of units; Stender [9]
has proved that for these fields of degree n = 3, 4,6 this forms a system of
fundamental units. The author will prove that the above theorem for units holds
also for the new algorithm exposed in the next chapter.

1. THE ZERO ALGORITHM

Though this differs in its structure from the Jacobi-Perron Algorithm [7],
[8] and the Modified Jacobi-Perron Algorithm, as introduced by the author [1],
[2], it preserves the same basic properties which will therefore be enumerated,
but not proved here. Their proof is exclusively based on induction.

Definition. Let F(x) be an n-th degree polynomial in one variable x over the
field A of algebraic numbers, viz.
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Fx) =x"+K,x" '+ ... +K,_,x—d

1) n=2K,,de A(i=1,..,n—-1);d*0;w 'K, +0.
Let
(1.2) ! F(w) = 0.
Hencew '=d'W" '+ K,w" 2+ ...+ K, _,w+ K,_,)). Let
a” = (a(w),ad W), .., al ,w) =@P,ad, ..,a?)),
(1.3) where the a{” (w) are polynomials in w over A, and

l=dega®w)=n—-1,(i=1,....,n—1),

be a properly chosen n — 1 dimensional vector. The sequence (a®’),_,, is called
the zero algorithm of the vector a'®, if

(v+1) __ (v) (v)y—1 ) (v} ) ) .
a =(a, —b;) (ay’ —by’,...,a,” , —b.",,1);

1.4)
where a #b{”; b =aM0); i=1,..,n—-1v=0,1,....

The vectors b™ = (b¥”, ..., b{",) are called the companion vectors of a‘’. The zero
algorithm (abbreviated ZA) is called periodic if there exist minimal rational integers
L=0,m=1 such that a®*V~*" v =1L,L+1,...; it is called purely periodic
if L = 0. The sequence (a™), v=10,1, ...,L — 1 is called the primitive preperiod,
(a™,v=L,L+1,...,L+ m— 1, the primitive period.

The basic properties of the ZA are derived from sequences of numbers A
i=0,1,..,n—1;v=0,1,...) obtained from recursion formulas, as follows

W)
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n—1
(1.6) AV =AY+ D bMAM?, i=01,.,n-1L
j=0
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j=1
v n—1

(1.9) H a® =AY = 2 a VAT, v=12,...,
j=1

i=1
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We shall now give an example of a periodic ZA which will prove to be decisive
for the further solution of our problem. We prove

THEOREM 1. Let

(1.11)

f(x) =x"+dt,x" "'+ ... +dt,_,x —d;

fwy=0wi=d(w" '+ di:llw““2 + ..

Further, let

(1.12) a” = (w+dt,,w’ +dt;w + dt,, ..., w* T+ db, w7+

n—1
at, € A(i=1,...,n—1);d4=0;]'[ti4=0.
i=1

C+dt, ).

n=23,..)

+dt,_,).

Then the ZA of a'” is purely periodic. The length of the primitive period, m, is
n fora =+ 1, and 1 for a = 1.

Proof. The following relation is obvious

(1.13)

i=2 ..,n—-1;a%—dt, =w.

By definition of the ZA, we obtain from (1.12)

(1.14)

hence
(1.15)
(1.16)

(1.17)

b@ = (dt,,dt,, ..., dt,_;),

()} ©)

o) ) __
a —b" =(w,wa; ,..,wa, ;)

a

(

1) __ 0) (0) (0) -1 _(0)
- (al 38g 5 .eey an—2ad an—-l ’

b® = (dt,,dt,, ..., dt,_,,t _,).

Completely analogously we obtain

(1.18)

@ _
a“=(@a; ,....a,_ 3,

0 o -1_(0 —1_(©
2 2s.d a:,)_2,d la:xll s

a® —dt,=w' +dt,w '+ ... +dt,_,w=wa

o)
i-1)
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(1.19) b® = (dt,, ..., dt,_s5,t,_»,t,_ 1),

and generally
o © -1_(0
a (a veey an_i_l,d a,_ i --')d an-1)

(1.20)
b®=(@t,,..dt,_; ;,t, ; .ti_y), i=1,...,n—2.
From (1.20), i = n — 2, we obtain
a® V=(da¥,dtal ...,d"a?)),
bO™Y = (t,,ty, ...y ta_y).
Hence, taking into account (1.11), and by definition of the ZA

() 0 0
(1.21) a®=(@},ay”,..,a2,)=a®

which proves theorem 1 for d # 1. For d = 1 it follows from (1.16).

2. A THEOREM ABOUT UNITS

To solve the title problem we shall prove

THEOREM 2. Letthe components a; (w) of the vector a®® from (1.3) be polynomials
with integer coefficients from A. If the ZA of a'® is purely periodic with length
of the primitive period m, and if the A{’, derived from this ZA, are also integers
from A, then

m—1 n—1
2.1 l—[ O Ay 2 NN
i=0 iz

is a unit in a proper algebraic field.
n—1

Proof. From (1.9) we obtain H O =AM+ 2 a™AS*? and, since the

ZA of a? is purely periodic and a‘"" = aﬁf”l, a‘“" = af”, i=1,..,n -1, we
have

n—1 n—1
(2.2) 1—[ (‘) = A(m) + 2 a(O)A(mﬂ)

i=0

The right side of (2.2) is an algebraic integer, in view of the hypothesis of theorem
2. In view of (1.10), the entries of the determinant, appearing on the left side

n—1

of (1.10) are also algebraic integers, hence the inverse of AS™ + z a A"
=1
is also an integer which proves theorem 2.
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One may ask whether the restriction of theorem 2, that the ZA of a‘® must
be purely periodic, is not too rigid. But we must keep in mind that if the ZA
of a” is altogether periodic, then it can be made purely periodic of length m.

3. STATEMENT OF THE PROBLEM

In [4] Hasse and the author obtained the following results: Let

F(x) = H x—d)—dn=2;d,dezZ. (=1,..,n)
i=1

3.1) Cd=1;d,>d,>...>d,;d, = d;(mod d) i=2,..,n
d,—d=nd (i=2 ..,mn).

For d = 1 and n = 3,4 there are further restrictions.
Then the following statements are true:
(3.2) F(x) has exactly n different real roots;
(3.3) F(x) is irreducible over Q;

(8.4) Ifwisthe largestrootof F(x) (d, < w < d, + 1), then, choosing n different
proper vectors a*” in Q (w), the Modified Jacobi-Perron Algorithm for each of these
vectors becomes purely periodic with length of primitive period m = n(n — 1).

(3.5) The numbers e;, = d”'(w — d;,)%, (i = 1, ..., n — 1) form a maximal
independent system of units in Q (w).

Of course, one derives from (3.1), (3.4) and (3.5) thate, = d™*(w — d,)" is also
a unit in Q(w), and that

n

(3.6) H e, = 1.

i=1

Since e;e; " is also a unit, it follows that (w — d;)(w — d;)™")" is a unit, hence
3.7 g =(w-—d,) "(w-4d,), i=2,..,n—1), ande,

form also a complete system of independent units in Q(w). If d = 1, then in
(3.5) the exponent n has to be replaced by 1. Halter-Koch generalized in [3] the
polynomial (3.1) in the following way:

Let f(x) be an irreducible monic polynomial with coefficients in Z such that

f@)=[[&-d) J] ®x-2z)x-2)-d with
d=1 j=r;+1

(3.1a) .
rn=0r,=0n=r,+2r,=3;dde€Zd+0;d,>d,>...>d

ry?

(3.8) 1z, are integral, complex quadratic, z; their conjugates,
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d|d; — d;, d|d; — z;, d|z; — z;, d|z; — Z;,
for all possible indices i,j; if r, = 3, r, = 0, |d| = 2, then additionallyd, — d, = 4
ord, —d; = 4.

On the basis of (3.8), Halter-Koch proves that f(x) has exactly r, (different)
real zeros and exactly r, (different) pairs of complex conjugate zeros. To prove
this, he needs the additional restrictions:

3.9) |d; —d;|, [d; — 7], |z — %], |z — 7| = 2, for all possible indices i, j.

J

In Q(w), f(w) = 0, a complete system of fundamental units consists of r, + r, — 1
elements. Halter-Koch proves that for |d| > 1

dw—d;)™", l=i=r
(3.10) =19 ,
d*((w —z,)(w—Z)) ", r,+l=sisr +r,
ry+ry
are r, + r, units in Q(w) with H e; =1, and that any (different) r, +r, —1
j=1

of them form a complete system of independent units in Q(w). For |d] = 1, the
exponent n in (3.10) has to be replaced by 1.

4, THE SOLUTION OF THE PROBLEM
We introduce the notation

(4.1) {D,,Dy, ..; D} = {dy,da, ey Ay s Zy s 15 By oo 7

’ Zr1+r2’ r1+r2}

where d;, z;, Z, i = 1, ..., ry; 2,2;=1,+1,..,1, +7T,) are given by (3.1a), and
rewrite f(x) from (3.1a) as follows:

4.2) f(x) = (x — D,)(x — D,) ... (x — D,) — d.

Rearranging f(x), we obtain

4.3) f(x) = (x —D,)[(x —D,) + (D, = D,)] ... [x = D,) + (D, — D,)] — d;
denoting

w — D,= a; S, are the elementary symmetric functions in D, — D;

i=2,...,n),

(4.4)

we obtain from (4.3), (4.4), with f(w) = 0,

(4.5) fw)=a"+S,0" ' +...+8S,a—-d=0; w=D,+a
since, by (3.8), d|D, — D,, we have

(4.6) d|S;, i=2,..,n).
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Hence we can apply theorem 1 to the vector

a%=(a+8,,0>+S,a +S;, ...,a” '+ S,a"?+ ...+ 8)

n

(4.7) )
a?® . =da";a?  =a! i=12 ...,n—1).

In virtue of theorem 2 a unit in Q(a) is therefore given by

4.8) /=da "=d(w—-D;)™".

If D, € {d,,d,, ..., d,, }, we obtain from (4.8) the Halter-Koch units
(4.9) 4=d(w—d)™", i=1,..,r); 4E Q(w).
Otherwise we take the unit

(4.10) 4=dw—1z)" dlw—%;)7", G=r,+1,..,1r, +71,)

to obtain the other Halter-Koch units in order to construct a complete maximal
set of independent units in Q (w). The reader should note that

(4.11) £=3a%[w® — (z;+ z;)w + z;Z;] 7" € Q(w).
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