NONASSOCIATIVE COMMUTATIVE ALGEBRAS FOR
TRIPLE COVERS OF 3-TRANSPOSITION GROUPS

Stephen D. Smith

Recently, nonassociative commutative algebras have come to the attention of
finite group theorists; or viewed another way, it appears that many interesting
groups arise as orthogonal groups of cubic forms on suitable modules. For exam-
ple, the conjectured “monster” group of Bernd Fischer would support such an alge-
bra in 196883 dimensions; and Peter Cameron has observed that most rank-3 per-
mutation groups provide such algebras. More explicitly, Simon Norton has provided
a construction of the module with cubic form, and consequent algebra structure, for
3-transposition groups. John Conway has called these “Norton algebras”, and has
described analogous examples for the covering groups 3S; and 3F,,. In this note,
we show that there are exactly five such examples, and they may be simultaneously
constructed under a suitable axiomatization.

R. L. Griess [5] has shown that each symmetric group S, is the full auto-
morphism of an algebra it defines on its (n - 1)-dimensional irreducible module. In
an analogous way, we are able to show that 3S; is the full automorphism group of
our smallest (12-dimensional) example. For this problem the five examples do not
seem to admit a unified treatment. In general, Jordan’s theorem for cubic forms [8]
leads us to expect finite automorphism groups; indeed, Schneider’s theorem [9]
would restrict the eigenvalue structure of possible operators. But the exact deter-
mination of the group seems difficult.

1. HYPOTHESES AND CONSEQUENCES

We operate under the axioms:

(1) Z is a group of order 3 normal in a finite group H, and H/Z is generated by a
class of 3-transpositions;

(2) H' = CH(Z) and is of index 2 in H, with H'/Z simple.

We explore the extensive consequences of these requirements.

It will be convenient to denote H/Z by G, and consider this quotient first. For
the language of 3-transposition groups, we follow Fischer [3]: we say an involution
class dG forms a class of 3-transpositions if for any d, e € dC the product de has
order 1, 2, or 3. Note in particular that |de[ = 2 if and only if d and e commute;
and |de| = 3 if and only if d® = ed. we may compare the list of 3-transposition
groups in [3] with the table of Schur multipliers [2], [4] to see that G' is restricted.
The condition !H: H'I = 2 prevents the occurrence of the cases G' = PSU(3n, 2),

F2 2 and PSS (3) with d a reflection by a vector of “plus” type. Consequently:
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(3) G' is equal to one of Ay, A;, PSQg(3), PSQ7(3), F,4. For G'=PSQ3(3), d is
reflection by a vector of “minus” type.

(We remark that Fischer has recently given elegant presentations for the ex-
tensions H of the groups G' in (3) as well as PSU(6, 2) and F,,; these appear to
form a natural sequence leading toward the “monster”.)

Fischer shows that G acts with rank 3 on dS, and we form the usual graph on
these by joining commuting pairs. The nontrivial Cg(d)-orbits are

Dy = {e € d9: |de| =2} and A4 = {e € dC: |de| = 3};

with these orbits we may describe the graph in the (fairly standard) notation;

w6
d >—— Dy —>——< AJ
Kk 1 k-a-1 p

Here we set v = IdGl =1+k+ £, where k = lDd| and £ = [Ad|. The arrows give
the intersection numbers, indicating commuting between orbits; in particular,

A for e € Dy
IDeﬂ Ddl =
p for e € Aj.

The rank-3 parameters v, k, £, A, u for our examples are listed in Table 1.

We let the notation given for G stand, and turn to the covering group H. For
fixed d € G we choose a preimage t € H, and consider the class tH. Multiplication
in H is determined by that in G together with a factor set, the exact nature of which
will not concern us at this point. We denote by z a fixed generator of Z, and by
analogy set D, = {u € tH: tuP\I = 2} and A, = {u € tH: |tu% = 3}. Our assumptions
require that the involutions t* invert z, so that the class tH consists of all 3v pre-
images of the class dG. We see that elements of form uz, for u € Dy, commute
with t only modulo Z; such elements in fact form the set D;, . Elements of A, do
not commute with t even modulo Z. In fact we have:

(4) tH is a class of {3, 6}-transpositions of H. Furthermore, the graph on t¥ may
be described by:

tz2 — D

tZZ \

tz ————— Dy, —;/gt
t —>—— D, __/ u

k 1@ k-a-1 ,

where the nodes are Cpy,(t)-orbits.
A proof of (4) is not difficult but rather tedious, and so is omitted.

Note that by (4), H' is of rank 7 on tH, and H of rank 5. We introduce the
permutation module V with basis {v,: u € tH} and the action (v )b = Viahy for
u
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h € H. If w is a primitive cube root of unity, we may write V =Vy5 + W \-BV—V, a
decomposition as H'-module into the 1, w, w2 eigenspaces of z. Observe that the
sets {Vu, Vuz s Vuzz} give blocks of imprimitivity, so that the block sums exhibit
Vo as the rank-3 module of H/Z =G on dS. Since H has rank 5 on tH, the module
W@W affords two H-irreducible characters. The corresponding submodules will

appear explicitly. By analogy with D. G. Higman [6], we define linear operators
A, B on V by

(vJA= 27 v, and (v))B= 2 v
x €Dy, x€A,

x *

The operators commute with the action of H and so preserve the subspaces
Vo, W, W. The projections w, and w, of v, into W, W are

W, = v, tw: Viz + w- vuZZ 5

w = v -+ . -+ . .
WUl u w Vuz w vuzz

Note also that w,, = ®- w, and w,, = w- W, . Since (v)B = (v,,)B, we have
(wu)B_= (w,,)B = (0 w,)B = &(w,)B. We conclude BIW@W =0, and so study A on
W D W. From the graph we may evaluate AZ:

A% = XA +k +uB/3;
2 — -
(A —AA—k)WC_aw—O.

Since A, k > 0, we see that A — has eigenvalues of opposite sign, which we de-
wEW

note by a, -b with a > b > 0. The values of a, b are given in Table 1. We observe
further that (v,)A does not involve any of {v,, vy, Vuzzi}, so that

trace (Alw@W) =0.

Thus if r, s are the dimensions of the a, -b eigenspaces in W, we can solve for
them via:

r+s -v; ar -bs = 0.

The values of r, s for each example appear in Table 1. By our earlier remark, the
two eigenspaces in W(H W are irreducible H-modules.

2. NORTON’S FORM

So far we have obtained A-eigenspaces on which B = 0. This, with 3-transposi-
tion structure, is the basis for what follows, and we could work equally well with
either space. For specificity, we choose the a-eigenspace (for practical purposes,

it is the smaller one), and denote it by Y = X (P X, where X is the part in W, and X
in W. Thus dim Y = 2r. We will show that H preserves a quadratic form on Y,

with certain properties that allow us to define Norton’s cubic form, also preserved
by H. Then it is easy to define an H-invariant commutative multiplication on Y.
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We observe first that Y is an irreducible H-module isomorphic to its contra-
gredient, since r # s; and appearing just once in the permutation representation on
tH. It follows (see [1, (11.4)]) that the representation on Y is “of the first kind?,
and so H preserves a nondegenerate symmetric bilinear map (-, -): YXY — C.
(We could in fact choose an IR-basis of Y and map to IR, but it is sometimes con-
venient to have w available.) We can discuss (-, -) without giving it explicitly. If
we had X NX* = 0, the H'-module would admit such a form, whereas the module is
not even isomorphic to its contragredient. So by H'-irreducibility, we must have
X+ =X. This simplifies the evaluation of the map. If we let x;, X; be the projec-
tions of v; in X, X, we see that (x, +%, x, +%&) = (x, X )+ (%, x ). Now Y may
be spanned by vectors {xu, iu} as u varies over a set of preimages, one for each
e € dS. We can even restrict attention to a subset of u’s such that the {xu, Xu}
form a basis and recover the others by transitivity. And now, with suitable normal-
ization, we obtain the conditions (due to S. Norton):

0 for u € At
(5) (x,, &) =
1 for u € Dt.

For transitivity of Cy.(t) on A, implies for u € A, that

Bvix, &) = (%, 2 %, )= (x, &B) = (x, 0 =0.
VEAt

Similarly, transitivity on D; implies for u € D, that

k(x,, X)) = (Xt’ (it)A) = a(xt, X,) .

Now if (x,c , X) = 0, these two conditions force X, € Yt , a contradiction. Thus if we
normalize so as to make (x;, X,) = k/a = b, we obtain (x,, X,) = 1, as required by (5).

We are now in a position to construct Norton’s cubic form. For t, u, v taken
from a basic subset, we may define (x., x,, x) = (x,, x(vu)) + (%, xu)(xv, xu). We

observe that the definition is symmetric in t, v because

=& ,x) =X,k ).

(Xt’ Xvu) = (th XV u pu? v v’ ¥

=), &

But it is also symmetric in u, v:
Case 1: u =v. Here there is nothing to prove.

Case 2: [u, v] € Z. Here (x,, X,) € <w> , So on altering by a scalar factor we
may as well assume that v € D,. Then uV =u, v" = v, and by (5) we have
(xu, }—{V) =1-= (xv, iu). Thus

(x,, x,,x) = (x,, X)) +(x,, %

0 X u)=(xt,x)-i-(xt,x)=(xt,xv,xu).

v
Case 3: v € A,. Here u¥ =v" and by (5), (x,, X,) =0=(x

X,) so that
(x,, x5 x,) = (x4, ivu) = (xy, iu ) =(x,, x,, x).

v

v

Similarly, we can define (X, X, X,) = &, x_y) + &, x,) X, X)), simply put-
ting bars in the previous expression. We set the product equal to 0 for triples of
transposition vectors from both X and X, and obtain a definition of (-, -, *) on a
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basis of Y X Y X Y. We may extend by linearity to a symmetric trilinear map:

Y X Y XY— C. Action of H preserves this map, since it preserves the bilinear
map. Of course, (-, x,, X,) is a linear functional on Y, and so is of the form (-, y)
for some y € Y. It is natural to take this y as the algebra product x, * x,,. Indeed,

we see from the definition that x, * x, =X _u + (%, X)X,. The multiplication is

commutative, by the symmetry of (-, «, -), and H preserves the multiplication; that
is, (a *x b)h = ah x pbh for a, b € Y, h € H, since it preserves both maps.

We make some basic remarks about the multiplication. Note that X x X =0,
X *X<X, and X *X <X. In fact we have:

THEOREM (S. Norton and J. Conway). Y is an H-invariant algebva with:

X, *X, = (b+ 1)X,;

(6) ‘A X, t%, for ve D,
Xy * Xy =
X u

for ve A .
v u

We conclude this section with some information about the various examples.
Proofs are not given, though most of the facts are easy to obtain.

From the embedding of 3S4 in 3S-; and comparison of the permutation repre-
sentation, we can check that the eigenspace for a = 3 with H = 35, may be taken to
be the eigenspace for a =5 with H = 35, ; and as a result, the two groups determine
the same 12-dimensional algebra Y. Notice that the other eigenvalue b, which is an
algebra structure constant by (6), takes the value 2 for both groups. In a similar
way, the 42-dimensional algebra for the case G' = PSQZ)(S) is a subalgebra of the
54-dimensional algebra for G' = PSQ7(3); for both cases b = 3. If we had chosen Y
instead as the (-b)-eigenspace in each example, we would not obtain the correspond-
ing algebra inclusions.

The algebra Y may also be studied by decomposition under the action of sub-
groups of H. In particular, if J is an abelian subgroup of H or even of Aut(Y), we

have Y =0 22 Y, , where J acts with character @ on Y, . Since
Q€ Char(J)
Yo * Yg < Yqgg, any subgroup S < Char(J) produces a subalgebra Yg via

Yg= @ SZ‘/ Y, . Note also that NAut(Y)(J) permutes the spaces {Yy} and the
ae
algebras {Yg} in the obvious way.

A natural choice for J inside H arises from 3-transposition structure. The
width of dG is the size of a maximal pairwise commuting subset L of d€. We will
set n = |L|, and 2™ = |<L> |. As (L) is elementary, it splits over Z, so we
may also regard L as a pairwise commuting subset of tH, on choosing suitable pre-
images. In Table 1 we have listed the values of m, n and structure of

N = N (L)/C(L).

Note that Cy(L) = <L> in each case except G' = PSQ7(3), when we must add a re-
flection by a vector of “plus” type. Observe also that in the first four examples,

m = n with N acting as S, on L. For H = 3F,4; however, N = M, acts on <L
as on cosets of the Golay code.
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For the first four examples, we let L = {tl , T, tn} with N in its natural ac-
tion. We can isolate the character A sending each t; to -1. We discover for each
a that dim Y, = dim Y) 4 . In particular, we look at @ = 1. If we set y, =x; + X4,
we can set C = <yt: t € L) and see C < Cy(L)=Y;. Indeed, it is not difficult to
check in each case that C = Y; of dimension n, and N acts on C in its natural per-
mutation representation. Further, Y, = <xt -X:ite L> also has dimension n. In

general, we say o is of {ype k if it sends exactly k of {tl s Tt tn} to -1. Thus
1, X have types 0, n. Action of S fuses the (E) characters of type k (and also

those of type n - k, the A-multiples of those of type k). On closer investigation, we
discover the following facts:

G' type of « dim Y,
Ag, A, 1, 2 1
PS§2,(3) 2, 4 1
1,35 0
PSQ-(3) 1, 2,4, 5 1
3 0

Conway produces analogous information for the case 3F,,. Here the dual space of
<L> corresponds to the Golay code. One finds dim Y; = 24 with N = M4 in its

natural action; dim Y, = 1 for @ corresponding to octads or their complements,
and dim Y4 = 0 for dodecads.

In the next section, we make just such an analysis of the 12-dimensional alge-
bra, and in a more explicit way.

3. THE AUTOMORPHISM GROUP OF Y, dim Y = 12

In this section, Y =X (P X is the 12-dimensional algebra constructed in the
previous section. We shall determine the group A = Aut(Y) of operators a satisfy-
ing (y xy')2 =y2 xy'2 for y, y' € Y. To do this, we first examine multiplication
operators M, for certain y € Y; we will have to examine these rather closely, much
as Griess does in [5]. By Jordan’s theorem we will be able to decide that A is fi-
nite; and then we show that A has a subgroup A* of index 2 fixing X and X. From
the classification of 6-dimensional finite linear groups, we can determine A* = 3A,,
so that A = 3S-.

We will now need to discuss the exact nature of the extension 3S,, and we
describe a factor set provided by Conway. We have preimages (ij) for 0 <i# j <6
of the corresponding transpositions satisfying:

(1) 1)) = (k) -zl

for suitable exponents [ijk] € Z; (i, j, k distinct). We set [ijk] =0 if 0 € {i, j, k}.
Otherwise, we may refer to the figure:
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TN\
\

+

If {1, j, k} isa triangle, we let [ijk] be the number inside the triangle, regarding
{4, 5, 6} as a triangle containing —; and put [ijk] = 0 otherwise. Note in particu-
lar that [ijk] =0 if 3 4 (i+j+k). We may then use (7) to describe multiplication of
transposition pre1 es that commute modulo Z. If we adopt the notation

(ij) &2) = (35) - Tﬂkﬁ for i, j, k, £ distinct, then we discover:

[ij | k] = - [ke |ij],
(8) [0j|ke] = -[ike],
[ij|ke] = - [ike] - [jke] if 0 ¢ {3, j, k, £}.

For simplicity, we now adopt the notation ij, 1] for the vectors X (i) X X (ij)* With
(7), (8) we may now give rules for the evaluation of (-, -):

(ij, ij) = 2

(ij, ik) = 0, i*k,

(9) (ij, k) = (kg ij), i, j, k, £ distinct,

(03, k0 = wlikt],

@, K0 = o (eIl gty 5 0}
Then we obtain corresponding results about multiplication:

3ij if i =k, j=4 (here b=2),
(10) ij * ke = < wliitlje ifi=k, j* £;

W1 57 + o &2l i 4, 4,k ¢ distinet .

We obtain similar rules (with complex conjugate coefficients) for multiplying in X.

It will be convenient to use two different bases for Y, the first being a little
simpler to introduce, the second more convenient for analysis of multiplications. If

we set x;=0i and X; = 0i for 1 < i< 6, we see we obtain a basis for Y since
(x;, xJ) 26;5. The basis is as near to being “orthonormal” as we can expect if we
work in X = X1,
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We find the other basis by making the analysis described at the end of the pre-
vious section. We can choose L = {(14), (25), (36)}. Since we are restricting atten-

tion to X, we need the characters of <L> N H'. We let a, B, af, respectively, be
the characters trivial on (25)(36), (14)(36), (14) (25). A few computations enable us
to obtain vectors y;, y,, y3 € X = <14, 25_2_36> and y4 € Xg, ¥5 € XB,

V6 € Xap, and corresponding ¥, ***, §¢ € X, so that (y;, ¥;) = 6;;. We may obtain
these in terms of the vectors {ij, ij} which we know how to manipulate. A suitable
choice is:

y; = 1/2 (25 + 36 - 14)
v, = 1/2 (14 + 36 - 25)
y3 = 1/2 (14 + 25 - 36)
(11)
y4 = (26 +35 - 23 - 56)/V 12

ys = (13 +46 - 16 - 34)/V12
v, = (12 +45 - 15 - 24)/V12

Correspondingly, we may express the {ij} in terms of the {yi} with coefficients
given by:

¥1 y2 y3 Y4 Y5 Yo

14 0 1 1 ; 0 0 0

25 1 0 1, 0 0 0

(12) 36 1 1 0 E 0 0 0
% | 1201 1 1l vF 4 1

13 1/2( 1 -1 1 1: i V3 -i)

12 1/2( 1 1 -1 : i -i V3)

Expressions for other ij are easily deduced using (-, ) and the table. In the basis
of the {y;, ¥;}, we may use (10) - (12) to compute the multiplication operators My

for y in the basis. For y =y;, we note that MY annihilates X and takes X into X.
Consequently, we need only exhibit the nonzero lower-left 6 X 6 submatrix, with i-th

column expressing y; *y; intermsof y,, -, y¢. We obtain:
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3 1 1 3
1 1 -1 1
1 -1 1 1
(13) My, = 1/2 " , My, = 1/2 5 1 11s o o
1 0 0 -
V3
1 0 _\/_:3 0
Then MVz’ MY_:, may be obtained by applying the row/column permutations (12) (45)
to these matrices; and M M_ Dby applying (13)(46). Similarly these are the

Y3’ Y6
6 X 6 upper-right submatrices of M{,l y *t, MS—’() .

With the above information in hand, we are ready to proceed with our main
project. The first step is comparatively easy:

(14) The map (-, -, -) gives a nonsingular cubic form, so that A is finite.

Proof. With indeterminates X, ---, Xg, Xl y Tt ié and basis x;, -, X¢,

il , ***, X¢, we see that the associated cubic form f is in fact the sum of forms on
X and X:
6 6
f= 2 (g, x,x)XXX + 2 &, X, XXX
i,j, k=1 i,j,k=1

Call the two parts g and h. To show f is nonsingular, we prove that the quadratic

forms 8%%—-’ a%?h— have no common zero. (This is equivalent to showing that Y has no
1 )
square-roots of 0 other than 0.) We can use (9) to evaluate:

6, i=j=k;
(x;, x5, %) = w3kl 55 k distinet;
0, otherwise.

It follows that g% has matrix:
1

entry w—[ljk] in (j, k) position.

S O O © o o
o
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Matrices for x,, -*-, Xg are obtained similarly. We see that the sum has matrix:
6 4
6 4 entry 1 elsewhere.
o1 9%y
4 6
4 6
4 6
Thus

6 2 6
% xoe (Z) Xi) +3[(X) +X9)% + (X, +X5)% + (X3 +X)2) +2 27 X2,

i=1 0X; i=1 i=1
L - . 6 9h . - .
which is positive-definite. In the same way i=1 3%, is positive-definite, so that
i
28 .. oh can have no common zero, and f is nonsingular. It follows by Jor-

BXI ’ ) ’ 826
dan’s theorem [8] or by Schneider [9] that A is finite, and (14) is established.

The next step is the difficult one:
(15) Elements of A either interchange or fix {X, X} .
The proof is quite tedious, and we postpone it in favor of showing the final argument:
(16) A =38, .

Proof. Assuming (15), we see A* = N, (X, X) is of index 2 in A. As X is an
irreducible module in 6 dimensions for A*, we may consult the classification of 6-
dimensional groups [7]. Already A* > 3A;. If we had A* = 6 - PSU(4, 3), the cen-
tral involution would act as -1 on Y, and so would not preserve the multiplication.
We conclude A* = 3A,, so that A = 3S,.

Now we will begin the proof of (15). It is convenient to define for S < Y the
annihilator A(S) = {y € Y: s *y = 0 for each s € S}. For instance, we see by (13)
that A(y;) =X, and so A(X) =X. Now for a € A we must have A(X?) = A(X)? = X2,
Thus to prove (15) it will suffice to show X* =X or X. We will now write T for
some such conjugate X~ , and U for X = A(T).

It will also be convenient to let a subscript X or X indicate the image of pro-
jection into X_or X. We obtain easily a strong restriction on the intersections of
T, U with X, X:

(17) T = Txy ®Tx and U=Uy DUx.

Proof. Take t € T and u € U. We have
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0 = (tx +tx%) * (ux +ug) = (tx * uy) + (tg * ug) .
As the first term on the right is in X and the second in X, both are 0. We conclude:
(18) Tx < A(Uy) and Tgx < A(Ug)

(and of course symmetrically with T, U interchanged). But we also have trivially
that T < Ty (® Ts, and similarly for U. We have Uy contained in A(Tx) trivially,
and in A(Ty) by {18); and we obtain the same inclusions for Uyx. Thus

U < Ux @D Ux < A(Ty) N A(Ty) < A(Ty@Tx) < A(T) = U.

Consequently, we get U = Ux () Ux; and similarly for T, proving (17).

In view of (17), since we assume T # X or X, it intersects both nontrivially.
Thus Ty =T N X and so on; dim Ty +dim Uy = 6 and so on. Since

X < AlTy) < X®X,

we have A(Tx) = X D A(Tx)x. By nonsingularity, there are no square-roots of 0,
so dim A(Tx) = 12 - dim Tx; and as X (D Ux < A(Tx), we must have

Ux = A(TX)X = A(Tx) N X .

By choice, if necessary, dim Ty < 3, so that Tx is a subspace of elements whose
multiplications have rank at most 3. We will be able to derive a contradiction from
this condition. Indeed, on inspecting (13) we see that the obvious multiplications all
have rank greater than or equal to 4; and we will show how difficult it is to reduce
rank below that. We further break down X into “left” and “right” parts

L= (y,,¥2 ¥3) and R =<ys,vs,76)-

Define L and R analogously on X. Subscripts L and R will again denote projec-
tion into these spaces. Our first step is to show:

(19) For y € L we have rk(M,) > 4, and consequently Tx N L = 0.

Pyroof. Take some y € L. If y € T, then I_'l_{(MY)S 3, so dim (A(y)x) > 3. We
analyze how this might happen. Since L * LC T and L *y; € {§; ) for i =4, 5, 6,
we see that A(y)x = A(y)1, @A(y)<y4> @A(y)<y5> @A(y)< Y6> . We first exam-

ine the possibility that A(y)r # 0. From (13) we see that

Alygx = {vy1 +3yz, y1 +3y3 ),

N
and analogously for ys, y¢. Then dim A(y4)x = 2, dim A(y4, ys)x = 1, and
A(R)x = 0. Thus dim A(y)r = 3 is impossible. Now if dim A(y)r = 2, we may as-
sume without loss of generality that A(y)g = <y4, y5> , and then we may take
y =y, +y, +2y3. But we can check that {(y * y;)T:i=1, 2, 3} are independent,
so A(y);, = 0 and rk(M,) = 4. Thus we assume dim A(y)r = 1, and without loss of
generality, A(y)r =< y4> and we cantake y =y; + ay, + (3 - a)y; for some a. We
can consider the coefficients of the vectors (y * y,)7 for i =1, 2, 3:
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Y1 V2 y3
Y * ¥, 3 2 2-a
Yy *xY> -1 2+a 1
y *y3 2-a 1 5-a

If these three vectors span only a line, we have 2 +a =-2/3, 2 - a = 3/2, whichis a
contradiction. Thus here rk(M,) > 4 also. Finally, consider the case A(y)g =0, so
that A(y)x = A(y)r,. If rk(My) = 3, then L = A(y)x, forcing yZ = 0, contradicting
nonsingularity. Thus (19) is proved.

One consequence of (19) is that we are reduced to the case dim (Ty) = 3. Not
surprisingly, we also obtain a right analogue of (19):

(20) Ty NR = 0.

Proof. Take y = ays +bys +cyg € R. For any u € X, note up, *y € f{_; and if
ug =dyy +eys +fyg, then (u * y)r; = (ug * y)T; is the combination

DN | =t

[ad (-3, 1, 1) + be (1, -3, 1) +cf(1, 1, -3)].

Suppose first a, b, ¢ # 0. Then independence of the above vectors forces

d=e =f=0 wherever u € A(y); that is, A(y)x C L. If y € T, then Ux C A(y)x,
and we contradict (19). Recall also from that proof that if b=c =0 and y € < y4'> ,
then A(y)x € L, again forcing y ¢ T. Thus without loss of generality we can take

a, b# 0 and ¢ = 0. The argument above forces d = e =0 for u € A(y); that is,
Aly)r € <y6> . Consequently, if rk(M,) <3, then dim (A(y) N L) > 2. Choosing
some u € A(y) N L, the argument of (19) gives <y4, y5> C Aly), since a, b # 0.
But recall that dim (A(y4, ys)x) = 1, contradicting dim (A(y) N L) > 2. Hence (20)
is established.

A consequence of (19) and (20) is that T;, =L and Tg = R. In particular, T
must contain an element y = (y; +y, +y3) + dyq +eys + fy¢ . Some calculation with
this element will now produce a contradiction. We first list the coordinates of
y*yi i=1, tee, 6:

Y1 y2 ¥3 ¥4 V5 Yé
I
Y * ¥y, 5 1 1 : -3d e f
*y, 1 5 1 : d -3e f
|
* Y3 1 1 5 : d e -3f
— o — —— — m— — - ow— — .’_ — — —— — _f_ — — —
xya | -3d e £ -1 - %
|
If d
* Y5 d -3e f : ﬁ -1 3
e d

(For simplicity we have omitted a factor of 1/2 in all entries of this table.)
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Now if rk(MY) = 3, then the bottom three rows must be dependent on the top
three. Indeed, we may invert the upper-left 3 X 3 matrix in order to determine co-
efficients of linear combinations. First we claim d, e, f # 0. For if the fourth row
is expressed as a combination of the first three, its entry -1 in the fourth column
forces d # 0. In a similar way, we see that e, f # 0.

In order to determine the coefficients, we note

-1

5 1 1 6 -1 -1

1 5 1 . L -1 6 -1
28

1 1 5 -1 -1 6

The coefficients for the fourth row, for example, are
zig[—lsd ~e-1, 3d+6e-1 3d-e-+6f] .

On applying these in the columns 4, 5, 6, we obtain

1= $(15d+2e+zf)
f e
(21) T5°7 (-6d - 5e + 2f)

73 =%(—6d+2e— 5f) .

We can do the same for the fifth and sixth rows, obtaining six more equations. On
comparing such equations with the same left-hand side, we obtain equations like

(d - e)(15(d +e) + 2f)

Il

0
(22)
(d-e)(5(d+e)-2f) =0,

and similar ones with {d, f } interchanged and {e, f } interchanged. Then if d # e,
we conclude from (22) that f =0 and d = -e. But f =0 contradicts our earlier re-
mark. Thus d = e, and from similar calculations we conclude d = e ={.

Now the coefficients for the fourth row become ( %times) -5, 2, 2. Looking

2
down the fourth column, we obtain the requirement -1 = 1972— But this is impossi-

ble. This contradiction completes the proof of (15), and hence of our main result.
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