RATIONAL APPROXIMATION AND SWISS CHEESES
C. R. Putnam

1. INTRODUCTION

For the purpose of this note, an open set A of the complex plane will be called
regular if its boundary 9A is a finite union of piecewise C% simple closed curves.
A compact set X of the plane will be called areally disconnected if for each a > 0
there exist a finite number of pairwise disjoint regular open sets Aj, -+, A, (de-

n
pending on «) for which X C Uk:1 Ay and, for k=1, -=-, n, m;(@A, NX) =0 and
m,(A, N X) < a. (Here Ay denotes the closure of Ay, while m; and m; refer to
Lebesgue arc length and planar measures.)

For any compact set X, let C(X) and R(X) denote, respectively, the algebra of
continuous functions on X and the subalgebra of functions which are uniformly ap-
proximable on X by rational functions with poles off X. An obvious necessary con-
dition in order that C(X) = R(X) is that the interior of X be empty. Various neces-
sary and sufficient conditions for the validity of this equality are, in fact, known
(e.g., as consequences of Bishop’s peak point criterion, Melnikov’s peak point
criterion, or Vitushkin’s theorem; see Gamelin [4] or Zalcman [16]), but are not
always easy to apply. A sufficient condition for C(X) = R(X) is contained in the
following.

THEOREM 1. If X is a compact set of the plane which is areally disconnected,
then C(X) = R(X).

COROLLARY 1 (Hartogs-Rosenthal [6]). If X is a compact set of the plane and
if m,(X) =0, then C(X) = R(X).

The hypothesis m,(X) = 0 implies that, for almost all real t, the line %(z) = t
intersects X in a set of zero linear measure. Hence, for each @ > 0, there exist a
finite set of real numbers tg < --- <t, and a pair of real numbers a <b satisfying
te -tk < a/(b - a) for k =1, ---, n, with the properties that X is contained in the
rectangle (tg, t,) X (a, b) and each segment {z: R(z) =t; and a < 3(z) < b}, for
k=0, ---, n, intersects X in a set of zero linear measure. If the open rectangles
(t,_;» t,J) x(a, b), for k =1, ---, n, are identified with the sets A, considered at
the beginning of this section, it is seen that X is areally disconnected.

It is clear from the above proof that Corollary 1 can be strengthened to the
following.

COROLLARY 2. If X is a compact set of the plane and if therve exists a set of
veal numbers {t} dense on the veal line for which each of the vertical lines
N (z) =t intersects X in a set of zevo linear measuve, then C(X) = R(X).

Obviously, the special role of the vertical direction in Corollary 2 is one of
convenience, and any fixed direction would serve as well. It is noteworthy that, al-
though the usual modern proofs of the Hartogs-Rosenthal theorem (see, e.g., [4, p.
47] or [16, p. 110]), or even the original proof in [6], do not seem to yield Corollary
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2, nevertheless, a proof does occur, at least implicitly, in the paper of Alice Roth
[11, pp. 98-100]. In fact, using an earlier lemma on p. 83, she shows that under the
hypothesis of Corollary 2 above, the function x = %(z), hence also y = i(x - z), be-
longs to R(X) and so, in view of the Weierstrass approximation theorem,

C(X) = R(X).

The proof of Theorem 1 will be given in Section 2 and will be based on some
recent results on peak sets and subnormal operators. For later use, we recall here
that a compact subset Q of a compact set X is a peak set of R{X) if there exists a
function f in R(X) suchthat f=1 on Q and |f| <1 on X - Q. See, for instance,
Gamelin [4]. An operator T on a Hilbert space $ is said to be subnormal if T has
a normal extension N on a Hilbert space & containing $. For some properties of
such operators, see Halmos [5].

2. PROOF OF THEOREM 1

We shall need three lemmas.

LEMMA 1. If T is a subnormal operator on a Hilbevt space $ with the divect
sum vepresentation

m m
T=2®T, on $= 22D,
k=1 k=1

then |T*T - TT*|| < n-1maxy {my(0(Ty))}, where o(Ty) denotes the spectvum of
Tk on ‘S;)k'

Since a subnormal T is also hyponormal (T*T - TT* > 0) and since
|T*T - TT*| = max, { | TFT) - T, . T¥| }, the result follows from Putnam [8].

LEMMA 2. Let X be a compact set of the plane and let C be a simple closed
cuvve which is piecewise C2 and such that Q = (ext C)” N X is nonempty and C N X
has zevo linear measuve (the measure being that of avc length on C). Then Q is a
peak set of R(X).

Lemma 2 is essentially contained in Lautzenheiser [7]. For completeness we
give a demonstration below, which is a slightly modified version of his proof. If
Q =X, Lemma 2 is trivial, so that it can be supposed that Q is a proper subset of
X.

According to a result of Fatou, if Z is any set of zero arc length measure on
the circle Iz = 1, then there exists a function f continuous on |z < 1, analytic on
|z| < 1, and such that f = 0 precisely on Z. Using this result, F. and M. Riesz [10,

p. 36-37], showed that there exists a function f continuous on ‘zl < 1, analytic on
z| <1, and such that =1 on Z and |f] <1 elsewhere. (In this connection, cf.
Sz.-Nagy and Foias [13, p. 253].)

In view of the Riemann-Carathéodory mapping theorem, there exists a function
z = g(w) which maps (int C)~ homeomorphically onto |z| < 1 and conformally on
|z| < 1; ¢f. Rudin [12, p. 311]. Further, by a result of F. and M. Riesz [10], since
C is rectifiable, sets of zero measure on C are mapped into sets of zero measure
on |z| =1 and conversely. In view of Mergelyan’s theorem (see [4, p. 48]),
F = f(g(w)) is the uniform limit on (int C)~ of polynomials in w. (This last asser-
tion is, in fact, a consequence of a much earlier theorem due to J. L. Walsh [14])
Consequently, if Z =g(C N X) and if Q' = (int C)” N X, then F|Q' € R(Q), F=1
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on C NX, and IFI <1lonQ-C. If F isdefinedby F=1 on Q, then clearly
F|Qe R(Q and F € C(X). According to a result of Vitushkin [15], since C is
piecewise CZ2, then C, hence also C N X, is analytically negligible (¢f. Gamelin [4,
p. 236]). It then follows from a result of Davie and (ksendal [3] that F € R(X), so
that Q is a peak set of R(X).

LEMMA 3. Lel T be subnormal on a Hilbevt space and let C be a simple
closed cuvve which is piecewise C2 and such that both sets Q1 = (ext C)” N o(T)
and Q, = (int C)~ N o(T) are nonempty, and such that C N o(T) has zevo linear (arc
length) measure. Then T is veducible and has the divect sum vepresentation
T = T1®TZ with O’(Tl) C Q) and O(Tz) C Q.

Lemma 3 was first proved by Lautzenheiser in [7] using Lemma 2 together with
some results on subnormal operators which he obtained there. Another proof of
Lemma 3, as a direct consequence of Lemma 2, follows from an application of Theo-
rem 1 of Putnam [9].

The proof of Theorem 1 can now be completed as follows. If X is the spectrum
of a subnormal operator T, then, in view of Lemma 3, the hypothesis of Theorem 1
readily implies that for every a > 0 there exists a finite direct sum representation

m m
T = 2J @T, on o = 2 @ H with m,(0(Ty)) < a. It follows from Lemma 1 that
k=1 k=1

T must be normal, and this, in turn, implies that C(X) = R(X). Indeed, if

C(X) # R(X), then by Bishop’s peak point criterion (¢f. [4, p. 54]), there would exist
some X in X which is not a peak point of X. By an argument similar to that in
Clancey and Putnam [1, p. 242], there would then exist a nonnormal subnormal oper-
ator S for which x € 0(S) C X. If one chooses, say, any normal operator N with
spectrum X, then T =S ® N has spectrum X and is subnormal but not normal, in
contradiction to the result proved above.

3. SWISS CHEESES

Let D denote the open unit disk {z: Izl < 1} and let {Dk}, k=1, 2, -, be a
sequence of open disks in D having pairwise disjoint closures and chosen so that

X=D - U Dy has an empty interior. Such a set X is called a Swiss cheese. If

Dy has radius ry and if 27 r;. <, then it follows from Cauchy’s integral theorem
that C(X) # R(X); see Gamelin [4, pp. 25-26]. As noted by Gamelin [4, p. 62], Swiss
cheeses were first considered by Alice Roth [11]. It may also be observed that the

preceding result, that C(X) # R(X) whenever 2 r <, was essentially proved by
her; see [11, pp. 96-98].

Clearly, 2 rlz( =1 is equivalent to the requirement that X have zero planar
measure. As noted earlier, this is equivalent to the condition that almost all verti-
cal lines intersect X in sets of zero linear measure, and the Hartogs-Rosenthal
theorem implies that C(X) = R(X). However, in view of Corollary 2, C(X) = R(X) is
assured even if only each member of a dense set of vertical lines intersects X in a
set of zero linear measure. Further, it is easy to construct such Swiss cheeses X
which have positive planar measure. To see this, choose a sequence of vertical
lines L,, L,, ***, having intersections dense in (-1, 1). Then remove the disks Dy

centered on these lines in such a way that 22 rﬁ <land X=D - U D, is a Swiss
cheese intersecting each line L;, L,, *** in a set of zero linear measure.
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4. REMARKS

Whether the statement of Theorem 1 remains true if, in the definition of “areally
disconnected set”, the hypothesis on a boundary curve of a regular open set A that it
be piecewise C2 is weakened to the requirement that it be only piecewise C!, or
possibly just rectifiable, is not known. The issue here, as far as concerns the proof
of Theorem 1 given above, is whether analytic negligibility of C holds under these
relaxed conditions. It may be noted that Vitushkin [15] has extended the collection of
analytically negligible sets to include “Liapunov curves” (¢f. Zalcman [16, p. 115]),
and that Davie [2, Section 4] has extended this latter set somewhat further.
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