RATIONAL APPROXIMATION AND SWISS CHEESES

C. R. Putnam

1. INTRODUCTION

For the purpose of this note, an open set A of the complex plane will be called regular if its boundary ∂A is a finite union of piecewise C^2 simple closed curves. A compact set X of the plane will be called areally disconnected if for each $\alpha>0$ there exist a finite number of pairwise disjoint regular open sets A_1, \dots, A_n (depending on α) for which $X\subset \bigcup_{k=1}^n A_k^-$ and, for $k=1,\dots,n$, $m_1(\partial A_k\cap X)=0$ and $m_2(A_k\cap X)<\alpha$. (Here A_k^- denotes the closure of A_k , while m_1 and m_2 refer to Lebesgue arc length and planar measures.)

For any compact set X, let C(X) and R(X) denote, respectively, the algebra of continuous functions on X and the subalgebra of functions which are uniformly approximable on X by rational functions with poles off X. An obvious necessary condition in order that C(X) = R(X) is that the interior of X be empty. Various necessary and sufficient conditions for the validity of this equality are, in fact, known (e.g., as consequences of Bishop's peak point criterion, Melnikov's peak point criterion, or Vitushkin's theorem; see Gamelin [4] or Zalcman [16]), but are not always easy to apply. A sufficient condition for C(X) = R(X) is contained in the following.

THEOREM 1. If X is a compact set of the plane which is areally disconnected, then C(X) = R(X).

COROLLARY 1 (Hartogs-Rosenthal [6]). If X is a compact set of the plane and if $m_2(X) = 0$, then C(X) = R(X).

The hypothesis $m_2(X)=0$ implies that, for almost all real t, the line $\Re(z)=t$ intersects X in a set of zero linear measure. Hence, for each $\alpha>0$, there exist a finite set of real numbers $t_0<\dots< t_n$ and a pair of real numbers a< b satisfying $t_k-t_{k-1}<\alpha/(b-a)$ for $k=1,\dots,n$, with the properties that X is contained in the rectangle $(t_0,t_n)\times(a,b)$ and each segment $\{z\colon\Re(z)=t_k \text{ and } a\leq\Im(z)\leq b\}$, for $k=0,\dots,n$, intersects X in a set of zero linear measure. If the open rectangles $(t_{k-1},t_k)\times(a,b)$, for $k=1,\dots,n$, are identified with the sets A_k considered at the beginning of this section, it is seen that X is areally disconnected.

It is clear from the above proof that Corollary 1 can be strengthened to the following.

COROLLARY 2. If X is a compact set of the plane and if there exists a set of real numbers $\{t\}$ dense on the real line for which each of the vertical lines $\Re(z) = t$ intersects X in a set of zero linear measure, then C(X) = R(X).

Obviously, the special role of the vertical direction in Corollary 2 is one of convenience, and any fixed direction would serve as well. It is noteworthy that, although the usual modern proofs of the Hartogs-Rosenthal theorem (see, e.g., [4, p. 47] or [16, p. 110]), or even the original proof in [6], do not seem to yield Corollary

Received December 23, 1976.

This work was supported by a National Science Foundation research grant.

Michigan Math. J. 24 (1977).

2, nevertheless, a proof does occur, at least implicitly, in the paper of Alice Roth [11, pp. 98-100]. In fact, using an earlier lemma on p. 83, she shows that under the hypothesis of Corollary 2 above, the function $x = \Re(z)$, hence also y = i(x - z), belongs to R(X) and so, in view of the Weierstrass approximation theorem, C(X) = R(X).

The proof of Theorem 1 will be given in Section 2 and will be based on some recent results on peak sets and subnormal operators. For later use, we recall here that a compact subset Q of a compact set X is a *peak set* of R(X) if there exists a function f in R(X) such that f = 1 on Q and |f| < 1 on X - Q. See, for instance, Gamelin [4]. An operator T on a Hilbert space $\mathfrak P$ is said to be *subnormal* if T has a normal extension N on a Hilbert space $\mathfrak P$ containing $\mathfrak P$. For some properties of such operators, see Halmos [5].

2. PROOF OF THEOREM 1

We shall need three lemmas.

LEMMA 1. If T is a subnormal operator on a Hilbert space $\mathfrak S$ with the direct sum representation

$$T = \sum_{k=1}^{m} \bigoplus T_k$$
 on $\mathfrak{H} = \sum_{k=1}^{m} \bigoplus \mathfrak{H}_k$,

then $\|T^*T - TT^*\| \le \pi^{-1} \max_k \{m_2(\sigma(T_k))\}$, where $\sigma(T_k)$ denotes the spectrum of T_k on \mathfrak{H}_k .

Since a subnormal T is also hyponormal $(T^*T - TT^* \ge 0)$ and since $\|T^*T - TT^*\| = \max_k \{\|T_k^*T_k - T_kT_k^*\|\}$, the result follows from Putnam [8].

LEMMA 2. Let X be a compact set of the plane and let C be a simple closed curve which is piecewise C^2 and such that $Q = (ext \ C)^- \cap X$ is nonempty and $C \cap X$ has zero linear measure (the measure being that of arc length on C). Then Q is a peak set of R(X).

Lemma 2 is essentially contained in Lautzenheiser [7]. For completeness we give a demonstration below, which is a slightly modified version of his proof. If Q = X, Lemma 2 is trivial, so that it can be supposed that Q is a proper subset of X.

According to a result of Fatou, if Z is any set of zero arc length measure on the circle |z|=1, then there exists a function f continuous on $|z|\leq 1$, analytic on |z|<1, and such that f=0 precisely on Z. Using this result, F. and M. Riesz [10, pp. 36-37], showed that there exists a function f continuous on $|z|\leq 1$, analytic on |z|<1, and such that f=1 on Z and |f|<1 elsewhere. (In this connection, cf. Sz.-Nagy and Foiaș [13, p. 253].)

In view of the Riemann-Carathéodory mapping theorem, there exists a function z = g(w) which maps (int C)⁻ homeomorphically onto $|z| \le 1$ and conformally on |z| < 1; cf. Rudin [12, p. 311]. Further, by a result of F. and M. Riesz [10], since C is rectifiable, sets of zero measure on C are mapped into sets of zero measure on |z| = 1 and conversely. In view of Mergelyan's theorem (see [4, p. 48]), F = f(g(w)) is the uniform limit on (int C)⁻ of polynomials in w. (This last assertion is, in fact, a consequence of a much earlier theorem due to J. L. Walsh [14].) Consequently, if $Z = g(C \cap X)$ and if $Q' = (int C)^- \cap X$, then $F \mid Q' \in R(Q')$, F = 1

on $C \cap X$, and |F| < 1 on Q' - C. If F is defined by F = 1 on Q, then clearly $F | Q \in R(Q)$ and $F \in C(X)$. According to a result of Vitushkin [15], since C is piecewise C^2 , then C, hence also $C \cap X$, is analytically negligible (cf. Gamelin [4, p. 236]). It then follows from a result of Davie and \emptyset ksendal [3] that $F \in R(X)$, so that Q is a peak set of R(X).

LEMMA 3. Let T be subnormal on a Hilbert space and let C be a simple closed curve which is piecewise C^2 and such that both sets $Q_1 = (\text{ext C})^- \cap \sigma(T)$ and $Q_2 = (\text{int C})^- \cap \sigma(T)$ are nonempty, and such that $C \cap \sigma(T)$ has zero linear (arc length) measure. Then T is reducible and has the direct sum representation $T = T_1 \oplus T_2$ with $\sigma(T_1) \subseteq Q_1$ and $\sigma(T_2) \subseteq Q_2$.

Lemma 3 was first proved by Lautzenheiser in [7] using Lemma 2 together with some results on subnormal operators which he obtained there. Another proof of Lemma 3, as a direct consequence of Lemma 2, follows from an application of Theorem 1 of Putnam [9].

The proof of Theorem 1 can now be completed as follows. If X is the spectrum of a subnormal operator T, then, in view of Lemma 3, the hypothesis of Theorem 1 readily implies that for every $\alpha>0$ there exists a finite direct sum representation

$$T = \sum_{k=1}^{m} \bigoplus T_k \text{ on } \S = \sum_{k=1}^{m} \bigoplus \S_k \text{ with } m_2(\sigma(T_k)) < \alpha. \text{ It follows from Lemma 1 that}$$

T must be normal, and this, in turn, implies that C(X) = R(X). Indeed, if $C(X) \neq R(X)$, then by Bishop's peak point criterion (cf. [4, p. 54]), there would exist some x in X which is not a peak point of X. By an argument similar to that in Clancey and Putnam [1, p. 242], there would then exist a nonnormal subnormal operator S for which $x \in \sigma(S) \subset X$. If one chooses, say, any normal operator N with spectrum X, then $T = S \oplus N$ has spectrum X and is subnormal but not normal, in contradiction to the result proved above.

3. SWISS CHEESES

Let D denote the open unit disk $\{z\colon |z|<1\}$ and let $\{D_k\}$, $k=1,2,\cdots$, be a sequence of open disks in D having pairwise disjoint closures and chosen so that $X=D^--\bigcup D_k$ has an empty interior. Such a set X is called a Swiss cheese. If D_k has radius r_k and if $\sum r_k < \infty$, then it follows from Cauchy's integral theorem that $C(X) \neq R(X)$; see Gamelin [4, pp. 25-26]. As noted by Gamelin [4, p. 62], Swiss cheeses were first considered by Alice Roth [11]. It may also be observed that the preceding result, that $C(X) \neq R(X)$ whenever $\sum r_k < \infty$, was essentially proved by her; see [11, pp. 96-98].

Clearly, $\sum r_k^2 = 1$ is equivalent to the requirement that X have zero planar measure. As noted earlier, this is equivalent to the condition that almost all vertical lines intersect X in sets of zero linear measure, and the Hartogs-Rosenthal theorem implies that C(X) = R(X). However, in view of Corollary 2, C(X) = R(X) is assured even if only each member of a dense set of vertical lines intersects X in a set of zero linear measure. Further, it is easy to construct such Swiss cheeses X which have positive planar measure. To see this, choose a sequence of vertical lines L_1 , L_2 , ..., having intersections dense in (-1, 1). Then remove the disks D_k centered on these lines in such a way that $\sum r_k^2 < 1$ and $X = D^- - \bigcup D_k$ is a Swiss cheese intersecting each line L_1 , L_2 , ... in a set of zero linear measure.

4. REMARKS

Whether the statement of Theorem 1 remains true if, in the definition of "areally disconnected set", the hypothesis on a boundary curve of a regular open set A that it be piecewise C^2 is weakened to the requirement that it be only piecewise C^1 , or possibly just rectifiable, is not known. The issue here, as far as concerns the proof of Theorem 1 given above, is whether analytic negligibility of C holds under these relaxed conditions. It may be noted that Vitushkin [15] has extended the collection of analytically negligible sets to include "Liapunov curves" (cf. Zalcman [16, p. 115]), and that Davie [2, Section 4] has extended this latter set somewhat further.

REFERENCES

- 1. K. F. Clancey and C. R. Putnam, The local spectral behavior of completely subnormal operators. Trans. Amer. Math. Soc. 163 (1972), 239-244.
- 2. A. M. Davie, Analytic capacity and approximation problems. Trans. Amer. Math. Soc. 171 (1972), 409-444.
- 3. A. M. Davie and B. K. Øksendal, *Rational approximation on the union of sets*. Proc. Amer. Math. Soc. 29 (1971), 581-584.
- 4. T. W. Gamelin, *Uniform algebras*. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969.
- 5. P. R. Halmos, A Hilbert space problem book. D. Van Nostrand Co., Inc., Princeton, N.J., 1967.
- 6. F. Hartogs and A. Rosenthal, Über Folgen analytischer Funktionen. Math. Ann. 104 (1931), 606-610.
- 7. R. G. Lautzenheiser, *Spectral sets*, reducing subspaces, and function algebras. Thesis, Indiana University, 1973.
- 8. C. R. Putnam, An inequality for the area of hyponormal spectra. Math. Z. 116 (1970), 323-330.
- 9. ——, Peak sets and subnormal operators. Illinois J. Math., to appear.
- 10. F. and M. Riesz, Über die Randwerte einer analytischen Funktion. Quatrième Congrès des Math. Scand., Stockholm (1916), 27-44.
- 11. A. Roth, Approximationseigenschaften und Strahlengrenzwerte meromorpher und ganzer Funktionen. Comment. Math. Helv. 11 (1938), 77-125.
- 12. W. Rudin, Real and complex analysis. Second Edition. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974.
- 13. B. Sz.-Nagy and C. Foiaș, Sur les contractions de l'espace de Hilbert. IV. Acta Sci. Math. Szeged 21 (1960), 251-259.
- 14. J. L. Walsh, Über die Entwicklung einer analytischen Funktion nach Polynomen. Math. Ann. 96 (1926), 430-436.
- 15. A. G. Vitushkin, The analytic capacity of sets in problems of approximation theory. Uspehi Mat. Nauk 22 (1967), no. 6, 141-199. Russian Math. Surveys 22 (1967), 139-200.
- 16. L. Zalcman, *Analytic capacity and rational approximation*. Lecture Notes in Mathematics, No. 50. Springer-Verlag, Berlin-New York, 1968.

Department of Mathematics Purdue University West Lafayette, Indiana 47907