QUASICONFORMALLY HOMOGENEOUS CURVES
Timo Erkama

A Jordan curve C on the Riemann sphere is called gquasiconformally homo-
geneous if for each pair of points P and Q € C there is a quasiconformal map ¢
defined in a neighborhood of C such that ¢C = C and ¢(P) = Q. Examples of quasi-
conformally homogeneous curves are provided by the so-called quasicircles; ¢.e.,
quasiconformal images of the unit circle. Other examples are not known, but the
question of their existence was raised in [2] by D. K. Blevins and B. P. Palka. It is
our purpose to answer this question negatively by proving the following result.

THEOREM 1. Every quasiconformally homogeneous curve is a quasicivcle.

The proof of Theorem 1 will depend on a local characterization of quasicircles.
A Jordan domain with vefevence points is a triple (D, p, p*), where D is a Jordan
domain, p € D, and p* is a point of the complementary Jordan domain D*. A
movphism (D, p, p*) — (D;, p; , p}) is a quasiconformal map f of the sphere onto
itself such that fD C Dy, f(p) = p;, and f(p*) = p}.

The dilatation of (D, p, p*) is a nonnegative function A defined on the bound-
ary C = 9D as follows. Let U be the open unit disc, and for P € C denote by & (P)
the family of morphisms f: (U, 0, ©) — (D, p, p*) such that (1) = P. Let K(f) de-
note the maximal dilatation of f, and define A(P) =inf {K(f): f € #(P)}. (If #(P) is
empty, then by convention A(P) = +.)

LEMMA. The dilatation is a lowev-semicontinuous function which assumes at
least one finite value.

Proof. For P € C let m(P) = lim inf A(Q); we have to show that A(P) < m(P).
Q—P
Suppose m(P) < «, and choose € > 0. There is a sequence {Pi} on C such that
P, —» P and A(P;) <m(P) +¢ for each i. Choose f; € #(P;) -so that

K(,) < m(P) +¢;

since {fi} is a normal family [4, Theorem II.5.1], a subsequence converges uni-
formly to a morphism f € % (P). Moreover, K(f) < m(P) + ¢, and we conclude that
A(P) < m(P).

To prove the second assertion we may assume that p = 0 and p* = ©, because
the dilatation is invariant under Mobius transformations. Choose P € C so that the
absolute value of P is as small as possible. Then the Mobius transformation
z — Pz is in # (P), hence A(P) = 1.

We say that (D, p, p*) is of bounded dilatation if A is a bounded function on C.
If C is a quasicircle, then (D, p, p*) and (D*, p*, p) are of bounded dilatation, but
the converse is less obvious.

THEOREM 2. Suppose that (D, p, p*) and (D*, p*, p) arve of bounded dilata-
tion. Then the common boundavy of D and D* is a quasicivcle.
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Proof. Let T be an open Jordan arc in the affine plane. We say that
(Py, P,, P3) is a triple on T if P;, P,, P3 are distinct points lying on I in this
order. We say that I' is of bounded turning if there exists a constant A such that
P, P, /P; P3; < A for each triple (P;, P,, P3) on I'. Note that a Jordan curve is a
uasicircle if and only if it is the union of a family of open arcs of bounded turning
4, Theorem II.8.7].

We may assume that p = 0 and p* = ©; then C =23D lies in the affine plane and
has a positive euclidean distance R to the origin. For Q € C let V denote the
open disc with center at Q and radius R/2. Since C is locally connected, there
exist open Jordan ares I'q and I'yy suchthat Q € T C ' C C N Vg and I'y con-
tains all points of C which are in the convex hull of I'n. It remains to show that
I’ is of bounded turning.

Let (Pl » Pa, P3) be a triple on I'n; we may assume that P; P, > P; P3, since
otherwise there is nothing to prove. As in [1, p. 295] we can find points P} and P}
on the segment P; P3 so that (P}, P,, P}) is a triple on I'y and the segment
Pi Pé has only its endpoints on C. Then P; P; and the subarc P, P, P; of ry

form the boundary of a Jordan domain E C V5. For definiteness, we suppose that
E CD.

By hypothesis, there exists a constant K such that A(P) < K for each P € C.
In particular, there exists a K-quasiconformal morphism f € # (Pz)- The image of
the unit circle under f is a quasicircle L which separates 0 and «. Thus there is

a point P, € L such that R<P,Q< 3R/2.

Let I' be the longest subarc of L such that P, € I' and I" does not meet the
closure of E. Since fU C D, the endpoints P{ and P3 of I lie on the segment
P; P3, and a simple geometric argument shows that P, P, /P1 P; <P]P, /P'I' P3.
On the other hand, by a theorem of Ahlfors [1, Theorem 1], there is a constant A
depending only on K such that P P, /P] P5 < A(P, P, /P, P3). Here P, P, < 2R
and P, P} > R/2, and it follows that P; P, /P; P; < 4A. Hence TI'( is of bounded
turning, and the proof of Theorem 2 is complete.

We proceed with the proof of Theorem 1. Let (D, p, p*) be a Jordan domain
with reference points such that the boundary of D is the given quasiconformally
homogeneous curve C. In view of Theorem 2, it suffices to show that the dilatations
A and A* of (D, p, p*) and (D*, p*, p) are bounded functions on C.

Let ®* be the family of isomorphisms (D, p, p*) — (D*, p*, p), and let & be
the family of automorphisms of (D, p, p*). Combining the homogeneity condition
with standard extension techniques, we see that for each pair of points P and Q € C
there exists ¢ € & U ®* such that ¢(P) = Q. Moreover,

(1) AQ) < K@) - A(P) or A¥Q < K() - AP),

according as ¢ € & or ¢ € ®*,

Let F be the set of points of C at which A is finite, and let ¥* be the corre-
sponding set for A*., Note that F and F* are nonempty by the lemma. If Pe F
and Q € C, then Q € FU F* by (1), and we conclude that C = F U F*. Since C is
of second category in itself, it follows that at least one of the sets F and F*, say F,
is a second category subset of C.

Since A is semicontinuous, the set of points at which A is not continuous is of
first category [3, Theorem 1.2]. Hence A is continuous at some points of F, and in
particular F contains a nonempty open subset N of C. By (1) we have
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U ¢N C F and U ¢N C F*,
ped ped*

and by homogeneity the sets ¢N form an open covering of C. Since C is connected,
we conclude that F N F* is nonempty. Moreover, ¢(F N F¥*) Cc F N F* for each
¢ € ® U d*, and it follows that F = F* = C.

Starting from a common point of continuity of A and A*, we can now find a non-
empty open set N such that A and A* are bounded in N. Then A and A* are
bounded in ¢N for each ¢ € & U &*, and by compactness a finite number of the sets
¢N cover C. Hence A and A* are bounded functions on C.
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