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1. INTRODUCTION

Some years ago I introduced the class.2 of functions f(z) which are holomorphic
in the unit disc D = {|z]| < 1} and possess asymptotic values at a dense set on

aD ([8]). Let M (r) = max,|f(re’)|. Then I proved ({8, Theorem 14]) that f € .&/
if

0

1
(1.1) S (1 —r)log M(r)dr < oo,
More generally, f € &7 if there exists a dense set © in [0,27) such that

(1.2) S (1—1)log™|fre'’)|dr <o (6 € 6),

4]

and the arguments of [8] use only (1.2); note that (1.2) is compatible with arbitrarily
large M (x). ’

Several years later, R. Hornblower [5] significantly improved the condition
(1.1) by proving that f € .« if

1
(1.3) S log ¥ log " M (r)dr < oo,
(4]

Further, Hornblower showed that (1.3) is almost sharp in the sense that there
exist functions not in 27 for which, corresponding to each £ > 0,

€ .
log " log " M(r) < (r, <r<1).
(1 —-r)log

- T
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Hornblower’s proof of the sufficiency of (1.3) is short, but depends on a difficult
lemma of N. Levinson [7, p. 135]; for this purpose Levinson’s result plays a
significant role in the proof of the major theorem in Chapter 8 of [7]. This latter
theorem admits independent proofs from N. Sjoberg ([11], Theoreme 3), A. Beurling
([2, Lemma 1]) and Y. Domar ([3, Theorem 3]).

I would like to give another approach to these ideas; it uses very different
and basic ideas. As an application of these methods, we present as Theorem 4
a new proof of the Sjoberg-Levinson-Beurling theorem.

Nothing is lost by considering the problem as one in subharmonic functions.
Let E be the box

(1.4) E={0<x<1l -1<y<1}.

The class [E] consists of those real-valued functions U (z) defined on E such that
(a) U is subharmonic in E,

(b) there exists a sequence of crosscuts {v,} of E, where each v, joins a point
of {0 <x<1,y=—1} to a point of {0 < x < 1,y = 1}, such that

Vo= {x=0;-1<Imz<1}
and such that
(1.5) U@ =M< ze~vy,n=1,2,..).
(Here y,— {x = 0; —1 < Im z < 1} means that for each £ > 0,
v. CEN {0 <x<e}, n > n,(e)).

Let A(t) be a positive function for 0 <t <1 which decreases as t increases
(in general, A (0) = +x). Then a function U of [E] belongs to [E,\] if

(1.6) sup U®E +1y) = A (x) 0O<x=1).

—-1l<y<1

Finally, A is the class of such functions A as above with the property that for
each fixed € > 0,

(1.7) lim sup U(z) < (—l+e<t<1—¢)
z€E

whenever U € [E,\].

The basic result here is Theorem 2:

(1.8) X log"A(t)dt <o => X E A.

o
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That Hornblower’s result follows from this is now standard. For suppose I is an
arc on dE (say I = {—1 <Imz < 1}) such that no point of I is the endpoint of
an asymptotic path of £(z). Then ([8, Theorem 1]) there exist M < c and a sequence
{v,.} in E tending to I on which (1.5) holds for U (z) = log |f(z)|. According to
(1.3), (1.6) and (1.8), we have (1.7). Thus, Fatou’s theorem produces many asymptotic
paths which end at points of I. ‘

Note from Carleman’s principle that (1.5) and (1.7) imply that

(1.9) limsupU(z) =M (-l1<7<1)
z€E

where M is the constant of (1.5).

2. PRELIMINARY RESULTS

These results are suggested by those of ([6]; [10] (c¢f. [4, p. 86])) but seem
to be new.

(A) A theorem on multivalent functions

LEMMA 1. Letf(z) = u(z) + iv(z) be holomorphic agzd non-constant in the unit
disc D = {|z| <1} with u continuous on dE. Set u(e™) =4 (t) (0 =t < 2mw) and
suppose there is a fixed integer p such that for each \(—w <\ < x) the closed
subset

(2.1) AN ={e":d () =N} (-o<A<w)

consists of at most 2p components of aD.

Then w = f(z) is at most p-valent in D. In particular, if p=1 then f(z) is
schlicht in D. '

Remark. The crucial aspect of this lemma is that the hypotheses concern only
u = Re(f): no assumptions are made about v.

Proof. For min ¢(t) = A = max &(t) and — < 7 < o, consider the number of
solutions to the equation f(z) = A\ + it forz € D. We first suppose that \ is not
a local extreme value of ¢, that A(A\) (cf. (2.1)) consists of k = 2p points (no arcs)
and that if

(2.2) L\)={z€ D:u(z) =\},

then £’ (z) # O for z € L (\). To ensure these requirements, it is necessary to avoid
an at most countable set of \.

The closure of L(\) in {|z| = 1} consists of q(= k/2) components, k,, ..., K,
each of which is a simple cross-cut of D. These k; divide Dinto q + 1 simply-connected
domains {G,_}, and A(\) divides dD into 2q arcs {I'}}, {I',[} in which u =\ and
u =< \ respectively. We note
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2.3) 2q = k = 2p.

Consider a G,, in which, say, u > \. Then G_, is bounded by a subset of the
I'" and these arcs alternate with s, of the k,. The Cauchy-Riemann equations

aJu av
(2.4) — =,
an as

(n = normal) now show that v is monotone along each k;. Hence f(z) assumes
each complex number A 4 it(—c0 <7 <o) at most s, times in G_ N D. But

z 8., = q so the Lemma, in this case, is immediate from (2.3).

Finally, we can easily remove the initial restrictions on A, for if f assumes
W = Ay + i1, more than p + 1 times in E, it must assume w = \; + it; at least
p + 1 times, where now )\, satisfies the restrictions given at the beginning of
the proof.

(B) On boundary behavior of conjugate harmonic functions

Let a and b, a <b, be real numbers, and ¢ (x) be a continuous real function
such that
(2.5) |d(x)] < M (a<x<b),
(2.6) dx) =0 (x=a;x=Dh).

The function

()—1 ) Y t) dt
R _m(x-—t)2+y2¢()
2.7) .
1 y
= — d (t)dt (Imz > 0)
'n'Sa(X—-t)z-i-yz

is harmonic in the upper half-plane H and u(x + iy) — ¢ (x) at points of continuity
of ¢. A function conjugate to u in H is

1 Xb x—t
(2.8) v(z) = — 2 p ¢ (t) dt.
™ a (X-t) +y

The boundary values of v are formally given by the Hilbert transform (Cauchy
principal value)

X—e b t
(2.9) ¢(x)=lim{§ + S } *© dt (a<x<b).

el0 x—t

X+ e

The next result makes this very explicit.
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LEMMA 2. Let ¢(x) be continuous on (—wo,0) and satisfy (2.5), (2.6). Suppose
that to each m > 0 may be associated €, > 0 such that

$(t) — o (x)

dt <m (—o<x <00, <g,).
t—x

™

1 X+e
(2.10) — S

X—e

Then if v and ¢ are defined according to (2.8) and (2.9), it follows that ¥(x)
is continuous for —o < x < « and

(2.11) limvx +iy) —¥x) =0 (0 < x <)

y—0
uniformly. In particular, the function

f(z) =u(z) +1iv(z) (z ElH)
can be extended continuously to the real axis by
(2.12) f(x) =d¢x) +iv(x) (—o0 < x < o),

Proof. We first show that the limit in (2.9) exists .uhiformly in x as e > 0.

Let h > ¢, >¢,. Then
{ e jro-sw,
x—gy X—¢€g t—x

[RRES
X—€gg x+eg X—-t

- S AW ZO® o) (e 0)
x—€] t—x
with desired uniformity. We also have that
1 (° yZd(t)
2.13 +iy) — U(x) = —
. e e =T Sa(t—x)[(t—x)2+y21

We now prove (2.11). According to (2.5) and (2.13),

x—yl/2 b 2 (t)
(2.14) { g + S } v 1¢ |2 — dt
a x+yl/2 lt_Xll(t_X) +y ]
2 - du 2 B -3
= 2My —2—25 2My u “du= My.
yiozu{u” +y°) y172

Next, the odd parity of the relevant kernels and (2.10) yield that
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x+yl/2 20 (t
S y b (t) it

x—y17z (b - x)[(t — x)* + y?]

S“yw y? [d () — ()]
x—yl/2 (t—x)[(t— X)Z + y2]

x+yl/2
=
x—yl/2
uniformly in x. This and (2.14) show that the continuous functions v x+1iy) (y>0
and fixed, —o < x < ®) tend uniformly to y(x) as y — 0. Thus (2.11) holds and

¥ is continuous. The remaining assertions of the Lemma concern the convergence
of u to ¢, and are standard.

¢ (t) — $(x)

dt=0(1) (y— 0),
t—x

In our application in section 3 of Lemma 2, we shall encounter the following

situation: a = —2, b = 4, and ¢ is concave having derivatives existing off a finite
t-set T with )

$(t)=0 (t<0)

$(0) =0, d(1)=¢c, (0<c<])
(2.15)

&’ (t) >0, d")=0 @O<t<LteT)

b +1t)=¢(1 —1t) (t =0).

From the concavity of ¢ it is then clear that for e < 1

x+e t _ € t
(2.16) S RACRRAC N PP S AN (—1= x = 2).
X—e t’ - X o t
COROLLARY. Let ¢ satisfy (2.5), (2.6) (with a = —2, b = 4), (2.15) and
Yot
(2.17) S ﬂ)g dt < 0.

Then (2.11) holds, Lemma 2 applies and v is continuous on the closed half plane
H.

For our final observation, let ¢ be as above and for n > 0 define a ‘truncated’
¢ by ‘
(2.18) ¢, (t) = min (¢ (t),n).

Then (2.15) holds for d')TI and (2.17) is satisfied for ¢ if and only if (1.17) is
satisfied for .

LEMMA 3. Let ¢ satisfy (2.15), (2.17) and let &, be given by (2.18). Define
u,, v, by (2.7) and (2.8) with a = —:2, b =4 and ¢, in place of ¢. Then v, is
continuous in the closed half-plane H and vanishes at «. Further, given h > 0,
there exists v, (h) such that

(2.19) |lv,@|<h, z€&H0<m<n,h).
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Proof. Lemma 2 shows that v, is continuous on [—1,3]. Also, (2.15) and the
reflection principle give that v_(x) (= ¢, (x)) is continuous at every point in the
real axis outside [0,2]. An inspection of (2.8), (2.9) and (2.11) shows that v(e) =0
and that v is monotone on (—,0) and (2,). It thus suffices to show that

(2.20) 0, ()] <h (O=x=2)

for sufficiently small .

To prove (2.20), let 0 = x < 2. Then (2.16) gives

1 x—1 4 1 x+1 t) —
P, (%) = — { S + S } $,, (t) it + P.V.{—— S ¢, ) — b, (x) dt},
™ -2 x+1 x—t ™ x—1 x—t

Yo, (t)
o ¢t

4 2
l¢“(§)ls-ﬂ+——§ dt.
v v

Now ¢, (t) |0 ae. for 0=t=1 as q— 0. This with (2.17) allows Lebesgue’s
dominated convergence theorem to be applied, so (2.20) is assured by choosing
a suitable m, > 0 and then taking n < n,.

Remark. Necessary and sufficient conditions that ¢ be continuous can be
obtained from [12, p. 180, Ex. 5].

SECTION 3

. (A) The Hornblower theorem

THEOREM 1. Suppose that \ (t) is positive and non-increasing on (0,1]. Suppose
further that there exists a non-decreasing function ¢ (t),0 <t <1, with

(3.1) $(0) =0, (1) <1
and
1 t 1
3.2) g %l dt < oo, S A (b (t))dt < oo,

Then \(t) € A, where A has been defined in (1.7).

Proof. We first impose the additional conditions that & € C*(0,1] and that
(2.15) holds for 0 =t = 1. By defining ¢ (t) = ¢(2 — t) (1 =t = 2) we then satisfy
(2.15) for all t. Next, truncate & with (small) 7, as in (2.18), and observe that

the resulting function ¢, (t) satisfies (3.1) and (3.2) as well as the hypotheses
of Lemma 1 with p = 1.

Define u(z) and v (z) by (2.7) and (2.8) with a = —2, b = 4 and set

f(z) = u(z) + iv(2) (z € H).
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ik
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0
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Figure 1

Since v is monotone on the intervals on which ¢, is constant, it follows from
Lemmas 1 and 2 that w = f(z) maps H one-to-one onto a symmetric Jordan domain
P as indicated in Figure 1.

Recall the definitions E, [E], [E,\]}, A from (1.4)-(1.7). To prove (1.7) when
(1.5) holds, we may take + = 0 in (1.7), and choose m so small that

Pc{lvli<h<1} NE;
this is possible according to Lemma 3. We also assume that
(3.3) At)=A(1)>M,

where M appears in (1.5); otherwise A may be replaced by max (M, (t)).

Now let {v,} be a sequence on which U(w) =M, such that y,— [—ih, ih].
Then for n > n,, v, contains a cross-cut v, of P, which divides P into two components;
let P, be that one which contains a segment of the arc {u = n}. From (3.3) and
Carleman’s principle of domain extension it is clear that

(3.4) Uw) =D, (w) (weP,n>n,)

where @, is bounded and harmonic in P with boundary values A (u) on aP N oP,
and M on the remainder of dP.



A GROWTH CONDITION FOR CLASS .« 271

The inverse of f, z = f ' (w), maps P onto H and carries U(w) and ®_(w) into
T(z) and ¥, (z) respectively, and P, onto a Jordan domain G, C H such that aG,
contains the interval [g,, 2 — €/ ] of the real axis. One sees using (2.12) and (2.15)
thate, |0, e, | 0and G, 1 H as n — o, and (3.4) becomes

(3.5) T(z) =¥, (2) (z € G,,n=n,).

Now ¥, is a bounded harmonic function, and so

(3.6) Y _(z) = — —— dt + Mo, (2),
t—x)+y

K0

£

1 SZ_"'“ yA (b ()

n

where o, is the harmonic measure at z of the complement of [e,, 2 — €] relative
to the real axis. It follows at once from (3.5) and (3.6) that

dt + M

1 (% yN@(t
(3.7) Tms%ms—g yAO®)
o t—x)"+y

w

=¥z +M (z € H).

Since ¢(t) = (2 —t) (0=t =2), we see from (3.6) and the second assumption
of (3.2) that ¥ (z), as just defined in (3.7), is harmonic in H, and bounded outside
any neighborhood of z =0 or z = 2.

We reinterpret (3.7) in P. Then ¥ corresponds to the positive harmonic function
®(w) in P with continuous boundary values 0 on aP N {u = 0} = (—ik, ik) (cf.
Fig. 1). Thus (3.7) becomes

(3.8) Uw)=d(w)+ M (w € D),
so that

lim s(}1p Uw) =M
weP

and A (t) € A. This proves the Theorem in the special case that (2.15) is satisfied.
To complete the proof we show

LEMMA 4. Let \(t) and & (t) satisfy the hypotheses of Theorem 1. Then there
exists @ (t) which satisfies the same hypotheses and (2.15); in fact, we may arrange

(3.9) d(t) = DO(t) O0=t=1).

Proof. Since ¢ is non-decreasing and ¢ (0) = 0, (3.2) shows that ¢ is continuous
at t = 0. We define ¢(t) =d(1) <1fort =1 (this is a different extension than
used in the proof of the special case of Theorem 1 above, but no confusion should
arise).
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2t

If ¢, () =t" ¢(u)du (t > 0), then ¢, is continuous, nondecreasing, and

$,(0) =0, ¢, (t) = ¢t(1) <1fort=1, and
(3.10) b (t) = b, () = d(2t) (t > 0).

The right inequality of (3.10) shows that ¢, satisfies the first condition in (3.2),
and ¢, satisfies the second condition since X\ is monotone and the left inequality
of (3.10) holds.

2t

Similarly, if ¢, (t) =t S &, (u) du wé achieve a ¢, which satisfies (3.1) and
(3.2) with '
$,(t) € C[0,1], &,(t) € C'(0,1], $L(t)=0 O0O<t=1)
and ¢ (t) = d,(t).
Now if € is so small that ¢,(1) + & < 1, we set ¢ (t) = ¢, (t) + et Consequently,
(3.11) ¢3é0[o,1], b€ C'0,1], ¢, t)>0 (O<t=1]

and ¢ (t) = b, (t).

Thus, by replacing ¢ by ¢, and then dropping the subscript 3, we need only
prove the Lemma in the case that ¢ satisfies (3.11). It is necessary to rig ®
in terms of ¢ so that ® comes out concave down:

1 ¢’ (u)

¢ u

(3.12) D' (t) = S du>0 O0<t=1)

and

St St. Sl ¢'(S)
d(t) = ®’' (u)du = du ds

0 0 u 5

1 47 min(s,t) 1 ’
(3.13) + g 6 ds S du=¢() +t S ¢ W du

o 8 V] t u
=) +td' () (O<t=1).

That this makes sense, (that is that ®’ is integrablé on [0,1]) follows from (3.13)
‘'witht = 1and Fubini’s theorem. Then ®(0) = 0,® € C [0,1], and @’ is the derivative
of ® on [0,1]. Integrating the penultimate expression of (3.13) by parts gives

' d(u)

2
u

(3.14) D) =td(1) +t S du O<t=1.

t
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We now check that @ satisfies the more stringent conditions imposed at the
beginning of the proof of Theorem 1. Definition (3.12) shows that ® € C?(0,1]
and ®”(t) = -t "¢’ (t) <0 (0 <t = 1). Next, (3.12) and (3.13) give

1

(3.15) b (t) = D(t) = d(t) + S ¢’ (Wdu=¢(1)<1

t

(to get ®'(1) > 0, we may add et to ® for small ). Thus & satisfies (3.1), is
in C?(0,1], and satisfies (2.15) for 0 =t < 1. The second condition of (3.2) is a
consequence of the left inequality of (3.15), and the first bound of (3.2) follows
from (3.14):

1¢t 1 1
S —t(—)—dt=¢(1)+g dtg LAC N

2
o 0 t u

o)

o U

du <o

=¢(1)+S

This completes the proof of Lemma 4.
(B) Remarks

We observe the sources of the conditions (3.2). The second ensures that the
1
Poisson integral ¥(z) in (3.7) exists: if A(d (t)) dt = +oo, then it is clear from

0
(3.6) that ¥ (z) > +» as n— « and the argument is up the chimney. The first

condition allows use of Lemma 3. But this condition is not accidental; it is vital
1

to the argument. For if t ' ¢ (t) dt = 0, the principal value integral ¥(£) (cf.
0
(2.9)) has values ¥ at £ = 0,2 and so v is unbounded. Thus no matter how small

m is used to truncate ¢, the domain P obtained as the image of H extends from
v = —o to v = 4+ and can’t be confined to E.

We also want to motivate the definition (3.12) of ® in terms of ¢ (= ,).
t t
To obtain a function ® with ®’ decreasing and D’ du = ¢ du, we take the

(4] o
graph of ¢’ and rearrange so that ¢’ (t)dt = —td®d’(t). This procedure gives a
function ® with ®’ decreasing. It does not always give the smallest dominant
¢ which is concave down (for ¢ (t) =t, we get ®(t) =t + tlog(l/t)) but is close
in extreme cases and certainly serves our purpose. There appears to be no simple
way of laying hands on the smallest dominant that is concave down.

(C) A reformulation of (3.2)

It is possible to replace (3.2) by an equivalent condition which does not involve

&; this is the condition of Hornblower, and gives another interpretation of condition
(3.16) below.
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THEOREM 2. Suppose that \(t) = 1 and that \(t) is nonincreasing for
0 < t = 1. Then there exists a & in accord with the hypotheses of Theorem 1
if and only if

i
I
I

/

!

(3.16) X log A (t) dt < oo,

]

Proof. Let us first replace (3.2) by a simpler condition, which does not involve
composition. Suppose that (3.2) holds for a ¢ which also satisfies (2.15) (this is
no loss of generality, according to Lemma 4). Let h be the inverse of ¢ on [0,c],
with ¢ = ¢(1). Then (3.2) becomes

T
(3.17) t dt <o, | MO’ (t)dt <.
o h(®) 0

Conversely, if \(t) is a positive decreasing function on [0,1], and there exists
an absolutely continuous function h(t) =0 0O =t=c) with h’({t)>0 0<t<¢c)
for some ¢ > 0 such that (3.17) holds, then A € A. In fact, we may let ¢ be the
inverse of h.

Suppose that (3.17) holds for an h as just described. Then since h and logh
. are absolutely continuous on any interval [g,c] (¢ > 0), we find that

Cth’(t)dt— logh(c) +¢1 ! + c1 ! dt
h O =clogh(c eogh(e) Ogh(t) ;

£ €

also h increases and h(0) = 0, so it is routine to see from this that

¢ h'(t) € 1
(3.18) t—dt <o < log —— < .
So h(t) So - h()

We now show that (3.16) and (3.17) are equivalent. Suppose that (3.16) holds
and that \ is also in C*(0,1]. Then if we take

1 tA (t)

t
3.19 h{t)=—— bh'(t) = -
(3.19) (t) ) O 20

A’

the conditions (3.17) are satisfied and coalesce into one (this is the motivation

1 }\I (t)

for the choice (3.19)): (1 -t —}\—({)— dt < oo, That this condition is (3.16) was
0

shown in the discussion of (3.18). If \ is not C*, one uses a double average

t u

(2/u) S A(s)ds O0<t,s<1l)

u/2

(3.20) A*(E) =2/t S

t/2
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instead. Since A\ (t) = A\*(t) = A (t/4) we see that \* satisfies (3.17) if A does, and
since A* € A, so is A.

Conversely, when (3.17) is satisfied,

v

O(I)ZS A(u)h’ (u) du )\(t)S h’(u) du

(o] 3]

A (t) h (),

and so

11 A(t)dt 11 oW dt
og = og hO

1

€ E

IA

1
O(1) + | log——dt=0(1),
(1) g €10 (1)

€

as we saw in (3.18). Thus (3.17) implies (3.16).

4. THE GEOMETRY INVOLVED

(A) Cusps and the Dirichlet problem

The key to Theorem 1 is the geometry of the region P which is shown in
Figure 1 of section 3. Let us consider this situation in more detail. Let P be
a bounded simply-connected domain contained in {Re(w) > 0} with 0 € aP. We
suppose there is a continuous function v = {(u) with ¢ (0) = 0 that is analytic
for 0 < u = 8 (8 > 0), so that for some 0 < e= 3

(4.1) PN {max(u,v) =e} ={w;0<u=e,f(u) <v=e}.

We then say that the curve ~v: {w; v =1y (u)} is a positive cusp for P at 0. If P
lies below such a v, then v is a negative cusp at 0. (This means that v is replaced
by —v in (4.1)).

Associated to a positive or negative cusp vy is a real valued function g(t,v),
obtained as follows (the motivation for this is in our proof of Theorem 1). If,
say, v is a positive cusp, let w = f(z) map H onto P with £(0) = 0, so that

yN {0<u=¢e}

is the image of some interval 0 < x = 3,. Then if b (x) = Re(f(x + i0)), 0 <x = 3,,
let g(t,v) (= g(t,v+)) be the function inverse to ¢&; cf. the proof of Theorem 1.
Thus, g is defined on some interval 0 <t=ge. If v is a negative cusp, g(t,vy)
(= g(t,y—)) is defined similarly with respect to a conformal map from the lower
half-plane to P with f(0) = 0.
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The solvability of the Dirichlet problem in P with boundary values A(u) on
v and M (< ) on P — v reduces to the condition

4.2) S AE)d, w(w,§) < +oo (weP)

(cf. [9, p. 28]), where w is the harmonic measure of v in P. The general idea
is that the sharper the cusps on P, the smaller is w. In our proof of Theorem
1 it seemed necessary to construct P in terms of A\. However, it is natural to
investigate this question more directly.

We had better describe condition (4.2) more accurately: it is that the Poisson
solution of the stated Dirichlet problem exist. The trouble is that this Dirichlet
problem—in which the behavior of the solution at the boundary point 0 is
undefined—will always have solutions. But the only solution which will serve
our purpose is that given by the Poisson integral (and that need not always exist).
Since the boundary values here are non-negative in any event, it is routine to
see that (4.2) is equivalent to the existence of a nonnegative solution to this Dirichlet
problem; it will have an infinite number of such solutions, if it has any, and
one will be the Poisson solution. Note that the existence of the Poisson integral
requires only the second condition

(4.3) S Ao (t)) dt < o
of (3.2).

The question is purely local.

LEMMA 5. Let P, and P, be simply-connected domains in the right half-plane
such that (4.1) holds for both domains for some € > 0 and the same function {(u).
Then given \(u), the integrals in (4.2) converge or diverge together for P, and
P,.

Remark. Thus v is here a positive cusp at 0 for both regions; the same is
true when v is a negative cusp.

Proof. Letw = {;(z) map H (= {y > 0}) onto P; with f; (0) = 0. By the reflection
principle, f; (f, (z)) is holomorphic near z = 0 and maps an upper half-neighborhood
of the origin onto another such neighborhood. Thus

(4.4) sty =1 (f,(z)) =c,z+cz2° + ..., ¢, >0,c, real.
As in the proofs of Theorems 1 and 2, let ¢;(t) = Re(f;(t)) and let g,(t) be the

inverse of ¢; on [0,3] for some 3 > 0. Then (4.3) is equivalent to

(4.5) S AMiNg;) B dt <o (j=1,2)

0

as was observed in the proof of Theorem 2 (cf. (3.17)).
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Now f, =f,08, &, = b,08,8, =s0g,, (g) =(s'°g,)g,). But s’ is bounded
away from 0 and o, so the equivalence of the conditions (4.5) is clear.

Definition. Let U be subharmonic in R = {u > 0} and let v be a positive cusp
which ends at the point w = ia. Then U is compatible with y provided there exists
p (u), continuous and nonnegative on v, such that

(4.6) U(w)=p(u) (w € v);

@n S p(t)(g)’ (t,y+)dt <oo -

(4}

for some & > 0. That U be compatible with a negative cusp is given by replacing
g’ (t,y") by g’ (t,y7) in (4.7).

The function U possesses a dense set of compatible cusps on the imaginary
axis provided: there exist sets of cusps {y.} and {y_} respectively positive and
negative, each of which is compatible with U, such that the sets {ia_}, {ia_}
are each dense on the imaginary axis.

It is now trivial to prove
THEOREM 3. Let U be subharmonic in {u > 0}, possessed of a dense set of
compatible cusps on the imaginary axis with

(4.8) Uw <M (WEvw,)

where the arcs v,, in the right half-plane tend to an arc vy on the imaginary axis.
Then

4.9) limsup U(w) =M

W—1T

for any i~ interior to .

Proof. The proof imitates that used in Theorem 1; to account for the elimination
of (3.1), we have instituted a dense set of cusps. Thus to prove (4.9) with, say,
7 = 0, we replace the situation of Figure 1 by introducing a region P with a negative
cusp ending in the interval (0,ie], and a positive cusp ending in the interval
[—ie,0).

(B) Examples

When the context makes clear whether vy is a positive or negative cusp we
write v instead of y¥ or vy~

1 v
Example 1. Simple angle. Let P be the region {’IT (E- — a) <argw < ?}

1
where 0 < a < 1; the positive cusp vy is the ray yargw == (—2— —-a ) } Then

f(z) = ie *"z* maps H to P so that ¢ (x) ~ cx*, g(t) ~c’t** (c,c’ > 0) and the
integrability condition of (4.7) becomes
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)
(4.10) S pt) £/ dt <e.

(4]

The special case a = 1/2 corresponds to that derived in [8, Theorem 12].

Note that if p(t) is a positive decreasing function for which (4.10) holds, then
(4.11) pt) <At ¥  (x>0)

for some constant A; this is much stronger than (3.16). (Conversely, when (4.11)
is satisfied we obtain (4.10) with a slightly larger exponent). To get (4.11) from
(4.10), choose 3 > 0 with

3
S p)t' e dt < .

]

t

Then if t <3, we have p(t) S u?"**du <e so that p(t) = a 'et™ /%, which
o

gives (4.11).

Example 2. Cusp formed by tangent circle. Consider now the region P which
is obtained from the first quadrant of the w-plane by deleting the semi-circle
{jw—a/2| =a/2, Im(w) > 0}, where a > 0. The arc

{lw—a/2| =a/2, Im(w) > 0}

is a positive cusp for P. The required map f: H — P behaves near the origin (cf.
Lemma 5) like

ima iTa

1 1
log— +inw  log— +i(w — 0)
Z r

Thus we have essentially

2

am

b (x) = 5 5 (x> 0);
(logx)° + =

gty = P (0 <t<a).

Since

1
gt =5 Varnt™ eV 1+ 0V (0

the integrability condition in (4.7) becomes
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S p ()t 32e "V 4t < oo
0

thus if we were to restrict ourselves only to circular cusps, then the allowable
functions A (t) would be those for which

(4.12) S A e YPdt <o for some ¢ > 0.
o

The argument used at the end of Example 1 readily adapts to show that (4.12)
implies (and is equivalent to) A(t) = O (e k/ \/m) for some k > 0.

Example 3. Exponential cusp. We can get rather close to Theorem 2 by using
cusps which tend rapidly to the imaginary axis. Thus the map f: H — P is obtained
by composition, with

1 1
z, = (log—z—+ i’rr) = (logr—+ i(w —6)),

z, = logz,,

ic ic
W=-—-=

Zo 1 . ’
log | log— + iw
zZ

here a and c are positive constants.

The boundary values for small positive x are given by x — (d(x), ¥ (x)) where

ctan ' m§
d(x) = —2 214 2 -1 2
[log(¢ " +w7)] "+ [tan™ " (w§)]
1\
with £ = (log — , 50 £— 0 as x — 0. A direct computation shows that
X
dé cmg’® 1
(4.13) — =——| 1+ 0] ——— 0).
dx (1 1 )2 o L €=>0
x| log — og —
3 3

Let t = & (x) so x = g(t) with g as above; then

1 _ cm [l +m,(®)]

(4.14) log =
g(t) ( 1)2
4t | log ?
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with
1
log log —t—
(4.15) n,t) =0 — (t — 0).
log —
t

Since g’ (t) = (¢’ (%)) ', (4.13) and (4.14) yield that

cm(l + m,(t) —cm (1l + m, (t)
5~ €Xp 5
16t2(10 —1—) 4t(lo i)
& t g t

where m, and v, satisfy (4.15).
This bound on g’ (with ¢ arbitrary and greater than 0) shows that (4.5) will
hold for all functions p (t) with

1
logp(t) =0 WAREY
t(log—)
t

(4.16) is rather close to the bound of Theorem 2.

g’ (t) = (t— 0)

(4.16) (t — 0);

The question now arises as to whether Theorem 3 covers significantly more
functions than Theorems 1 and 2. We construct an example to show that there
is a significant difference.

LEMMA 6. Let (x,}; be a countable set of distinct real numbers provided
with neighborhoods.

(4.17) I,=x,—%,,,x,+3,,) p=12,...;1=n=<p,

where, for fixed n, 3, decreases as a function of p. Set

P
(4.18) G, = U Lo,
' n=1

an open set containing {x,,...,x,}.

Then the 5, may be so chosen that

(4.19) £E€ G, forallp=p,(t) = &£=x, forsomem.

Proof. Letp,=min|x; —x;[(1 =i<j=n); then p, > 0. We take

8,=08,,=min(p,,,/2,p7"),
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noting that p, decreases as a function of n and that 8,] 0 as p— o, It is clear
that I,,...,I,, are disjoint and G, NI ,, ,,=#H. Thus if E€G, €€, ,
for a unique m; if also £ € G,,,, £ can only belong to I,,,,, or I, .,. How-
ever, I, NI, .,=9%,and so £€1,,, for the same m, and this is true

for all p = p,(£). We conclude that £ = x .

While this Lemma is subject to some generalization, it is important that the
hypothesis of (4.19) cannot be relaxed to: £ € G, for infinitely many p. For example,
let {x,} be dense in [0,1], and sets I, be given. Then there is always a £ # x,
for any n which is in infinitely many G,. For example, let p, =1. Then I,
contains a point x, , q; > p,. Then there is a closed interval J, C G, such that
Xy, ... Xq, & J,. We repeat this argument and find a closed interval J, C G,,
Jdy Cd,,and x, ..., X

ayr s Xq, € Ja, etc. We then can choose § = n Jd,.
1
Example 4. To show that Theorem 3 is more general than Theorems 1 and
2. We shall not attempt the most general sort of example, with an arbitrary set
of cusps, supposed to be compatible, given. Our function will be constructed in
the upper half-plane H of the z-plane, and the cusps will end on the x-axis.

Thus, let {c,} be a countable dense subset of the reals, and let 8,0 < 8 < w/2,
be fixed. We will have two linear cusps, say v,,_, and v,,, terminate at each
c,.Letwy,, , beanarcof arg(z — c,) =, and v,, be an arcof arg (z — ¢ ) = w — B,
and agree that these arcs include their endpoint in H, but not on dH (i.e., c, ).

The lengths of the v, are of some concern, and are specified in (4.30) and (4.31)
below.

We will construct a function f(z), holomorphic in H, such that
(4.20) [f@@)]| <1 (z € y,,m=1).
Thus the subharmonic function
(4.21) ' U(z) = log |f (2)]|

(which will turn out to be harmonic here!) will be compatible with the cusps
{¥m} (cf. (4.7)) and

(4.22) the only linear cusps with which U (z) is compatible are those in direction
B or w — 3 which end at some c;

finally, for any interval [x,,x,], the function

(4.23) At)y= sup Uf(z) OD<t<11)
tsy; l2
satisfies

1
(4.24) S log A (t) dt = +oo.

[0}
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Hence U (z) does not fall under the purview of Theorem 2.

We start with intertwined sequences {a,}, {a¥}, {b,}, (b*} with
(4.25) 1>bf>...>a} ,>b}f>b,>a,>a*>b¥  ,>..>0,

n+1

and require that a, — 0. The numbers in (4.25) are given at the outset and held
fixed. Next, E_, E} are the open strips

(4.26) E,={za,<y<b,}, EX={zal<y<b}} m=1),

and we define

(4.27) E= U E,, E*= U EX.

With
(4.28) 8,=b,—a,,
choose a positive sequence {p,}, with

(4.29) logpn,=38.", d,pm,a">1 (n=1).
We now specify the lengths of the v, :v,,v, ... are to Be short enough so that

(4.30) YNy, =9 p # 9,
(4.31) YywNE: =6 (m > 1).

Next, let v, denote the full ray obtained by prolonging v, throughout H, and
embed v;, N E, in a parallelogram P_ . If for a, <y, <b,, v, N {Im(z) = y,}
is the point (x4,y,), with x, = x,(m,y,), then we have

P..=1{z|x—x,]<h,(my,),a,<y,<b,}.
The sequence h_ is to approach zero so rapidly that the following three condi-
tions are met: when n is odd we must have, in the language of Lemma 6, that the
choice §,,,=8,=h,, , (p=1,2,..) is adequate to obtain (4.19) using the {c,}
in place of the {x,}; for even n, the choice 3, =h,, must similarly satisfy
(4.19). Finally, we must suppose the {h_} so small that if
v:arg(z — &) =h, (rea, O<h<m,

is any ray in H, and if both |h — «| =n"%, |h — (w — )] > n"?, then

(4.32) the segment v N E , has at most half its length in P, = U P ..
k=1
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It is easy to arrange (4.32). For example, if v is a ray of inclination g + n™,
then the horizontal separation of v and v} will exceed h , outside a vertical interval
of height K_h_ where K depends only on n and 3. Thus, we need only choose
h,sothatn-2h, A <3,/K,.

The final preliminary is to choose, corresponding to each y_, a pair of open
domains D_, D ¥ so that (T below refers to closure relative to H)

Y C D, C D%, D, C D}

DiNDy=¢g m#p
(4.33)

DINE, =¢ m>n

D;}NE, CP_, m= n;

it is clear from (4.30) and (4.31) that this is possible.

With this preparation we may apply, for example, the recent theorem of N.
Arakelyan [1] or more ad hoc methods, and obtain a function f; (z) holomorphic
in H with '

1£,@ —p,—2|<1, (@EE,n=1.

Again, there exists f,(z), holomorphic in H, such that

-
o

[fo(@) —f,(@]| <1 (z S U Dm)
|f,(z)] < 1 (z € H- U D,”;‘.)

Now consider f,(z) = £, (z) — £,(z) and f(z) = e3® (z € H); then
U (2) = log|f(z) | = Re(f, (z))

is harmonic in H,

(4.34) [U@] < 1 (z € U I'Dm),

(4.35) U@ = p, (z €EE, - U D*,n= 1).

Since vy, C D,,, (4.34) shows that U (z) is compatible with the cusps {v,_,}.

Now let y be a linear cusp distinct from each vy_, m = 1. First we suppose
v is not in one of the directions 8 or (w — B). Then (4.28), (4.32) and (4.33) imply
for n > n,(y) that '
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(4.36) vy N [En — U D;] contains a segment of length greater than 3, /2.
1 .

If, however, v is in the direction B, we need Lemma 6 and the choice of h made
above, which ensures that vy will miss infinitely many of the parallelogramata
Py_1n (k = 1,2, ..). Thus to include this possibility, (4.36) is revised to

(4.37) v N [En - U D;"n] contains a segment of length greater than
1

or equal to 3, /2 for infinitely many n;

of course, this set of n depends on . If v has direction (7w — a), (4.37) also holds.

Suppose y & {v,.},7 alinear cusp. Then, according to (4.37) and the construction
of U (z), there exist infinitely many n such that U(z) = n, on a segment, in E ,
whose length is at least 3,/2; let us designate this infinite set of n by Z(y).
Conditions (4.6) and (4.10) lead us to the following estimate:

1
1
X p(t)tﬂ(v—ﬁ)/ﬁ dt = — 2 Snuna:(w—ﬂ)/ﬁdt;

0 Z(v)

1

and the second condition of (4.29) shows that S pt) t™ " P/ dt = oo for the cusp v.
0

This proves (4.22).

Finally, to prove (4.24), we note that the strip {x, < x < x,, y > 0} will contain
infinitely many regions D *; assume m, fixed, is one. Since the f)p are disjoint
(see (4.33)) we may use (4.35) for z € dD* N E, and obtain, in the notation of
(4.23), that A(t) = p_ (a,<t<Db,). Now (4.24) follows from this and the first
condition of (4.29). This completes Example 4.

5. THE SJOBERG-LEVINSON-BEURLING THEOREM

THEOREM 4. LetM (u) be a positive even function which decreases for increas-
ing |u|, and tends to « as u— 0, but sufficiently slowly so that

1]

1
(5.1) S log log M (u) du < co.

If the function f(w) [w = u + iv], holomorphic in the rectangle
R={w;|u|=a,|v|=Db},

satisfies
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(5.2) log|f(w)| = M(u) (w=u+iv € R),
then if 0 <8 <1
(56.3) |[f(w)]=C (Jul =a,|v]=b(1 - 3))

where C depends only on M(u), a, b and 3.

Remark. The relation between Theorem 4 and [5] was discussed in section
1. ’

Proof. Let Ry = {w;|u|=a,|v]|=Db(l —3%)}, and assume, with no loss of
generality, that 3 < a/4. We will produce a cusped region P, which is symmetric
with respect to both the u- and v-axes such that if w € R;, then either w € P;
or |Re(w)| = 8. Our main task is to produce a suitable auxiliary function k(u)
such that k is continuous, k (—u) = k(u), k(u) >0 (0 < |u| <38/, 8" > 0), k(0) = 0.
Then for 0 =< |u| = 3,, we will let 9P, consist of the arcs

(u,b—k(u)) and (u, —b + k(u)),

where 3, is so small that 8, < (5,5”) and k (u) < bd/2 for u = §,. We then connect
the points (£3,, £ (b — k(3,))) to (£3, £(b — §)) by linear segments, and complete
dP, by including the line segments {u= +3, - (1 -8)b<v<(1-3)b}. Now
k(u) for |u| < 3, will not depend on a, b, 8 but how we augment this portion of
9P, to form the full boundary of P; will. It will be easy to see from our previous
work that | f(w)] is bounded by a constant, say C,, for w € P; N R;, so the constant
C of (5.3) can be chosen as the maximum of C, and M (3).

We now construct k(u), and show how it and the above specifications of P,
imply that f is bounded in P, N R,.

We will map the upper half-plane H onto a region P of the upper half-plane
in the w-plane which is symmetric about the v-axis and

PN {max(Jul,v) =8,} = {w; |u| <8,,k(u) <v=3,}
for some &, > 0 (cf. (4.1)). That is, we again use (2.7), (2.8), but now
b (x) = —d(—x) O0O=x=1)

rather than being zero. The dominance argument used in the proof of Theorem
1, when applied to the subharmonic function log|f(w)|, now shows that |f| is
bounded on P, N R, by an expression which depends only on a, b, 8 and M(x),
once a function ¢ (x) can be found so that

P o(x)

o X

(5.4) b (—x) = —d(x), ¢(x) € C?, concave down, with S dx < oo,

and such that the Dirichlet problem in H with boundary values

log M (¢ (x)) (-1<x<1)
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is solvable in H; i.e, that

4]

(5.5) S log A (b (x))dx <

where we have set A(t) = logM(t). We recall from section 3 (¢f. (3.20)) that it

is possible to arrange that A (t) € C' and that if we set h(t) =t /A (t), as in (3.19),
then h’(t) > 0 for t > 0.

Since ¢ will be odd, it suffices to construct ¢ (x) for x > 0. We write, for
0<x<3,,d, sufficiently small, ¢(x) =t if and only if x = g(t). Then, accord-
ing to (3.17), it suffices to find a g(t) which is concave up, such that (3.17) holds.

Choose g(t) = h(t) = t/\(t), where h is described above; this choice is motivated
since then the two conditions (3.17) coalesce to one:

(5.6) - g td [~log A (t)] < .

1]

Now

1

S td [-log A (t)] = —logA (1) +elogA(e) + S log A (t) dt,

€ €

and so (5.1) implies (5.6); that is, we have produced a g [¢] which satisfies (3.17)
[(56.4), (5.5)]. This completes the proof.
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