APPROXIMATION OF ANALYTIC FUNCTIONS
SATISFYING A LIPSCHITZ CONDITION

A. Matheson

1. Let A\, 0 < a < 1, denote the class of functions f analytic in the open unit
disk, continuous in the closed disk for which t™*w(t) — 0 as t — 0, where w denotes
the modulus of continuity of the boundary function of f.

Defining
(1.1) Ifll. = Ifll + sup t “w(+)

yields a Banach algebra norm on A,. A theorem of Hardy and Littlewood [7,
I, p.263] guarantees that f € \_ if and only if

1.2) [£/@)| = o((1 — |z])*7") as |z|—>1".
This theorem yields an equivalent Banach algebra norm on A, by setting
(1.3) I£l = 1]l + sup {(@ - |z |£'@)]: |z| < 1}.

The norm given by (1.3) will be used exclusively in the sequel.

Every function f € \_ has a canonical factorization f = FG, where F is an outer
function and G is an inner function. The purpose of this paper is to prove theorem
A below, which states, in effect, that a function f in A\, can be approximated
by functions in A with the same inner factor and with boundary zeros of arbitrarily
high order.

THEOREM A. Let f € N\, and let E be a closed set on the unit circle such
that f(z) =0 for all z € E. Let M > 0 be given. Then for every € > 0 there exists
a function £, € \_ such that :

(i) the inner factors of f and £, coincide,
@) |f—f£.|| <e, and
@) |f, (z)| =O (dist™(z,E)) as dist (z,E) — 0.

Theorem A can be used to give a characterization of the closed ideals in A,
analogous to the Rudin-Beurling characterization of the closed ideals in the disc

algebra [5]. The argument is similar to that of Korenblum [2] and is presented
in [4].

The principal difficulty in the proof of Theorem A is isolated in the next theorem.

THEOREM B.. Let f € A\ be of the form F'G where F is outer, G is inner,
p>1and FG € \_. Let T be an open subset of the unit circle such that f vanishes
at the endpoints of each component interval of I'. Define
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1 e’ +z 0
(1.4) F.(z) =expy— = log |F(e™)]| do ¢.
2w Jre

— Z

Then there is a positive number N, independent of T such that if N> N_, the
function fF} belongs to \ and satisfies

(1.5) |EFr)(2)] =0 (1 —|2[)*7")

uniformly with respect to T.

Section 2 will be devoted to presenting a series of lemmas needed in the proof
of Theorem B. This theorem will be proved in Section 3 and Theorem A will
be derived from Theorem B in Section 4.

2. The first lemma gives a useful characterization of convergence in \ .

LEMMA 1. Let {f,} be a sequence in \, which converges uniformly on compact
subsets of the open disk to some function f. If

(2.1) lim 1 —r)'™ sup If! (z)] =0

r—1~
uniformly in n, then f € A\ and lim.ll f.—f|=0

Proof. It suffices to show that {f.} is a Cauchy sequence in A\, . Fix ¢ >0
and choose R (0 < R < 1) so that

(1—]z])""™|f.(z)| <e forall|z|=R and for all n.
Now choose N > 0 so that if m,n > N, then
|f.(2) —f.(2)| <e, |fl (2 —fl|<e for [z]| = R.

Let z = re"* be a point such that R < r < 1. Then

f_(z) — f (2) = S [f! (se'*) — £’ (se'*)] e'ds + f_(Re™) — f_(Re™),

R

so that
T 2¢ ) .
| f.z) — f.(z)] = ——ds+ |f, (Re™) — £, (Re"™)|
r (1—8)y"°
2
=—e+te for m,n = N.
o ,

’ 2
Thus if m;n > N, ||f,, — £,||.. < (1 + —) e. Also, if |z| = R,
(84

1= |z |fL (@) — £l (2)] =< 2¢ for m,n = N,
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2
Thus ||f, — f,|| < (1 + —) ¢ + 2¢ which proves the lemma.
a

The second lemma, due to Havin [1] and Shamoyan [6] guarantees that if
f is in A then the outer factor of f is also.

LEMMA 2. Lets € H”. For f € H” define

1 (% e€* S
(2.2) Tf(z) = — S f(e'®) s(e®) do

2w}, €’ —z

for |z| < 1. Then T is a bounded operator from \_ to \,. In fact if f € \_,
(2.3) ITE) < C, lIsll ]
where C_ is a constant depending only on o. In particular if fE€ N, and G is

an inner function dividing f, then G™'f € \_, and |G™'f| . < C_|| |

The next two lemmas give restricted versions of Theorem A. Lemma 3 allows
approximation by functions with boundary zeros of order greater than a, but the
order depends in general on how close the approximating function is to the original
function. In Lemma 4 E is restricted to being a finite set.

LEMMA 3. Let f € N\, and let f = FG where G is an inner function and F
is an outer function. Then for all € > 0 the functions F'**G are in \_ and .

2.4) lim |[F**G — £]| = 0.
e—0

Proof. 1ltis clear that F°f = F '™ G converges to f uniformly on compact subsets
of the open disk. Since F € A by Lemma 2 and since

(F'G) = F'™G’'+(1+¢F°F' G
= F*f' +eF°GF’,

it follows that

lim (1 — 1) “sup |[(F'**G)'(z)| =0

r—1

uniformly in €, and Lemma 3 follows from Lemma 1.

LEMMA 4. Letf € )\, and let E be a finite subset of the unit circle on which
f vanishes. Let N > 0 be given. Then for each &> 0 there is an outer function
F in \_ such that

@ ||Ff—f[| <e,
(ii) {z|F(z) =0} = E, and
(iii) |F(z)| = O(dist"(z,E)) as dist (z,E) — 0.
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Proof. It is permissible to assume that N = 1 and that E consists of a single
point, say E = {1}, since the general result will follow by induction. Set

z—1
F(z) = ——, &8 >0.
z—1—398

Clearly F; is an outer function satisfying (ii) and (iii). To finish the proof it suffices
to show that }sing [[fF, — f] = 0. It is clear that F;, — 1 uniformly on compact subsets

of the open disk; so in view of Lemma 1, it will be enough to prove that

Hm @1 - )™ sup [(Fsf)' (z)] = 0

r—1

uniformly in 3. Since |F;] ., = 1, this reduces to showing that

lim (1 - )™ sup |€F)(@)| =0

r—1 fz
uniformly with respect to 3.

Given € > 0, choose m > 0 so that |f(z)] <& |1 — z|* whenever |1 — z| <, and
choose R, (0 <R < 1), so that (1 — R)'™* < me. Since Fi(z) = —8(z — 1 — 8) %, and
|z—1—38|=3 for |z| <1, it follows that |[F/(z)| < |z — 1 — 8| . It is also clear
that |z—1—-38|=|z—1|=1— |z]|for |z| < 1. Hence

[Fi@| =@ —|zp*"1—z|* for|z|<L1.
If |z— 1| <m, then
1= |z])"|f@]| |[Fi@)] <@ — |z])' |l —z|*@ — |2z |1 —z| " =p§,

while if |z — 1| > m, and |z| = R, then
1 - 2D £ @] |Fi@] = (@ ~ R} ]l ]1 ~ 2z — 8|
= nellf]l. |1 - z|7" <ellfll..

which proves the lemma.

The next lemma, due to Korenblum [3] is an essential ingredient in the proof
of Theorem B.

LEMMA 5. Let g be a bounded analytic function in the disk with ||g|. < 1.
Let v = {e'°|a <0 < B}, with B — o < 1. Suppose that

(2.5) |gE®)| =ad”(e’®) fore’ €4,

where a < 1 and d(z) = min {|z — e*|,|z — ¢'*|}. Let

v ={z |z} <1,z|z|™" € v, kd(z|z]|™") = 1 — |z|}
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where k < 1. Then
(2.6) |g@)| < Cmal™%[d@)]""

for all z € v*, where C and q are positive constants independent of k, B — a and
n. .

Proof. Define

4(6) = { e o
T ad®e®  ifefeny’

and let

{ 1 Sz" e’ +z }
F(z) = exp { — - logd(0)do ¢.
e

2w ), €°—z
Then F is an outer function satisfying the hypotheses and |g(z)| = |F(z)| for all
|z| <1, so it suffices to prove the lemma for F. Let P,(6) denote Poisson’s kernel.
Then, if z = re™,

loga (* n (° "
log |F(z)| = > P.6 —t)de + 5—— logd(e™)P_ (6 —t)d6

v m

o (23

so it suffices to find constants q and C independent of k, B — o and n such that

1 g
1~- qksz—- S P.(® — t)do and

(s

o

1 (° . .
— S P_(0 — t) log d(e®)d® = log C + (1 — gk) log d(re™)

v

[+ 3

-

wheneverz = re** € 'yl.‘. A simple calculation yields the first inequality withq = 4 /.
Assume, e.g, that d(e*) = |e"* — € |. Then [a, 2t —a] C [« B], s0

1 (® ) 2me .
2 S P.(6 —t)logd(e®) do = — S P_(© — t) log d(¢”) d6

T e 27

@

log 2d(z) (*°
——g——g P, (6 —t)do

2w

[+3

IA

4
[1-—k][logd(z) + log 2]. .
uy

The lemma follows with q = 4/7 and ¢ = 2.

3. This section is devoted to proving Theorem B. Let I' be an open subset
of the unit circle and let E denote the boundary (on the circle) of I'. Let f € A,
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be of the form FPG with p> 1, and F G € \_, such that f vanishes on E. Since
F also must vanish on E and F € \_, it follows that

3.1) | f(z)] = C dist %(z,E), [z] <1

for some C > 0 and some B > a. Without loss of generality, assume that ||f]|, <1
and ||F|.. < 1.

Define
1 e’ +z )
(3.2) F.(z) = exp{— - log |F(e*)]| de
w Jre’ —z
1 ele .
(3.3) A(z) = — — 3 log lF(ele)ldB
w ) (€ — 2)
1 elﬂ )
(3.4) B(Z) = ﬁ log I F(e‘“ )l de
w Jor (€7 —2)

where CI” denotes the complement of I'. Since F’ = F(A + B) and (Fll:l Y =N Ff-‘ A,
it follows that

(3.5) f(FYY = NfFYA
(3.6) =FP'NGF' F. - NGF°FB.
Also |F*(z)| = | F(2)| dist °(z,E) wheree = e(p) > 0. Let q be as in Lemma 5 and

choose k so that 1 — qk > 0. Choose N, >0 so that N,a(l — qgk) = 2 — a. Let
d(z) = dist (z,E) and divide the open disk into three disjoint sets:

G, = {zkd(z) <1 - |z|}
G, = {z:kd(z) = 1 — |z]|,z|z|™' € T},
G, = {zkd(z) = 1 — |z|, z|z|' &T}.

Fix N = N,,. To prove Theorem B it suffices to show that

3.7 lim (1 — )™ sup [ fz)(FY (z))'| =0

r—»1

uniformly with respect to T, separately in each of the three sets G,, G,, and
G..

First suppose z € G,. Since | F|.. < 1, it follows from Cauchy’s estimates that
[(FY) ()| < (1 —|z])~", hence
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(1 — 2" H@DEFEY@)'] = (1 - |z])"d)
= k71~ [z~

so (3.7) holds in G,.
If z € G,, it follows from Lemma 5 that | Fr(z)] = C™ [d(2)]™ ", It is clear
that | B(z)| = 2Q[d(z)] ~* where Q = —log |F(0)|, so that
NG 2)F () FR(z)B(z)| = 2NC,C*Q[d(z)]> PP~ 2,

which is bounded, since NB(1 — qk) > 2 — a. Thus (3.7) follows from (3.6) in G,.
1 S log | F(e*)]

2

do . The proof

For z € G,, following Korenblum, let a(z) = =
2w o |e” —z|

divides into two cases. If a(z)d(z) < 18] log d(z) |, z € G, then

|A(z)| = 2 a(z) = 36 |log d(z)| [d(z)] -1
so that
A — |z])' N |[£f@F Y (2)A(z)| = 36N(1 — |z])*~*|log d(z)| [d(z)] **
= 36N(1 — |z|)5k1"'_a[d(z)]a|10g d(z)|,

1
where 8 = -2— (B — o). Since B —a —3 — >0, |log d(z)| [d(z)]® is bounded, hence

(3.7) follows from (3.5).
Finally assume that a(z)d(z) > 18|log d(z)|, z € G;, and let

8 |log d(z)] '

=1—
P a(z)

The first step is to estimate | F(pz)|. Since 1 — p = d(z), it follows from a calculation

le® —z| 1 o
that ——— > —for e” € TI', and hence

Re(ez:+pz) _ li—ep2|z|22

e’ —pz |e” —pz]

1 1-p°

?)_lem—zl2

| log d(z)| 1

) a(z) |e* -z
0 |log d(z)| 1

a(z) |e® -z

v

=201+

2

ife®er.

1>
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Therefore, since log | F(e®)| < 0,

1 (% e +pz 0
log |F(pz)| = — Re | — log | F(e")|de
e

27 J, — pz

S | e®+pz\’ o
=—\ Re|— log | F(e")|d®
27 Jr e’ — pz
logd(z)] 1 log | F(e'®)
< llogd@l 1 lglFEDl o
a(z) 2w ) |e'° —2)]|

= —2 |log d(z)|,

so |F(pz)| = d*(z). Now

1

|F(z)] = | F(pz) + S z F' (sz)ds|

p

= |F(pz)| + (1 — p)|z| sup. | F'(sz)]

=< |F(pz)] + (1 — p) sup |F’ (@)
IKl=\z|

by the maximum modulus theorem. Hence,

INf@F; @2)A@)| < N|F@F (2A@)|d*@)
= N|F(pz)|2Qd**(z)
+ N —p) sup |F'(D)] |A@2)|d ()

< Nd*() [2Q + (1 - p)|AG)] sup [F/(I].

But |A(z)| < 2a(z) and 1 — p = 18 |log d(z)| [a(z)] 7, so
(1 - p)|A(z)] d°(2) = 36 |log d(z)|d*(z),
which is bounded. Thus there are positive constants C, and C, such that
INf@Fr(z)A@)| = C, + C, sup [F'(p)|
= o((1 ~ |z|)*™),

since F € A_. This completes the proof of the Theorem B.

4. Let f, E and M be as in Theorem A, and fix € > 0. By lemma 3, there exists
p > 1 such that |F*G — f|| < ¢/3, where F is the outer part and G is the inner
part of f. Let {I,};_, be the sequence of complimentary intervals to E and set

B, = U I,. Define
k=n
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e +z

1 0 .
(4.1) F.(2) = exp {-—- S log|F(e®)] de}.
2 B, ©

i0—z
k1)

Choose N > max {N_, Ma "'} where M is the constant of Theorem A and N, the
constant of Theorem B. Define g, = F1 F*G. It is clear that g, converges to F*G
uniformly on compact subsets of the open disk, as n — « and, since N = N_, Theorem
B implies that lin} (1-nt= ISlep | g1.(z)| = 0 uniformly with respect to n. It follows

by Lemma 1 that ||g, — F*G||— 0 as n— . Choose n so that ||g, — F Gl <e/3.
The function g, satisfies conditions (i) and (ii) of Theorem A, but does not necessarily
satisfy (iii). To rectify this, notice that the set E,;,=(E-B))U (ENn 9B,) is a
finite set upon which g, vanishes. By Lemma 4, there is an outer function H € A,
such that ||g, — Hg,|| < /8, H vanishes exactly on E,, and

H(z) < C dist™ (z,E,) for |z] < 1.

By construction, it is evident that | H(z)g,(z)| < C, dist"(z,E) for |z| = 1. In particu-
lar, if { € E,

(4.2) |H(z)g.(2)] = C,|z - ¢|Y for |z| = 1.
But (z — ¢)" is an outer function, so (4.2) holds for all |z| < 1. Hence

|H(z)g,(2)] = C, inf |z — (N =C,dist “(z,E), |z|<Ll.
sE

Since |Hg, — f|| <||Hg, — g.l + lg. — F°G|| + |F°G — f|| <e, and HF,F? is an
outer function, Theorem A is proved.

Theorem A is analogous to the results of Korenblum in [2] and [3]. The method
of proof in this paper is similar to, and inspired by the proof in [3]. The principal
difference between [3] and the present paper is that in [3] the norm estimates
are carried out on the boundary of the disk, whereas here it seems to be expedient
to work in the interior via the theorem of Hardy and Littlewood. The referee
has pointed out that Shamoyan has proved a result similar to Theorem A for
a restricted class of closed sets [7].

This work constitutes a portion of the author’s doctoral dissertation, written
under the direction of Robert Kaufman at the University of Illinois. The author
would like to thank Professor Kaufman for suggesting this problem and for his
patience in seeing it through to solution.

REFERENCES
1. V. P. Havin, On the factorization of analytic functions smooth on the boundary. Zapiski
Nauknikh Seminarov LOMI, 22 (1971).

2. B. L. Korenblum, Closed ideals in the ring A". Functional analysis and its applications,
6 No. 3 (1972), 203-214.



298 A. MATHESON

3.

8

, Invariant subspaces of a shift operator in a weighted Hilbert space. Matem. Sb.,
89 (1972), 110-137.

. A. Matheson, Closed ideals in rings of analytic functions satisfying a Lipschitz condition.

Banach spaces of analytic functions (Proc. Conf., Kent State University, Kent, Ohio,
July 1976). Lecture Notes in Mathematics, Vol. 604. Springer-Verlag, Berlin, 1977.

. W. Rudin, The closed ideals in an algebra of analytic functions. Canad. J. Math., 9 (1957),

426-434.

. F. A. Shamoyan, Division by an inner function in some spaces of functions analytic in

the disk. Zapiski Nauknikh Seminarov LOMI, 22 (1971), 206-208.

, The structure of closed ideals in several algebras of analytic functions. Dokl. Akad.
Nauk Armyan. SSR, LV, 1972 (4) 207-210.

A. Zygmund, Trigonometric Series. 2nd ed. Cambridge University Press, New York, 1959.

Department of Mathematics
Oklahoma State University
Stillwater, Oklahoma 74074



