QUASICONFORMALLY HOMOGENEOUS CURVES

Timo Erkama

A Jordan curve C on the Riemann sphere is called *quasiconformally homogeneous* if for each pair of points P and Q ϵ C there is a quasiconformal map ϕ defined in a neighborhood of C such that ϕ C = C and ϕ (P) = Q. Examples of quasiconformally homogeneous curves are provided by the so-called quasicircles; *i.e.*, quasiconformal images of the unit circle. Other examples are not known, but the question of their existence was raised in [2] by D. K. Blevins and B. P. Palka. It is our purpose to answer this question negatively by proving the following result.

THEOREM 1. Every quasiconformally homogeneous curve is a quasicircle.

The proof of Theorem 1 will depend on a local characterization of quasicircles. A Jordan domain with reference points is a triple (D, p, p*), where D is a Jordan domain, p \in D, and p* is a point of the complementary Jordan domain D*. A morphism (D, p, p*) \rightarrow (D₁, p₁, p₁*) is a quasiconformal map f of the sphere onto itself such that fD \subset D₁, f(p) = p₁, and f(p*) = p₁*.

The *dilatation* of (D, p, p*) is a nonnegative function Δ defined on the boundary $C = \partial D$ as follows. Let U be the open unit disc, and for $P \in C$ denote by $\mathscr{F}(P)$ the family of morphisms $f: (U, 0, \infty) \to (D, p, p^*)$ such that f(1) = P. Let K(f) denote the maximal dilatation of f, and define $\Delta(P) = \inf \{K(f): f \in \mathscr{F}(P)\}$. (If $\mathscr{F}(P)$ is empty, then by convention $\Delta(P) = +\infty$.)

LEMMA. The dilatation is a lower-semicontinuous function which assumes at least one finite value.

Proof. For $P \in C$ let $m(P) = \lim_{Q \to P} \inf \Delta(Q)$; we have to show that $\Delta(P) \leq m(P)$.

Suppose $m(P)<\infty$, and choose $\epsilon>0$. There is a sequence $\{P_i\}$ on C such that $P_i\to P$ and $\Delta(P_i)< m(P)+\epsilon$ for each i. Choose $f_i\in \mathscr{F}(P_i)$ so that

$$K(f_i) < m(P) + \epsilon;$$

since $\{f_i\}$ is a normal family [4, Theorem II.5.1], a subsequence converges uniformly to a morphism $f \in \mathscr{F}(P)$. Moreover, $K(f) \leq m(P) + \epsilon$, and we conclude that $\Delta(P) \leq m(P)$.

To prove the second assertion we may assume that p = 0 and $p^* = \infty$, because the dilatation is invariant under Möbius transformations. Choose $P \in C$ so that the absolute value of P is as small as possible. Then the Möbius transformation $z \mapsto Pz$ is in $\mathcal{F}(P)$, hence $\Delta(P) = 1$.

We say that (D, p, p^*) is of *bounded dilatation* if Δ is a bounded function on C. If C is a quasicircle, then (D, p, p^*) and (D^*, p^*, p) are of bounded dilatation, but the converse is less obvious.

THEOREM 2. Suppose that (D, p, p*) and (D*, p*, p) are of bounded dilatation. Then the common boundary of D and D* is a quasicircle.

Received March 23, 1977. Revision received June 13, 1977.

Michigan Math. J. 24 (1977).

Proof. Let Γ be an open Jordan arc in the affine plane. We say that (P_1, P_2, P_3) is a *triple on* Γ if P_1, P_2, P_3 are distinct points lying on Γ in this order. We say that Γ is of *bounded turning* if there exists a constant A such that $\overline{P_1 P_2}/\overline{P_1 P_3} \leq A$ for each triple (P_1, P_2, P_3) on Γ . Note that a Jordan curve is a quasicircle if and only if it is the union of a family of open arcs of bounded turning [4, Theorem II.8.7].

We may assume that p=0 and $p^*=\infty$; then $C=\partial D$ lies in the affine plane and has a positive euclidean distance R to the origin. For $Q\in C$ let V_Q denote the open disc with center at Q and radius R/2. Since C is locally connected, there exist open Jordan arcs Γ_Q and Γ_Q' such that $Q\in \Gamma_Q\subset \Gamma_Q'\subset C\cap V_Q$ and Γ_Q' contains all points of C which are in the convex hull of Γ_Q . It remains to show that Γ_Q is of bounded turning.

Let (P_1,P_2,P_3) be a triple on Γ_Q ; we may assume that $\overline{P_1P_2}>\overline{P_1P_3}$, since otherwise there is nothing to prove. As in [1,p.295] we can find points P_1' and P_3' on the segment P_1P_3 so that (P_1',P_2,P_3') is a triple on Γ_Q' and the segment $P_1'P_3'$ has only its endpoints on C. Then $P_1'P_3'$ and the subarc $P_1'P_2P_3'$ of Γ_Q' form the boundary of a Jordan domain $E\subset V_Q$. For definiteness, we suppose that $E\subset D$.

By hypothesis, there exists a constant K such that $\Delta(P) < K$ for each $P \in C$. In particular, there exists a K-quasiconformal morphism $f \in \mathscr{F}(P_2)$. The image of the unit circle under f is a quasicircle L which separates 0 and ∞ . Thus there is a point $P_4 \in L$ such that $R < \overline{P_4 \, Q} < 3R/2$.

Let Γ be the longest subarc of L such that $P_4 \in \Gamma$ and Γ does not meet the closure of E. Since $fU \subseteq D$, the endpoints P_1'' and P_3'' of Γ lie on the segment $P_1' P_3'$, and a simple geometric argument shows that $\overline{P_1 P_2} / \overline{P_1 P_3} \leq \overline{P_1'' P_2} / \overline{P_1'' P_3''}$. On the other hand, by a theorem of Ahlfors [1, Theorem 1], there is a constant A depending only on K such that $\overline{P_1'' P_2} / \overline{P_1'' P_3''} \leq A(\overline{P_4 P_2} / \overline{P_4 P_3''})$. Here $\overline{P_4 P_2} < 2R$ and $\overline{P_4 P_3''} > R/2$, and it follows that $\overline{P_1 P_2} / \overline{P_1 P_3} \leq 4A$. Hence Γ_Q is of bounded turning, and the proof of Theorem 2 is complete.

We proceed with the proof of Theorem 1. Let (D, p, p^*) be a Jordan domain with reference points such that the boundary of D is the given quasiconformally homogeneous curve C. In view of Theorem 2, it suffices to show that the dilatations Δ and Δ^* of (D, p, p^*) and (D^*, p^*, p) are bounded functions on C.

Let Φ^* be the family of isomorphisms $(D, p, p^*) \to (D^*, p^*, p)$, and let Φ be the family of automorphisms of (D, p, p^*) . Combining the homogeneity condition with standard extension techniques, we see that for each pair of points P and $Q \in C$ there exists $\phi \in \Phi \cup \Phi^*$ such that $\phi(P) = Q$. Moreover,

(1)
$$\Delta(Q) \leq K(\phi) \cdot \Delta(P)$$
 or $\Delta^*(Q) \leq K(\phi) \cdot \Delta(P)$,

according as $\phi \in \Phi$ or $\phi \in \Phi^*$.

Let F be the set of points of C at which Δ is finite, and let F* be the corresponding set for Δ^* . Note that F and F* are nonempty by the lemma. If P ϵ F and Q ϵ C, then Q ϵ F \cup F* by (1), and we conclude that C = F \cup F*. Since C is of second category in itself, it follows that at least one of the sets F and F*, say F, is a second category subset of C.

Since Δ is semicontinuous, the set of points at which Δ is not continuous is of first category [3, Theorem 1.2]. Hence Δ is continuous at some points of F, and in particular F contains a nonempty open subset N of C. By (1) we have

$$egin{array}{cccc} oldsymbol{U} & \phi_{
m N} \subset {f F} & {
m and} & oldsymbol{U} & \phi_{
m N} \subset {f F}^*, \ \phi_{
m N} \subset {f F}^*, \end{array}$$

and by homogeneity the sets ϕN form an open covering of C. Since C is connected, we conclude that $F \cap F^*$ is nonempty. Moreover, $\phi(F \cap F^*) \subset F \cap F^*$ for each $\phi \in \Phi \cup \Phi^*$, and it follows that $F = F^* = C$.

Starting from a common point of continuity of Δ and Δ^* , we can now find a non-empty open set N such that Δ and Δ^* are bounded in N. Then Δ and Δ^* are bounded in ϕ N for each $\phi \in \Phi \cup \Phi^*$, and by compactness a finite number of the sets ϕ N cover C. Hence Δ and Δ^* are bounded functions on C.

REFERENCES

- 1. L. Ahlfors, Quasiconformal reflections. Acta Math. 109 (1963), 291-301.
- 2. D. K. Blevins and B. P. Palka, A characterization of quasicircles. Proc. Amer. Math. Soc. 50 (1975), 328-331.
- 3. T. Erkama, Group actions and extension problems for maps of balls. Ann. Acad. Sci. Fenn. Ser. A I 556 (1973), 1-31.
- 4. O. Lehto and K. I. Virtanen, *Quasiconformal mappings in the plane*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1973.

Department of Mathematics University of Helsinki SF-00100 Helsinki 10 Finland